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Abstract

The main object of present paper is to obtain a finite summation of Srivastava’s general
triple hypergeometric series in terms of Kampé de Fériet's double hypergeometric series.
A number of finite sums of Kampé de Fériet's double hypergeometric polynomials in
terms of different kinds of single hypergeometric polynomials of higher order, are
obtained. Some known results of Manocha and Sharma [9], [10], Munot [11], Pathan [12},
Qureshi [15], Qureshi and Pathan [16] and Srivastava (26] are deduced as special cases. A
result of Pathan [13, page 316 (1.2)] 1s also corrected here.

1. Introduction

A unification of Lauricella’s fourteen triple hypergeometric functions F,..., Fi,
[7, pages 113-114], the extended F; function of Sharma [20, page 613 (2)] and
three additional functions H,, H; and H_ of Srivastava [22, pages 99-100, see
also 23 and 25] was introduced by Srivastava [24, page 428] in the form of a
general triple hypergeometric series F ), defined as
(a) :: (b); (8); (b”): ()5 (¢'); (¢”);
F(3) X, y’ z
(d)::(e); (&) (e”): (f); (f)s (/)
— io: [a]M+n+p[b]m+n[b’]n+p[b"]p+m
m.n,p=0 [d]rrI+n+p[e] m+n[e’]n+p[e”]p+m
[)ulc]ule], 5 7 27
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(21 Expansion formulae for hypergeometric series 377

where (a) is the abbreviation for the array of A parameters a,, a,,...,a4. Itis to
be noted here that there are 4 of the (a) parameters, B of the (b) parameters and
so on. Thus [a],, is interpreted as

fal, = T1(a), = [T a5 (12)

=1

with similar interpretations for [b], [c], et cetera. It will be assumed throughout
the paper that the absence of parameters shown by horizontal dashes mean that
there exists no parameter, and in that case, from (1.2), the conventional value of
an empty product will be unity, i.e.,

[1(a), = 1.

i=1

Also, numerator parameters like (a), (b), (b’), (b”) et cetera may be zero or
negative integers, but the denominator parameters like (d), (¢) et cetera are not
allowed to be zero or negative integers.

The region of convergence of the above triple power series (1.1) is given in the
recent literature [3, page 156; see also 4, page 40].

The main object of the present paper is to obtain the following finite sum of
Srivastava’s general triple hypergeometric series in terms of Kampé de Fériet’s
double hypergeometric series [1, page 150]

(@) ::(a); (g); —:-n,(d); -m + n,(g);(c);

f: __(":':)” F® X, Y,z
= (6") 2 (b); (K); —: (e); (h); (f)s
_x"a].la’} 4]
[6].[6].[e].
(g): (@ +m),(c);-m,(1 —e—m),(g);
.F 2,(-1) D—E% (1.3)

(h): (b + m),(f); 1 —d—m),(h);

where each of the parameters (d) = {d,,d,, ..., dp} need not be an integer. Also
the variable x should not be zero. The notation used here for Kampé de Fériet’s
double series is due to Burchnall and Chaundy [2, page 112].
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Some finite sums for hypergeometric polynomials of Krall and Frink, Rainville,
Gegenbauer, generalized Rice, Shively’s Pseudo-Laguerre, Bateman, Generalized
Laguerre and Jacobi are deduced as special cases of (1.3). A number of known
results are also obtained from our main result in Section 3.

2. Proof of the main result (1.3)

Consider the series
f: ) o (a')::(a);(g');—:—n,(d);—m+n,(g);(c);

(5) 52 (8); (WY; = (); (): (£);
(m), 2 (@110l 2

-5 L LI, 7

o " Lalala 4 pluld) Lel e + ol Xy

L o] el h ], P T @)

Now using the finite triple series identity of Srivastava [26, page 95]

X, ¥, 2z

ZO io mZ:A(m n,r,s)= io mz:méosA(m n+r,r,s) (2.2)

and many Pochhammer’s identities like

[a]m = (_1)MA[1 -—a- m]m
(6], = [b],[6 + s]n-s
-n** 23
[d]m s [d]m[l d— m] ( )
(n + s)

(-n—s5),=(-1)°
we have
_ e [delellel, 22 & (a0 +plilalle’ + plulgl. (2)°
S=mt o W, W, 75 6L + LAl + 5],
o (@ epasllatslldlar e

o[+ s1[b 4 s Ll (m—r =) z (- ( n )

n=0

(2.4)
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4] Expansion formulae for hypergeometric series 379

Now using the combinatorial identity
k
(kY _ [1, ifk=0,
,E’O( D (n) {0, ifk=1,2,3,..., (2.5)

in (2.4), we find that the value of the r-summation reduces to that of its last term,
all other terms vanishing.
So for r = (m — s), we have

o) pla)pld ]
BRGIRGH
S - [gl]p+s[a’+m]P[c]P(_m)s[l —e—m]s[g]:
L2 ), 06+ ml, U - d—ml (A,

D)2 iy yez
’ s! (_) F

(2.6)

X

which reduces to our main result (1.3)

3. Cases of reducibility

When y =0and A = B= G’ = H’ = 0in (1.3), we have

m (_m)"F (a’): -n, (d); (c);

o ) @t 6
_lalaldlen @O
[b,]m[e]m * (b'-}-m)’(f);
When z =0and 4" = B’ = G’ = H’ = 0in (1.3), we have
m (_m) (a):—n,(d);—m+n,(g);
Y o F X,y
n=0 (b): (e); (h);
(] [d]x” -m, (1 —e—m),(g);
= 18mldlmX _\P-EY
= [b],.[e].. 1+6+6Fpsn (-1) >

(1 -d- m)’ (h),
(32)
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Setting A =E=H=1and B=D =G =0 in (3.2), and making suitable
adjustment of parameters, using the definition of Jacobi’s polynomials [18, page
255 (8)], we have a known result of Munot [11, page 691 (2.1); see also 26, page
95 (7.13)]

z ( -b n:’Ezn(_l:)'b)m‘"Fz[d; -n,n—m;1+a,1+b; x, y]

; (3.3)
—_ (d)m(_l) ab X
- (1+a), A ra), FPE )(j’)+x)

where F, is Appell’s polynomial of second kind {5, page 224 (7)}.

In fact, the result (3.3) was obtained by Munot [11] using operational calculus
techniques, while Srivastava [26, page 95] derived the same result using method of
series manipulation.

On taking 4 = B =0 in (3.2), we have a known result of Manocha and
Sharma [10, page 233 (16)]

m(—m) -n, (d); -m+ n,(g);
Y nl * p+1Fe X \g+1Fy y
n=0 (e); (h);
-m,(1—e—-m),(g);
[‘1#_ F (_1)D_E_}i
[ ]m 1+E+G*D+H x |’

(1 —d—m),(h);
(3.9)
which was obtained by the method of fractional derivative.
Taking D = E =G = H =1 in (3.4), we get a known result of Qureshi and
Pathan [16, page 180 equation (3.5)].
Setting A =A'"=B'=C=E=H=1land B=D=F=G=G'=H' =0
in (1.3), adjusting parameters and variables suitably and using the definition of

Jacobi’s polynomials [18, page 255 (8)], we get a known result of Pathan [12, page
59 (2.3)]

d::a,-;-:-n,-m+ n; c;
Z (- m)"F(3) x,y,z}
b::—;—;—:1+4+e;1+h; -,

__m()"(a) w(d)m
1+ h),.(b),,(1+e),,

(y + x)",F,

d+m,c; P(eh)(y x)
b+ m; y+xr

(3.5)

which was obtained by the method of operational calculus.
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(6] Expansion formulae for hypergeometric series 381

Again, setting ' =B'=C=A=E=H=1, B=G'=H =D=F=0,
changing n, m into m, n in (1.3) and making suitable adjustment of parameters
and variables, we obtain

" ) a::b,-;-:-m;m—n;c—b;
—n,,, o) X -X z
g F 1+z°14+z° 142
c:i~;—;—:1+e 1+ h;—;
a+n,c—b;
_ (1+e+h)2n(a)n(b)n ( X )"F Z
(1+e),(A+h),0+e+h)(c),\1+2z) %! 1+z |

¢+ n;
(3.6)

which is the correct form of the following result of Pathan [13, page 316 (1.2)]

z ( h n) (1+h)n—m

o m!(n — m)!
a::b,—; - -m,m—n; c— b,
0 x -X z
F 1+2z2°14+2° 142
c:ii-;— =1 1+e; 1+ h;—;
= (l+e+h)2n(a)n(b)n ( X )"
1+e),0+n),0+e+hn),(c),\1+2
a+n,c—b;
z
o F;
201 1+:z
¢+ n;

(3.7)

Also, in (3.6) taking z =0 and z = x in conjunction with the use of a
transformation of Pathan [14, page 372 (1.3)] we may obtain two other correct
forms of the results of Pathan {13, page 317 (3.2, 3.4)].

When A = E=H=0and B=D =G =1 in (3.2), we have a known result
of Qureshi [15, page 48 (3.3.13)].

2( "F3[n—m+ndg,bxy]

n=0

—-m, g; (3.8)
(b),.. x
1-d—-m;

where F; is Appell’s polynomial of third kind [5, page 224 (8)].
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When 4 = B=D =G =0, E=H =1in (3.2), using the definition of gener-
alized Laguerre’s polynomials [18, page 200 (1)] and Jacobi’s polynomials [18,
page 255 (8)], we get a known result of Manocha and Sharma [9, page 475 (33)]

5 G0, o)
(_)" . (3.9)
=(1+e)m(x+y) P(eh)(y+x)

The result (3.9) was also obtained by Qureshi and Pathan [16, page 181 equation
(3.8)] using the process of confluence [8, page 48 (§3.5)].

Setting A = E=H=D=0, B=G =1 in (3.2), making suitable adjustment
of parameters and variables, using definitions of Humbert function @, [5, page
226 (25)] and thereafter using Krall and Frink’s simple Bessel polynomials y,,(z)
and generalized Bessel polynomials y,(a, b, z) {6; see also 18, pages 293-294
(1.2)] and Rainville’s polynomials ¢,,(c, z) [18, page 294 (3)], we get three more
relations in the form

——-—"—@1[—m+n -n; 1+ m; b; 2, ]

iy n!
o i (3.10)
B (b)my"'(?)’
“ (_m)n
Yy p O,[-m+n,-n;a+m-1; b; z, -xc]
n=0 N
(xe)” ] (3.11)
= (b)m y,,,(a,c, ;)’
and
Y (—:::)"G)l[—m +n,-n;c+m; b; y, x|
n=o (3.12)

N (b')n,,!,)z:)m"""(c’ %)

In (3.2), putting G = H =2, E= D =0 and using the definition of gener-
alized Rice polynomials H{*?|g, h, v][27, page 73 (1.1); see also 19], we have

. (om) (a):~n;-m+n,1+a+b+m,g;

Z n! 7
n=0 (b); ;1 + a, h; (3.13)
— m'xm[a]m a,b y
G+ a0 .0 %]
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(8l Expansion formulae for hypergeometric series 383

Setting D = E = 0, H = G = 1 in (3.2), making suitable adjustment of param-
eters and variables and then using the definition of Gegenbauer’s polynomials
C2(x) [18, page 279 (15)], we have

(a): =n; -m + n,2g + m;
Z (_:::)nF . X,y
n=0 (6); - 8+ 3 (3.14)
_ m!'x™[al,, of X =2y
" (28) W] "'( x )

Similarly setting G = E = D =0, H =1 in (3.2) and using the definition of
Shively’s Pseudo-Laguerre polynomials R, (g, v) [21, page 54 (48)], we have

(a): -n; -m + n; m
X,y | = mx"(h) mlalm y
n=0 : (b) - m+ h; a4 (h)Zm[b]m Rm(h’ x)'

(3.15)

When D= G=E=0, H=2 in (3.2), adjusting parameters and variables
suitably and then using the definition of Bateman’s polynomials J&"(v) [17,
page 721], we obtain

(a): -n; -m + n;
m
¥ (=m) F x2, y?
n=0

n!
(b):-; 8+ 1L,h+841;
2 (3.16)

_ x*"*8[qa],,mT(g + I)F(h + % + 1) J(gvh)(_}i)'

yg[b]mr(h+§+m+1) x

When D = E = G = H =1 in (3.2), adjusting parameters suitably and using
the definition of Rainville’s polynomials ¢, (4, g, x) [18, page 302 (ex. 3)), we
have

1 1 1 1
m (_m)"F (a).—n,5+5g, —m+n,5—5g,
n! X,y

(b): h; h; (3.17)
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