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1. Introduction

The moduli stacks M̄g,n parametrize isomorphism classes of stable n-pointed curves of
genus g. The geometry of M̄g,n is important for understanding the behaviour of families
of curves, and also because our intuition as to how moduli spaces of higher-dimensional
objects should behave is based to some extent on our evolving understanding of these
spaces. A central problem is to describe the morphisms admitted by M̄g,n.

There is a well-known family of vector bundles on M̄g,n, the so-called vector bundles
of conformal blocks, that arise from conformal field theory. Each is specified by a Lie
algebra g, a positive integer �, called the level, and an n-tuple of dominant integral
weights λ. These were first constructed in the 1980s by Ueno et al . [33]; more recently,
Fakhruddin [8] observed that they are globally generated on M̄0,n. Thus, their first
Chern classes D

g

�,λ, which we call conformal blocks divisors, are globally generated; it is
natural to explore the morphisms on M̄0,n associated with suitably large multiples of
these divisors.

Starting with Fakhruddin’s 2008 preprint, much inquiry has centred on conformal
blocks for slk and level 1, and their associated morphisms, which are now well under-
stood [2,8,10,13,14]. Less is known about the morphisms associated with higher-level
conformal blocks divisors for any g. Fakhruddin relates critical level sl2 conformal blocks
(those for which

∑
λi = 2� + 2) to the geometric invariant theory (GIT) quotients
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(P1)n//λ SL2, but we know of no other results on the morphisms associated with general
sl2 conformal blocks.

In this work, we study the higher-level sl2 conformal blocks divisors D
sl2
�,(1,...,1) for

1 � � � g on M̄0,n, where n = 2g + 2, deriving simple formulae for their intersection
with a basis of 1-cycles, as well as formulae for their divisor classes. We show that our
family forms a basis for the Sn-invariant Picard group, which implies that it generates a
full-dimensional subcone of semi-ample divisors in the Sn-invariant nef cone of M̄0,n. We
prove that divisors in our family lie on the boundary of the Sn-invariant nef cone, and
are generally not log canonical. We analyse the morphisms defined by the linear series
|mD

sl2
�,(1,...,1)| for m � 0. We show that all of the associated morphisms are birational

divisorial contractions on M̄0,n/Sn, and we use these divisors D
sl2
�,(1,...,1) to obtain nef

divisors on M̄2g+2.
Note that our family contains all the non-trivial sl2 divisors with weights λ = (1, . . . , 1).

Indeed, D
sl2
�,λ is trivial for 2� �

∑
iλi, by [8], and for odd

∑
λi, by Proposition 3.4. As

M̄0,n is a fine moduli space, we hereafter work on the smooth projective variety M̄0,n

that represents it.

1.1. Associated morphisms

Fakhruddin proved that the morphisms given by sl2 conformal blocks divisors factor
through Hassett’s weighted spaces (see [8,21]). We show that those divisors in our family
that span extremal rays of the Sn-invariant nef cone define morphisms to varieties that
may be constructed as GIT quotients and have interpretations as moduli spaces (see § 6).
For example, the following hold.

• D
sl2
1,(1,...,1) defines a morphism from M̄0,n to Satake’s compactification of Ag (see

Theorem 6.2). Its image has Picard rank 1 [2], and can be constructed as a GIT
quotient [13].

• D
sl2
2,(1,...,1) is the pullback from the hyperelliptic locus in M̄g of 12λ−δ0, and its image

under the linear system |12λ − δ0| is expected to have a modular interpretation.

• D
sl2
g−1,(1,...,1) defines the morphism from M̄0,n to the GIT quotient Con(n)//(γ,c) SL3,

where γ = (g −2)/g and c = (1/g, . . . , 1/g). Here, Con(n) is the space of n-pointed
conics in P2 [15].

• The divisor D
sl2
g,(1,...,1) defines the morphism from M̄0,n to the GIT quotient

(P1)n// SL2 with the symmetric linearization.

We show the surprising fact that, for � � 1
3n − 1, the divisor D

sl2
�,(1,...,1) lies in the

cone generated by conformal blocks divisors that give maps to the GIT quotients
Con(n)//(γ,c) SL3. Giansiracusa [15] has exhibited slk level 1 conformal blocks divisors
that give rise to maps to the GIT quotients Con(n)//(γ,c) SL3 when γ = 0. This raises
the following natural question.

Question 1.1. Is there a more general correspondence between higher-level divisors
and these GIT quotients when γ �= 0?
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1.2. Outline of the paper

In § 2 we give definitions and references for divisors and curves on M̄g,n. In § 3 we give
several fundamental results about sl2 conformal blocks. In § 4, we give the intersection
formulae for the Sn-invariant divisors D

sl2
�,(1,...,1) with a basis for the 1-cycles on M̄0,n/Sn,

our main tool for studying the morphisms associated with the divisors D
sl2
�,(1,...,1). In § 4.1

we give formulae for the classes of four of the divisors D
sl2
�,(1,...,1), and in § 5 we show

that the divisors D
sl2
�,(1,...,1) lie on the boundary of the symmetric nef cone, and that

they reside in the part of the cone that was not previously well understood. In § 6, we
study morphisms associated with the divisors D

sl2
�,(1,...,1). In § 7, we explain how conformal

blocks on M̄0,n can be used to produce nef divisors on M̄n. Finally, in § 8, we prove the
independence of two families of curves on M̄0,n.

1.3. Software

A number of results in this paper were first explored through computer calculations.
The third author has written a package, ConformalBlocks, which can be used to
compute ranks, divisor classes and intersection numbers of conformal block bundles and
divisors in Macaulay2 (see [20,31]). We also used the software NefWiz and polymake

to explore which of the divisors D
sl2
�,(1,...,1) are extremal in the symmetric nef cone, and

which of the divisors D
sl2
�,(1,...,1) are log canonical (see [12,18]).

2. Divisors and curves on the moduli stack

2.1. Divisor classes

As is standard in the literature, λ denotes the first Chern class of the Hodge bundle. For
1 � i � n, we denote by σi the n sections of the universal family π : M̄g,n+1 → M̄g,n.
For ωπ, the rank 1 relative dualizing sheaf, one then has the ψ-classes ψi = c1(σ∗

i (ωπ)).
We refer to the sum Ψ =

∑n
i=1ψi as the total Ψ -class. The divisor κ = κ1 = π∗(ω2

π) is
ample.

We write δ0 for the class of the boundary component ∆0, the divisor whose general
element has a single non-separating node. For 0 � i � � 1

2g�, and J ⊂ {1, . . . , n}, let
δi,J be the class of the boundary divisor ∆i,J . The general element of ∆i,J has a single
separating node that breaks the curve into two components, one of which is a curve of
genus i and has |J | + 1 marked points consisting of an attaching point together with
points labelled by the set J . If n = 0, then it is customary to write δi instead of δi,∅, and
if g = 0, then one must have that 2 � |J | � n − 2, and it is customary to write δJ rather
than δ0,J . By ∆ we mean the sum of all the boundary divisors.

By [28, Theorem 1] the class of the canonical divisor is given by

KM̄0,n
= Ψ − 2∆ =

�n/2�∑
i=2

(
i(n − i)
(n − 1)

− 2
)

Bi, where Bj =
∑

J⊂{1,...,n},
|J|=j

δJ . (2.1)

In [26, Theorem 1.3], the Bj were shown to generate the extremal rays of the cone of
effective divisors of the quotient M̄0,n/Sn. The set {Bj}�n/2�

j=2 is a basis for Pic(M̄0,n)Sn .
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2.2. F-curves on M̄0,n

An F-curve on M̄0,n is any curve that is numerically equivalent to a one-dimensional
component of the boundary. A point in such a stratum parametrizes a nodal genus 0 curve
that contains a unique P1 with four special points (nodes or marked points). By varying
the cross ratio of these four points, we obtain a rational curve inside M̄0,n. Its class
depends only on the partition of the n marked points into four non-empty sets. In order
to intersect F-curves with symmetric divisor classes on M̄0,n, we need only know the size
of the cells of the partition. In other words, a partition a + b + c + d = n of the integer n

into four positive integers determines an F-curve class, up to Sn symmetry. We denote
such a curve by Fa,b,c,n−(a+b+c), or, even more briefly, by Fa,b,c (see [19, Theorem 2.2,
Figure 2.3]).

We next define three families of independent F-curves on M̄0,n, used to prove Theo-
rem 4.12.

Theorem 2.1. Let n � 6 and define g by n = 2g + 2 or n = 2g + 3. Each of the
following three sets then consists of independent curves.

(1) C1 = {F1,1,i : 1 � i � g}.

(2) C2 = {F2,2,i : 1 � i � g − 1}.

(3) C3 =

{
{F3,3,2i+1 : 0 � i � k − 2} ∪ {F1,1,2i+1 : 0 � i � k − 1} if g = 2k,

{F3,3,2i+1 : 0 � i � k − 3} ∪ {F1,1,2i+1 : 0 � i � k − 1} if g = 2k − 1.

Theorem 2.1, proved in § 8, leads to the following well-known corollary.

Corollary 2.2. C1 is a basis for N1(M̄0,n/Sn, Q).

3. sl2 conformal blocks

The main reference for the construction of vector bundles of conformal blocks is Ueno’s
recent monograph [33] (see also [3,8,27]).

In this section we recall the factorization and fusion rules for sl2 conformal block
bundles (CB-bundles), used to prove Proposition 3.4. We work with g = sl2 and an
arbitrary (but fixed) level �. In this case, the root system may be identified with Z, and
the dominant integral weights λi of level less than or equal to � are simply the non-
negative integers 0 � λi � �. Let λ = (λ1, . . . , λn) be a vector of dominant integral
weights of level �.

Notation. We write
rλ := rank V(sl2, �,λ). (3.1)

The rank of the vector bundle V(sl2, �,λ) is given by the Verlinde formula [33, Exam-
ple 5.23], but it is often more efficient to compute ranks by using the factorization rules.
These may be stated for any simple Lie algebra g, but we only work with g = sl2.
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Proposition 3.1 (propagation for CB-bundles). Let λ = (λ1, . . . , λn), and
suppose that λn = 0. Then V(g, �,λ) = π∗

nV(g, �, λ̂), where λ̂ = (λ1, . . . , λn−1) and
πn : M̄g,n → M̄g,n−1 is the map forgetting the nth marked point. In particular, rλ = rλ̂.

Proposition 3.2 (factorization for sl2 CB-bundles). Let µ ∪ ν be a partition of
the vector λ = (λ1, . . . , λn) into two vectors each of length at least 2. Then,

rλ =
�∑

α=0

rµ∪αrν∪α.

Factorization can be used to compute rλ in terms of ranks of conformal block bundles
on M̄0,3 = pt; these numbers are known as the fusion rules. For g = sl2, these are given
as follows.

Proposition 3.3 (fusion rules for sl2 [3, Lemma 4.2, Corollary 4.4]). Let
n = 3. Then,

r(λ1,λ2,λ3) =

⎧⎪⎨
⎪⎩

1 if
3∑

i=1

λi ≡ 0 mod 2,

3∑
i=1

λi � 2� and λi � 1
2

3∑
i=1

λi,

0 otherwise.

The next proposition contains some easy technical results that are used throughout
the paper.

Proposition 3.4. Let g = sl2.

(1) (Odd sum rule.) If
∑n

i=1λi is odd, then rλ = 0.

(2) (Generalized triangle inequality.) If there exists i ∈ {1, . . . , n} such that λi >∑
j �=iλj , then rλ = rk(V(sl2, �,λ)) = 0.

(3) (Some special four-point ranks.)

rk(V(sl2, �, (µ1, µ2, 1, 1))) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if µ1 = µ2 and µ1 �∈ {0, �},

1 if µ1 = µ2 and µ1 ∈ {0, �},

1 if µ2 = µ1 ± 2,

0 otherwise.

(3.2)

(4) (Some special four-point degrees.)

deg V(sl2, �, (µ1, µ2, 1, 1)) =

{
0 if µ �= (�, �, 1, 1),

1 if µ = (�, �, 1, 1).
(3.3)

Proof. The odd sum rule is a special case of the more general fact that rλ = 0 if∑n
i=1λi is not in the root lattice (see, for example, [11, p. 13]). It can also be proved

using factorization and induction, with n = 3 as the base case.
The generalized triangle inequality can be proved using factorization and induction,

with n = 3 as the base case.
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For (3), we first consider rµ. By factorization applied to the partition µ = (µ1, µ2) ∪
(1, 1), we obtain that

rµ =
�∑

α=0

r(µ1,µ2,α)r(1,1,α). (3.4)

By the fusion rules for sl2, we have that r(1,1,α) = 0 unless α ∈ {0, 2}. Thus,

rµ = r(µ1,µ2,0)r(1,1,0) + r(µ1,µ2,2)r(1,1,2) = r(µ1,µ2) + r(µ1,µ2,2).

By the fusion rules for sl2, r(µ1,µ2) = 0 unless µ1 = µ2, and then this rank is 1. We
also have that r(µ1,µ2,2) = 0 unless µ2 ∈ {µ1 − 2, µ1, µ1 + 2}. Also, r(0,0,2) = 0, and
r(�,�,2) = rk(V(sl2, �, (�, �, 2))) = 0. The result follows.

Part (4) follows from [8, Proposition 4.2]. �

4. Intersecting the divisors D
sl2
�,(1,...,1) with F-curves

In Theorem 4.2, we give a simple formula for the intersection of the divisors D
sl2
�,(1,...,1)

with a basis of 1-cycles given by the first family of curves defined in Theorem 2.1 (1).
This result is one of our most powerful tools for studying the morphisms associated with
the divisors D

sl2
�,(1,...,1).

Definition 4.1. Suppose that n is even. We define

r�(j, t) := rank V(sl2, �, (1, . . . , 1︸ ︷︷ ︸
j times

, t)).

Theorem 4.2. We have that D
sl2
�,(1,...,1) · Fn−i−2,i1,1 = r�(i, �)r�(n − i − 2, �).

Proof. We write P� = {0, 1, . . . , �}, and write µ = (µ1, µ2, µ3, µ4) for elements of P 4
� .

We use [8, Proposition 2.7] applied to V(sl2, �, (1, . . . , 1)) and the symmetric F-curve
F = Fj1,j2,j3,j4 , given by a partition n = j1 + j2 + j3 + j4.

Using the notation from Definition 4.1, this states that

deg(V(sl2, �, (1, . . . , 1))|F ) =
∑

µ∈P 4
�

deg V(sl2, �,µ)
4∏

k=1

r�(jk, µk). (4.1)

The fusion rules for sl2 imply that r(a,b) = 0 unless a = b, in which case r(a,b) = 1. Since
our F-curves have two 1s on the spine, the only non-zero summands in (4.1) occur when
µ3 = µ4 = 1. By Proposition 3.4, we have that deg V(sl2, �,µ) = 0 if µ �= (�, �, 1, 1), and
deg V(sl2, �,µ) = 1 otherwise. The formula follows. �
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The following example suggests several corollaries to Theorem 4.2. Consider the matrix
of intersection numbers D

sl2
�,(1,...,1) · Fn−i−2,i,1,1 for n = 16, where in the matrix we put

D
sl2
� for D

sl2
�,(1,...,1):

D
sl2
1 D

sl2
2 D

sl2
3 D

sl2
4 D

sl2
5 D

sl2
6 D

sl2
7

F1,1,1 1 0 0 0 0 0 0
F1,1,2 0 32 0 0 0 0 0
F1,1,3 1 0 55 0 0 0 0
F1,1,4 0 32 0 40 0 0 0
F1,1,5 1 0 63 0 19 0 0
F1,1,6 0 32 0 52 0 6 0
F1,1,7 1 0 64 0 25 0 1

Note that this matrix has full rank. This shows that the divisors are independent. More-
over, since in all of the columns there are curves that intersect the CB divisors in degree 0,
this also shows that the divisors lie on the boundary of the nef cone.

We next give seven corollaries to Theorem 4.2, reflecting that the pattern displayed by
the zero/non-zero entries of the matrix above holds in general.

Corollary 4.3.

(1) If i < �, then D
sl2
�,(1,...,1) · Fn−i−2,i,1,1 = 0.

(2) If i �≡ � mod 2, then D
sl2
�,(1,...,1) · Fn−i−2,i,1,1 = 0.

(3) D
sl2
�,(1,...,1) intersects at least 
(� + g − 2)/2� independent curves in degree 0.

Proof. For the first statement, use the generalized triangle inequality (see Proposi-
tion 3.4). For the second statement, use the odd sum rule (see Proposition 3.4). For the
third statement, there are � − 1 curves with i < �, and 
(g − �)/2� curves with i > � and
i �≡ � mod 2. �

Of course, the curve count given in Corollary 4.3 (3) is not always sharp, since there
could be other curves not of the form F1,1,i that intersect D

sl2
�,(1,...,1) in degree 0.

Lemma 4.4.

(1) r�(k, k) = 1 for all 1 � k � �.

(2) r�(k, k − 2) = k − 1 for all 2 � k � � + 1.

(3) r�(� + 2, �) = �.

(4) r�(� + 2p, �) �= 0 for p ∈ Z, p � 0.

Proof. For (1) we use induction on k, with the base case r�(1, 1) = 1, which holds
by the fusion rules. Assume that r�(j, j) = 1 for j < k and apply factorization with the
partition 1k−1|(1, k) to get that

r�(k, k) =
∑

0�µ��

r�(k − 1, µ)r(1,k,µ).
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The fusion rules give that r(1,k,µ) = 0 if µ < k − 1, µ > k + 1 or µ = k, and r(1,k,µ) = 1
if µ = k − 1 or µ = k + 1. However, if µ = k + 1, then r�(k − 1, k + 1) = 0 by the
generalized triangle inequality (see Proposition 3.4). So the only non-zero summand in
r�(k, k) is r�(k − 1, k − 1), which is 1 by the induction hypothesis, and so we are done.

For (2) use induction on k with the base case r�(2, 0) = rank V(sl2, �, (1, 1, 0)) = 1,
which holds by propagation and the fusion rules. Assume that r�(j, j − 2) = j − 1 for
2 � j � k − 1, and apply factorization to 1k−1 ∪ (1, k − 2):

r�(k, k − 2) =
∑

0�µ��

r�(k − 1, µ)r(1,k−2,µ).

By the fusion rules, we have that r(1,k−2,µ) if µ < k − 3, µ > k − 1 or µ = k − 2. Also,
r(1,k−2,µ) = 1 if µ = k − 3 or µ = k − 1. Thus, there exist only two non-zero summands
in r�(k, k − 2):

r�(k, k − 2) = r�(k − 1, k − 3) + r�(k − 1, k − 1).

By the induction hypothesis, we have that r�(k − 1, k − 3) = k − 2, and, by the first
statement of this lemma, we have that r�(k − 1, k − 1) = 1. Thus, r�(k, k − 2) = k − 1,
as claimed.

For (3) apply factorization using the partition 1�+1 ∪ (1, �):

r�(� + 2, �) =
∑

0�µ��

r�(� + 1, µ)r(1,�,µ).

We argue, as above, that there exists only one non-zero summand, and it occurs for
µ = � − 1. Thus, r�(� + 2, �) = r�(� + 1, � − 1), and by (2) this is �.

For (4) we use induction on p, with the base case p = 0 given by (1). Consider r�(� +
2p, �) and apply factorization using the partition 12 ∪ (1�+2p−2, �):

r�(� + 2p, �) =
∑

0�µ��

r�(2, µ) rank(sl2, �, (1�+2p−2, �, µ)).

When µ = 0, by the fusion rules, r�(2, µ) = 1. By induction, rank(sl2, �, (1�+2p−2, �, 0)) =
rank(sl2, �, (1�+2p−2, �)) = r�(� + 2p − 2, �) �= 0. Therefore, r�(� + 2p, �) �= 0. �

Corollary 4.5. D
sl2
�,(1,...,1) · F1,1,�+2q,n−�−2−2q �= 0 for 1 � � � g and q ∈ Z, 0 � q �

(g − �)/2.

Proof. By Theorem 4.2, we have that

D
sl2
�,(1,...,1) · F1,1,�+2q,n−�−2−2q = r�(� + 2q, �)r�(n − � − 2 − 2q, �).

By Lemma 4.4 (iv), we have that r�(� + 2q, �) �= 0. Also, since q � (g − �)/2, we have
that n − � − 2 − 2q = � + 2p for some p � 0. Thus, by Lemma 4.4 (iv), we have that
r�(n − � − 2 − 2q, �) �= 0 as well. �

https://doi.org/10.1017/S0013091513000941 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000941


Higher-level sl2 conformal blocks 15

Corollary 4.6. {D
sl2
�,(1,...,1) : 1 � � � g} is a basis for Pic(M̄0,2g+2/S2g+2).

Proof. The matrix of intersection numbers between these divisors and the F-curves
Fn−i−2,i,1,1 is lower triangular with non-zero entries on the diagonal, and so the divisors
are linearly independent. To see this, note that by the generalized triangle inequality,
Proposition 3.4 (2), one has that r�(i, �) = 0 if i < l. Thus, the entries above the diagonal
are all zero. By Corollary 4.5, the diagonal entries are non-zero. �

The following lemma is needed to give formulae for intersection numbers of the extremal
D

sl2
�,(1,...,1).

Lemma 4.7.

(1) Suppose that � = 1. For k ∈ Z, k � 0, we then have that r1(2k + 1, 1) = 1.

(2) Suppose that � = 2. For k ∈ Z, k � 1, we then have that r2(2k, 2) = 2k−1.

(3) Suppose that � = 2. For k ∈ Z, k � 0, we then have that r2(2k + 1, 1) = 2k.

Proof. We use induction on k and factorization.
For the first formula, by the fusion rules, r1(1, 1) = 1. So, suppose that the formula is

true up to k − 1. Factorization and applying the odd sum lemma yield that

r1(2k + 1, 1) = r1(2k, 0)r1(2, 0) + r1(2k, 1)r1(2, 1) = r1(2(k − 1) + 1, 1) = 1.

For the second two formulae, we may check that r2(2, 2) = 1 and r1(1, 1) = 1. So, suppose
that these two formulae work up to k−1. Factorization and applying the odd sum lemma
yields that

r2(2k, 2) =
2∑

µ=0

r2(2k − 1, µ)r(1,2,µ) = r2(2k − 1, 1) = r2(2(k − 1) + 1, 1) = 2k−1

and

r2(2k + 1, 1) = r2(2(k − 1) + 1, 1)r(1,1,0) + r2(2k, 2)r(1,1,2) = 2k−1 + 2k−1 = 2k.

�

Corollary 4.8. We have that

D
sl2
1,(1,...,1) · Fa,b,c,d =

{
1, abcd odd,

0, abcd even.
(4.2)

Proof. If abcd is even, then at least one of the four integers, say a, is even. When
we apply (4.1) to compute D

sl2
1,(1,...,1) · Fa,b,c,d, to get a non-zero summand, we must have

µ1 = 0 to have r�(a, µ1) �= 0. (By the odd sum lemma, we need µ1 even, but P� = {0, 1}
since � = 1.) Since µ1 = 0, by propagation, we know that V(sl2, �,µ) is a pullback
from M̄0,3 = pt. Hence, deg V(sl2, 1,µ) = 0. For abcd odd, the only non-zero summand
in (4.1) occurs when µ = (1, 1, 1, 1). We can compute deg V(sl2, 1, (1, 1, 1, 1)) = 1, and,
by Lemma 4.7, r1(a, 1)r1(b, 1)r1(c, 1)r1(d, 1) = 1. �
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Corollary 4.9. We have that

D
sl2
2,(1,...,1) · Fa,b,c,d =

{
0, abcd odd,

2g−2, abcd even.
(4.3)

Proof. If abcd is odd, then if any µi is even, r�(a, µi) = 0 by the odd sum lemma. We
have that P� = {0, 1, 2} since � = 2, so we only possibly get a non-zero summand in (4.1)
when µ = (1, 1, 1, 1). We can compute deg V(sl2, 2, (1, 1, 1, 1)) = 0, so this summand
is 0. If a and b are even, while c and d are odd, then to get a non-zero summand
in (4.1) we must have µ1 and µ2 even and µ3 and µ4 odd. However, if µ1 or µ2 is 0,
then, by propagation, we know that V(sl2, �,µ) is a pullback from M̄0,3 = pt, and hence
deg V(sl2, 1,µ) = 0. Thus, we only get a non-zero summand in (4.1) when µ = (2, 2, 1, 1).
We compute deg V(sl2, 2, (2, 2, 1, 1)) = 1, and use Lemma 4.7 to show that

r2(a, 2)r2(b, 2)r2(c, 2)r2(d, 2) = 2a/2−12b/2−12(c−1)/22(d−1)/2 = 2(a+b+c+d)/2−3 = 2g−2.

If a, b, c and d are all even, then, as above, we only get a non-zero summand in (4.1)
when µ = (2, 2, 2, 2), and then deg V(sl2, 2, (2, 2, 2, 2)) = 2. We use Lemma 4.7 (ii) to
show that

2r2(a, 2)r2(b, 2)r2(c, 2)r2(d, 2) = 2 · 2a/2−12b/2−12c/2−12d/2−1 = 2g−2.

�

Corollary 4.10. We have that

D
sl2
g−1,(1,...,1) · Fn−i−2,i,1,1 =

{
0, i �= g − 1,

g − 1, i = g − 1.
(4.4)

Proof. If i � g − 2, by Corollary 4.3, D
sl2
g−1,(1,...,1) · Fn−i−2,i,1,1 = 0. For i = g, by

Theorem 4.2,

D
sl2
g−1,(1,...,1) · Fg,g,1,1 = rg−1(g, g − 1) · rg−1(g, g − 1).

As 2g−1 is odd, by Proposition 3.4, rg−1(g, g−1) = 0. To get i = g−1, use Theorem 4.2:

D
sl2
g−1,(1,...,1) · Fg+1,g−1,1,1 = rg−1(g − 1, g − 1) · rg−1(g + 1, g − 1).

Lemma 4.4 (1) implies that rg−1(g − 1, g − 1) = 1. Lemma 4.4 (3) implies that rg−1(g +
1, g − 1) = g − 1. �

Corollary 4.11. We have that

D
sl2
g,(1,...,1) · Fn−i−2,i,1,1 =

{
0, i � g − 1,

1, i = g.
(4.5)

Proof. If i � g − 1, Corollary 4.3 implies that D
sl2
g,(1,...,1) · Fn−i−2,i,1,1 = 0. For i = g,

Theorem 4.2 gives D
sl2
g,(1,...,1) · Fg,g,1,1 = rg(g, g) · rg(g, g). Lemma 4.4 (1) implies that

rg(g, g) = 1. �
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4.1. Classes of extremal divisors in the family

In § 5.1 we show that for � ∈ {1, 2, g − 1, g} the divisors D
sl2
�,(1,...,1) generate extremal

rays of the symmetric nef cone. These expressions are used in § 5.2 to show that D
sl2
�,(1,...,1)

is not log canonical if � ∈ {1, g − 1, g} and n is sufficiently large.

Theorem 4.12. We have that

D
sl2
1,(1,...,1) =

∑
2�k�g+1, k even

k(n − k)
4(n − 1)

Bk +
∑

2�k�g+1, k odd

(k − 1)(n − k − 1)
4(n − 1)

Bk,

D
sl2
2,(1,...,1) = 3 · 2g−1

( ∑
2�k�g+1, k even

(
k(n − k)
8(n − 1)

− 1
6

)
Bk

+
∑

2�k�g+1, k odd

(k − 1)(n − k − 1)
8(n − 1)

Bk

)
,

D
sl2
g−1,(1,...,1) = (g − 1)

( g∑
k=2

(k − 1)k
(n − 1)

Bk +
(

g2 − g − 1
(n − 1)

)
Bg+1

)
,

D
sl2
g,(1,...,1) = 1

2

g+1∑
k=2

(k − 1)k
(n − 1)

Bk.

Proof. We produce the classes from the intersection numbers {D · F1,1,j}g
j=1 using

formulae given in [2, Lemma 4.2]. �

5. Position of the divisors D
sl2
�,(1,...,1) in the nef cone

The D
sl2
�,(1,...,1) are semi-ample, and so give rise to morphisms on M̄0,n. Any Sn-invariant

divisor lies in the interior of the cone of effective divisors (see [16, 26]), and since the
D

sl2
�,(1,...,1) are symmetric, the morphisms they define are birational. As the divisors are

nef, we can tell more about the morphisms they define by finding their location in the nef
cone. Divisors in the interior of the nef cone are ample, and hence suitably large multiples
of them define embeddings; base-point free divisors on the boundary define contractions.

5.1. The divisors D
sl2
�,(1,...,1) define birational contractions

We show that the morphisms on M̄0,n/Sn given by the divisors D
sl2
�,(1,...,1) are birational

contractions by proving the following.

Theorem 5.1.

(1) The divisors D
sl2
�,(1,...,1), for 1 � � � g, lie on the boundary of Nef(M̄0,n/Sn). In

particular, the divisors D
sl2
�,(1,...,1), for 1 � � � g, define birational contractions on

M̄0,n/Sn.

(2) For each 1 � � � g, the divisor D
sl2
�,(1,...,1) lies on a face of codimension at least


(� + g − 2)/2�.

(3) For � ∈ {1, 2, g − 1, g}, the divisor D
sl2
�,(1,...,1) spans an extremal ray of the

Sn-invariant nef cone.
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Proof. By basic linear algebra, a symmetric nef divisor lies on a codimension k face
of the symmetric nef cone if it intersects k independent symmetric curves in degree 0.
Recall that the space Pic(M̄0,n/Sn)⊗R is g dimensional. Thus, if a symmetric nef divisor
intersects g − 1 independent symmetric F-curves in degree 0, then it spans an extremal
ray of the symmetric nef cone.

For (1) we note that, by Corollary 4.3, each D
sl2
�,(1,...,1) intersects at least one F-curve

in degree 0, and hence lies on the boundary of the symmetric nef cone.

For (2), write n = 2(g + 1), and apply Corollary 4.3 (3).

For (3), for � ∈ {g − 1, g}, Corollary 4.3 (3) states that D
sl2
�,(1,...,1) intersects g − 1

independent curves in degree 0. This means that these two divisors are extremal in the
symmetric nef cone. To show that D

sl2
1,(1,...,1) and D

sl2
2,(1,...,1) also generate extremal rays,

we use the two other sets of independent curves C2 and C3 from Theorem 2.1. First,
by [8, Proposition 5.2], which we can apply since � = 1, one has that D

sl2
1,(1,...,1) ·Fa,b,c,d = 0

if abcd ≡ 0 mod 2. In particular, D
sl2
1,(1,...,1) · F2,2,i,n−4−i = 0 for all 1 � i � g − 1. Since

these are the curves from C2, and since D
sl2
1,(1,...,1) is non-trivial, this divisor spans an

extremal ray of the symmetric nef cone. Next, we show that D
sl2
2,(1,...,1) · Fa,b,c,d = 0

if abcd ≡ 1 mod 2. This implies that a, b, c, d are all odd. This is proved using [8,
Proposition 2.7]:

D
sl2
2,(1,...,1) · Fa,b,c,d =

∑
µ={µ1,...,µ4},

0�µi�2

deg(V(sl2, 2,µ))r2(a, µ1)r2(b, µ2)r2(c, µ3)r2(d, µ4).

Since the level is 2, each µi can only be 0, 1 or 2. If µi is even for any i, then the
corresponding rank is 0, e.g. if µ1 is even, then raµ1 = 0. It only remains to consider the
case where µi = 1 for i = 1, . . . , 4. But an explicit calculation using [8, Proposition 4.2]
shows that deg(V(sl2, 2, (1, 1, 1, 1))) = 0. Thus, there are no non-zero contributions to [8,
(4.1)]. We show in Theorem 2.1 (3) that, for g = 2k or g = 2k − 1, the set C3 =
{F3,3,2i+1 : 0 � i � k − 2} ∪ {F1,1,2i+1 : 0 � i � k − 1} consists of independent curves.
Therefore, D

sl2
2,(1,...,1) spans an extremal ray of the symmetric nef cone. �

5.2. The divisors D
sl2
�,(1,...,1) are not all log canonical

The Ray theorem (see [26, Theorem 1.2]; [9, Theorem 4]) gives us a tool for detecting
nef divisors in what we call the log canonical part of the cone.

Definition 5.2. We say a divisor D on M̄0,n is log canonical if D may be expressed
as an effective combination

D = c
(
KM̄0,n

+
∑

cIδI

)
,

where c and the cI are any non-negative rational numbers such that 0 � cI � 1 for all I.
(Here, the summation is over the standard set of boundary divisors: 2 � |I| � n/2 and
1 ∈ I if |I| = n/2.)
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If D is linearly equivalent to a log canonical divisor and intersects every F-curve non-
negatively, then D is nef by the Ray theorem, and is semi-ample by [4].

If D is Sn-invariant and linearly equivalent to a log canonical divisor, then, by averaging
its log canonical expression over Sn, we obtain

D = c

(
KM̄0,n

+
g+1∑
i=2

biBi

)
,

where c > 0 and 0 � bi � 1 for all i. We call a divisor of this form symmetrically log
canonical.

We interpret the failure of a divisor to be linearly equivalent to a log canonical divisor
to mean that it is outside the part of Nef(M̄0,n) that can be understood combinatorially.
This motivated us to study the geometry behind such divisors in more detail.

Proposition 5.3.

(1) D
sl2
1,(1,...,1) is log canonical for n = 6, 8, 10, but not for n � 12.

(2) D
sl2
2,(1,...,1) is log canonical for all n � 6.

(3) D
sl2
g−1,(1,...,1) is log canonical for n = 10, 12, 14, but not for n � 16.

(4) D
sl2
g,(1,...,1) is log canonical for n = 8, 10, 12, but not for n � 14.

Proof. By the above remarks, it is enough to test whether these divisors are sym-
metrically log canonical. The claims made for small values of n may be verified by direct
calculation. The following identity shows that D

sl2
2,(1,...,1) is symmetrically log canonical

for all n:
8

3 · 2g−1 D
sl2
2,(1,...,1) = KM̄0,n

+ 2
3

∑
i even

Bi +
∑

i odd

Bi.

We prove (1) when g is odd; the proofs of the other parts are similar. Suppose, for the
purposes of contradiction, that

c−1D
sl2
1,(1,...,1) = KM̄0,n

+
g+1∑
i=2

biBi, (5.1)

with 0 � bi � 1 for all i. By using (2.1) and the formula for D
sl2
1,(1,...,1) from Theorem 4.12

and extracting the coefficients of B2 and Bg+1 on each side of (5.1), we obtain the two
equations

c−1 2(n − 2)
4(n − 1)

=
−2

n − 1
+ b2,

c−1 (g − 1)(n − g − 1)
4(n − 1)

=
g(n − g)
n − 1

− 2 + bg.

We apply the inequalities b2 � 1 and bg � 0 and substitute n = 2g + 2 to obtain that

4(g2 − 2g − 2)
g2 − 1

� c−1 � 2g − 1
g

,
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But one can easily show that, for g � 5, we have that

4(g2 − 2g − 2)
g2 − 1

>
2g − 1

g
.

Hence, there exists no triple (c, b2, bg) making D
sl2
1,(1,...,1) symmetrically log canonical if

g is odd and g � 5.
(1) for g even and (3) and (4) may be established by similar analyses of the triples

(c, b2, bg+1), (c, b3, bg) and (c, b2, bg+1), respectively. �

6. Morphisms defined by the divisors D
sl2
�,(1,...,1)

We next consider morphisms defined by the extremal divisors D
sl2
�,(1,...,1) for � ∈ {1, 2, g −

1, g}, and relate the divisors D
sl2
�,(1,...,1) for 1

3n − 1 � � to the GIT quotients of n-pointed
conics studied in [15].

6.1. Levels 1 and 2 and extended Torelli maps

Let h : M̄0,2(g+1) → M̄g be the morphism defined by taking (C,p) ∈ M̄0,2(g+1) to
the stable curve of genus g obtained by taking a double cover of C branched at the set
marked points p = {p1, . . . , pn}. In this section we show that the divisor D

sl2
1,(1,...,1) defines

a morphism that factors through h.
We use the following formula for the pullback of a divisor on M̄g along the map h.

Lemma 6.1. Let h : M̄0,2(g+1) → H̄g ⊂ M̄g be the isomorphism onto the hyperelliptic
locus in M̄g, and let

D = aλ −
�g/2�∑
i=0

biδi

be a divisor on M̄g. Then,

h∗(D) =
∑

2�k��g/2�,
k even

(
ak(n − k)
8(n − 1)

− 2b0

)
Bk +

∑
2�k��g/2�,

k odd

(
a(k − 1)(n − k − 1)

8(n − 1)
− bi

2

)
Bk.

Proof. This follows from [5, pp. 468–470 and Proposition 4.7]. �

The classical Torelli map that takes a smooth curve X of genus g to its Jacobian
extends to a regular map tSat : M̄g → ĀSat

g , where ĀSat
g is the Satake compactification

of Ag. Moreover, λ = (tSat)∗(Θ), where Θ is the ample divisor of weight one modular
forms on ĀSat

g [1].

Theorem 6.2. The divisor D
sl2
1,(1,...,1) defines the composition

M̄0,2g+2/S2g+2
h−→ M̄g

t̄Sat

−−→ ĀSat
g .

Proof. To prove this, we use Lemma 6.1 and Theorem 4.12 to show that D
sl2
1,(1,...,1) =

2h∗(λ). Because λ is the semi-ample divisor that defines the morphism

M̄g
t̄Sat

−−→ ĀSat
g ,

the result follows. �

https://doi.org/10.1017/S0013091513000941 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000941


Higher-level sl2 conformal blocks 21

The next result shows that, at least for g � 11, the morphism given by D
sl2
2,(1,...,1) also

factors through the map to the hyperelliptic locus.

Theorem 6.3. We have that

D
sl2
2,(1,...,1) = 1

2h∗(12λ − δ0), where h : M̄0,2g+2/S2g+2 → H̄g ↪→ M̄g.

Proof. Use Lemma 6.1 and Theorem 4.12. �

Question 6.4. Is 12λ − δ0 semi-ample on M̄g for all g � 4?

It is known that 12λ − δ0 is nef on M̄g for all g (see [7, Proposition 3.3]). By [25],
12λ − δ0 is semi-ample on M̄g when defined over a finite field. Over C, 12λ − δ0 is
semi-ample for g = 3 by [29], and for g � 11 by [17]. In these cases, Theorem 6.3
implies that the morphism associated with D

sl2
2,(1,...,1) factors through h. Let X denote

the image of the linear system |12λ − δ0|. For g = 2, X = M̄ps
2 ; this follows from [22,

Propositions 2.7 and 4.2]. But, for 3 � g � 11, we do not know a description for X.
It seems a reasonable guess that there might be morphisms from Ā

Vor(2)
g and M̄ps

g to
X that are small modifications. Here M̄ps

g stands for the moduli space of pseudo-stable
curves (see [23,24,30]).

6.2. D
sl2
�,(1,...,1) is in the SL3 GIT cone if � � n/3 − 1

In [15], Giansiracusa and Simpson study the GIT quotients of n-pointed conics. In this
section, we relate the divisors D

sl2
�,(1,...,1) for � � n/3 − 1 to these quotients.

We recall the notation of [15]. Conics in P2 are parametrized by (P5)∨. Let Con(n)
be the incidence locus in (P5)∨ ×

∏n
i=1P2. We consider GIT quotients of the form

Con(n)//γ,c SL3. Giansiracusa and Simpson construct a morphism

M̄0,n → Con(n)//(γ,c) SL3

for each linearization (γ, c). Moreover, each GIT quotient Con(n)//(γ,c) SL3 has a distin-
guished polarization descending from the linearization.

Definition 6.5. Let GS(γ, c) denote the divisor on M̄0,n that is the pullback of the dis-
tinguished line bundle on Con(n)//(γ,c) SL3 along the Giansiracusa–Simpson morphism
M̄0,n → Con(n)//(γ,c) SL3. We refer to these divisors as ‘SL3 GIT divisors’.

We next define the divisors Rj that, for 1
3n−1 � j, span extremal rays of the symmetric

nef cone.

Definition 6.6. For each j from 1 to �n/2� − 1, let Rj be the divisor in Pic (M̄0,n)Sn

such that

Rj · Fn−i−2,i,1,1 =

{
1 if i = j,

0 if i �= j.

(We avoided using a Kronecker delta in the formula above to avoid confusion with the
divisor class δij ∈ Pic(M̄0,n).)
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Proposition 6.7.

(1) Rj =
∑�n/2�

k=2 bkBk, where

bk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(k − 1)k
n − 1

− k + 1 + j if j < n/2 − 1, j < k − 1,

(k − 1)k
n − 1

if j < n/2 − 1, j � k − 1,

(k − 1)k
2(n − 1)

if j = n/2 − 1.

(2) If 1
3n − 1 � j � 1

2n − 1, then Rj is a multiple of GS(γ, c), where γ = 3 − n/(j + 1),
c = (1/(j + 1), . . . , 1/(j + 1)). Hence, Rj is semi-ample.

(3) If j < 1
3n − 1, then Rj is not nef.

Proof. For (1) we use the formulae given in [2, Lemma 4.2].

For (2) we use [15, Lemma 5.1], which, after a minor correction, states the following.
Let FI1,I2,I3,I4 be an F-curve, and let (γ, c) be a linearization such that γ = 3 −

∑n
p=1cp

satisfies 0 � γ � 1. Let xq =
∑

p∈Iq
cp. Assume that x1 � x2 � x3 � x4. Then,

FI1,I2,I3,I4 is contracted under the morphism M̄0,n → Con(n)//γ,c SL3 if and only if
either x1 + x2 + x3 � 1 or x3 � 1. Thus, GS(γ, c) · FI1,I2,I3,I4 = 0 if and only if either
x1 + x2 + x3 � 1 or x3 � 1.

Suppose that 1
3n − 1 � j � 1

2n − 1. We set c = (1/(j + 1), . . . , 1/(j + 1)). Then
0 � γ � 1, and so we can apply the results of the previous paragraph to compute the
intersection numbers of GS(γ, c) with F-curves. Specifically, we intersect GS(γ, c) with
curves of the form Fn−i−2,i,1,1, which form a basis of H2(M̄0,n, Q)Sn . When i � j − 1,
we have that x1 = x2 = 1/(j + 1), x3 = i/(j + 1), so x1 + x2 + x3 � 1, and hence
GS(γ, c) · Fn−i−2,i,1,1 = 0. When j = i, we have that x1 + x2 + x3 = (j + 2)/(j + 1) > 1
and x3 = j/(j + 1) < 1, and hence GS(γ, c) · Fn−i−2,i,1,1 > 0. When i � j + 1, we have
that x3 = i/(j + 1) � 1, and hence GS(γ, c) · Fn−i−2,i,1,1 = 0. We see that the vector
of intersection numbers of GS(γ, c) is a multiple of the vector of intersection numbers
defining Rj , and hence we conclude that Rj is a multiple of GS(γ, c).

For (3), if j = 1, then R1 · F1,2,2,n−5 = −1. If j � 2, we have that

Rj ·F
(n−2j)/2�,�(n−2j)/2�,j,j =

⎧⎪⎪⎨
⎪⎪⎩

−j + 1 if j <
n − 1

4
(n odd) or

n − 2
4

(n even),

−n + 3j + 3 if j � n − 1
4

(n odd) or
n − 2

4
(n even).

�

Proposition 6.8.

(1) The divisor D
sl2
g,(1,...,1) is extremal in the symmetric nef cone and defines mor-

phisms to (P1)n// SL2 with the symmetric linearization, or to Con(n)//γ,c SL3,
where γ = 1, c = (1/(g + 1), . . . , 1/(g + 1)).
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(2) The divisor D
sl2
g−1,(1,...,1) is extremal in the symmetric nef cone and defines a mor-

phism to Con(n)//γ,c SL3, where γ = (g − 2)/g and c = (1/g, . . . , 1/g).

(3) If 1
3n − 1 � � < g − 1, the divisor D

sl2
�,(1,...,1) has the following properties:

(a) the divisor D
sl2
�,(1,...,1) lies on a face of the symmetric nef cone of codimension

at least 
(� + g − 2)/2�,
(b) the divisor D

sl2
�,(1,...,1) lies in the SL3 GIT cone,

(c) the divisor D
sl2
�,(1,...,1) does not span an extremal ray of the symmetric nef cone.

Proof. For (1) note that D
sl2
g,(1,...,1) is at the critical level (that is,

∑
λi = 2� + 2),

and, therefore, it follows by [8, Theorem 4.5] that this divisor defines a morphism to
(P1)n// SL2 with symmetric linearization. For � ∈ {g − 1, g}, matching the images of the
morphism given by D

sl2
�,(1,...,1) with these SL3 GIT quotients is a consequence of comparing

the intersection numbers of D
sl2
�,(1,...,1) ·F1,1,i given in Corollaries 4.10 and 4.11 with those

defining Rj above, and then applying Proposition 6.7.

Part (3) (a) was observed earlier in Theorem 5.1.

For (3) (b), we apply Corollary 4.3; the only non-zero intersection numbers D
sl2
�,(1,...,1) ·

F1,1,i occur when 1
3n − 1 � i, and we can use these numbers to write D

sl2
�,(1,...,1) as an

effective combination of the divisors Rj with 1
3n − 1 � j. But, by Proposition 6.7, the

divisors Rj are multiples of SL3 GIT divisors, yielding (3) (b).

For (3) (c), we showed in Corollary 4.5 that D
sl2
�,(1,...,1) has a positive intersection number

with the F-curves {F1,1,�+2i : � + 2i � g}. Thus, D
sl2
�,(1,...,1) is a positive combination of

the nef divisors {R�+2i : � + 2i � g}, and hence D
sl2
�,(1,...,1) does not generate an extremal

ray in the symmetric nef cone. �

Corollary 6.9. The images of the morphisms associated with D
sl2
g−1,(1,...,1) and

D
sl2
g,(1,...,1) are related by a (generalized) flip. The Hassett space M̄0,A, with weights

A = (1/g, . . . , 1/g), lies above both.

Proof. The first statement is a consequence of the theory of variation of GIT [6,32].
That the morphism M̄0,n → (P1)// SL2 factors through M̄0,A with A = (1/g, . . . , 1/g)
was observed by Hassett in [21]; Giansiracusa and Simpson proved in [15, Theorem 1.4]
that the morphism M̄0,n → Con(n)// SL3 with γ = (g − 2)/g and c = (1/g, . . . , 1/g) also
factors through this M̄0,A. �

7. Finding nef divisors on M̄2(g+1) using the flag morphism

As the conformal block vector bundles are globally generated, their first Chern classes D

are semi-ample divisors, and so the linear series |mD|, for m � 0, defines morphisms
on M̄0,n. In contrast, while vector bundles of conformal blocks are defined on the moduli
stacks of higher genus curves, in [8] Fakhruddin showed that these vector bundles are
often not even effective, much less globally generated. However, using our conformal
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blocks divisors on M̄0,n, together with [19, Theorem 0.3], we produce new nef divisors
on M̄n. We do this in Proposition 7.4.

Given any point (E; p) ∈ M̄1,1, let f : M̄0,n → M̄n be the morphism given by taking
(C; p1, . . . , pn) ∈ M̄0,n to the curve of genus n obtained by attaching n copies of E to
C by identifying p and pi. We call this the flag morphism. In [19, Theorem 2.2 and
Figure 2.3], five types of F-curves on M̄g,n are defined. We refer to these as F-curves
of types (1)–(5). For the reader’s convenience, we state a combinatorial definition of an
F-divisor D on M̄2(g+1) from [19], which we rewrite slightly to fit our situation exactly.

Theorem 7.1 (Gibney et al . [19, Theorem 2.1]). Let n = 2(g + 1) and consider
the divisor

D = aλ −
g+1∑
i=0

biδi

on M̄2(g+1). Then, D is an F-divisor if and only if it satisfies the following inequalities:

(1) a − 12b0 + b1 � 0,

(2) bi � 0,

(3) 2b0 − bi � 0,

(4) bi + bj � bi+j for all i, j �= 0,

(5) bi+bj+bk+b� � bi+j+bi+k+bi+� for all i, j, k, � �= 0 such that i+j+k+� = 2(g+1).

Each of the inequalities (1)–(5) of Theorem 7.1 is satisfied by a divisor D as long as
D non-negatively intersects the corresponding F-curves of types (1)–(5). In [19, Theo-
rem 4.7] a nef divisor, which we denote by D, is defined with the property that D strictly
positively intersects the F-curves of types (1)–(4), while it intersects the F-curves of
types (5) in degree 0. In particular, it is shown that f∗D is trivial. We use this divisor
D in Proposition 7.4, and so, for the reader’s convenience, we recall its definition.

Definition 7.2. On M̄2(g+1) we consider the divisor

D = αλ − βδ0 −
g+1∑
i=1

i(2(g + 1) − i)δi.

Theorem 7.3 (Gibney, Keel and Morrison [19, Theorem 4.7]). Let D be the
divisor from Definition 7.2. For any choice of α and β such that α > 12β − (2g + 1), and
2β > (g + 1)2,

(1) D is nef,

(2) f∗(D) = 0 and

(3) D strictly positively intersects all the F-curves of type (1)–(4).
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Proposition 7.4. For � ∈ {1, 2, g − 1, g}, there exists a positive constant c� and a
non-negative constant d� such that

D
sl2
�,(1,...,1) = f∗(c�D

�
a,b + d�D),

and c�D
�
a,b + d�D is a nef divisor on M̄2(g+1). Here,

(1) c1D
1
a,b = aλ − bδ0 −

∑�g/2�
i=0 δ2i+1, where c1 = 1

4 , b � 1
2 and a � 12b − 1;

(2) c2D
2
a,b = aλ − bδ0 −

∑�g/2�
i=0 δ2i+1 −

∑�(g+1)/2�
i=1

4
3δ2i, where c2 = 4

3 , b � 8
3 and

a � 12b − 1;

(3) cg−1D
g−1
a,b = aλ − bδ0 −

∑g
i=1i(n − 2i + 1)δi/(n − 1) − (3g + 2)δg+1/(n − 1), where

cg−1 = 1/(g − 1), b � 1
2max{i(n − 2i + 1)/(n − 1)}g

i=1 and a � 12b − 1;

(4) cgD
g
a,b = aλ − bδ0 −

∑g+1
i=1 i(n − 2i + 1)δi/(n − 1), where cg = 1, b �

1
2max{i(n − 2i + 1)/(n − 1)}g+1

i=1 and a � 12b − 1.

We may take d1, d2 � 0. For � ∈ {g − 1, g}, we may choose any d� such that (c�D
�
a,b +

d�D) · C � 0, where C is any F-curve of type (4).

Proof. By [16, Lemma 2.4], the pullback to M̄0,2(g+1) of D = aλ −
∑g+1

i=0 biδi along f

is

f∗D =
g+1∑
j=2

(
j(n − j)
(n − 1)

b1 − bj

)
Bj , where Bj =

∑
J⊂{1,...,n}, |J|=j

δJ ,

where n = 2(g + 1). Using this and the fact that f∗D = 0, one can check that, for
� ∈ {1, 2, g − 1, g}, the divisors c�D

�
ab + d�D on M̄2(g+1) pull back to D

sl2
�,(1,...,1). So, it

remains to check that, for each � ∈ {1, 2, g − 1, g}, the divisor c�D
�
ab + d�D is nef. Our

main tool for proving that divisors on M̄2(g+1) are nef is to check the conditions of
Theorem 7.1 and apply [19, Theorem 0.3]. We first analyse the cases � = 1 and � = 2. It
is easy to check that Theorem 7.1 (1)–(3) hold for D�

ab for all � ∈ {1, 2}, since we chose a

and b to make this happen. Condition (5) is just the combinatorial formulation that
(c�D

�
ab) · F

2(g+1)
i,j,k,� � 0, where F

2(g+1)
i,j,k,� on M̄n is the image of the F-curve Fi,j,k,� on M̄0,n

under the flag map. In other words, this is equivalent to

f∗(c�D
�
ab) · Fi,j,k,� = D

sl2
�,(1,...,1) · Fi,j,k,� � 0,

which holds since D
sl2
�,(1,...,1) is nef. We check (4) for D1

ab. Since bk only depends on the
parity of k, we need only consider two cases. If i and j have the same parity, then the
equality reads 2 � 0. If i and j have opposite parity, then the inequality reads 1 � 1.
So we may conclude that D1

a,b is nef. By [19, Theorem 4.7] D is also nef, and hence,
for any non-negative c1, d1, the divisor c1D

1
a,b + d1D is nef. We next check (4) for D2

ab.
Note that bi + bj � 2, while bi+j � 4

3 , so (4) holds. Thus, D2
ab is nef, and hence, for

any c2, d2 � 0, the divisor c2D
2
a,b + d2D is nef. Next, we analyse the cases � = g − 1

and � = g. The two divisors Dg−1
ab and Dg

ab are not nef by themselves, as (4) does not
always hold. In particular, it is necessary to choose a sufficiently large dg−1 and dg. The
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hypotheses on a, b, α and β ensure that (1)–(3) are satisfied. Condition (5) follows since
we know that c�D

�
a,b +d�D pulls back to a nef divisor on M̄0,n. This leaves (4). We know

that D has positive intersection with F-curves of type (4). Therefore, we simply need
to choose d� sufficiently large that (c�D

�
a,b + d�D) · C � 0 for all F-curves of type (4).

There are only finitely many such curves to check (or, only finitely many inequalities of
type bi + bj � bi+j), so this can be arranged. Then, c�D

�
a,b + d�D is F-nef, and hence nef

by [19, Theorem 0.3]. �

8. Three collections of independent curves

In this section we prove Theorem 2.1. For a proof that the first family C1 is independent,
see [2, Proposition 4.1]. For the families C2 and C3, it is convenient to assume that n � 16.
(This is because, for instance, for smaller n, the formulae for R · Bi used in the proof
below are slightly different.) We can check the independence of the families C2 and C3

for 6 � n � 15 by direct calculation. The strategy used to prove the independence of C2

is completely different from the strategy used to prove the independence C3.

8.1. The family C2 is independent

Let n � 16. Suppose that R =
∑g−1

i=1 biF2,2,i is numerically equivalent to 0. To show
that bi = 0 for all i, we show the following:

(1) bi = 0 for i odd,

(2) bi = −cB for i even, where 0 < c ∈ Q, and B =
∑g−1

i=1 bi.

These two steps together show that bi = 0 for all 1 � i � g − 1.
We show by induction that bi = 0 for i odd. Since R is equivalent to 0, R · Ψ = b1 = 0,

and R·B3 = 2b1−b3 = 0, so b3 = b1 = 0, establishing our base case. Now let any odd index
i ∈ {5, . . . , g − 1} be given, and, for the induction hypothesis, we assume that bi−2k = 0
for 1 � k � (i−1)/2. In particular, bi−2 = bi−4 = 0. In the case i ∈ {5, . . . , g−2}, one has
that R · Bi = 2bi−2 − bi − bi−4 = 0, and so bi = 2bi−2 − bi−4 = 0. In the remaining case,
when g − 1 is odd, both g − 3 and g − 5 are odd too, so, by induction, bg−3 = bg−5 = 0.
Now R · Bg−1 = 2bg−3 − 2bg−1 − bg−5 = 0, and so bg−1 = bg−3 − 1

2bg−5 = 0. The first
claim is proved.

Now we prove the second claim. Set B =
∑g−1

j=1bj . We show by induction that for
i ∈ {1, . . . , �(g − 1)/2�} one has b2i = −cB, where c is a positive constant depending on
i, as follows:

(1) b2i = −(i + 1)B

(a) for n = 2(g + 1) and 2 � 2i � g − 2,

(b) for n = 2(g + 1) + 1 and 2 � 2i � g − 1,

(2) b2i = −(i + 1)B/2 for n = 2(g + 1) in the case 2i = g − 1.
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For the base case we show that the assertion holds for i = 1 and i = 2. We have that

0 = R · B2 = −2
∑

1�i�g−1

bi − b2 = −2B − b2,

so b2 = −2B. Also, 0 = R·B4 = −b4+B+2b2 = −b4+B−4B, so b4 = −3B. Now let 2i ∈
{6, . . . , g − 1} be given, and, for induction, assume that b2i−2k = b2(i−k) = −(i− k +1)B
for 2 � 2k � 2i − 2. In particular, b2(i−1) = −iB and b2(i−2) = −(i − 1)B. In the case
2i ∈ {6, . . . , g − 2}, 0 = R · B2i = 2b2(i−1) − b2i − b2(i−2), so b2i = 2b2(i−1) − b2(i−2) =
(−2i+(i−1))B = −(i+1)B, as asserted. This also holds if n = 2(g+1)+1 and 2i = g−1.
Finally, assume that n = 2(g+1), 2i = g−1, and use 0 = R ·Bg−1 = 2bg−3−2bg−1−bg−5.
By the induction hypothesis,

2bg−1 =
(

− 2
(

g − 3
2

+ 1
)

+
(

g − 5
2

+ 1
))

B = −
(

g + 1
2

)
B.

In other words, bg−1 = b2i = −(g + 1)B/4 = −(i + 1)/2, proving (2). By summing the bi

and the expressions for the bi, we obtain an equation of the form B = dB, where d > 1.
But then B = 0, and so b2i = 0.

8.2. The family C3 is independent

We use techniques introduced in [2].

Lemma 8.1. Let γi,j be the coefficient defined by the equation F3,3,2i+1,n−2i−7 =∑g
j=1γi,jF1,1,j,n−j−2.

(1)

γi,4+2i =

⎧⎪⎨
⎪⎩

1 if i = 0,

3 if n = 2g + 3, g = 2k, i = k − 2,

2 otherwise.

(2) γi,4+2p = 0 if p > i and 4 + 2p � g.

Proof. We use formulae for γi,j and notation for A(a, b, c, d) and B(j, a, b, c, d) as
given in [2, Proposition 4.3], with a = b = 3, c = 2i + 1, d = n − 2i − 7. We next
give details for the generic case. Suppose that i > 0 and d > g + 1. We then have that
A(a, b, c, d) = 0. In the formula for B(j, a, b, c, d), we have that f(a) = 3, f(b) = 3,
f(c) = 2i + 1, f(d) = n − d = a + b + c = 2i + 7, f(a + b) = 6, f(a + c) = 2i + 4 and
f(a + d) = n − d − 3 = a + b + c − 3 = 2i + 4. If j � 4 + 2i, then the only non-zero
term in B(j, a, b, c, d) is max{f(d) − 1 − j, 0} = 2 when j = 4 + 2i, and this term is 0 if
j = 4+2p with p > i. Thus, γi,4+2i = 2, and γi,4+2p = 0 if p > i. This takes care of most
cases. When i = 0, we get an extra contribution −1 from − max{a + b − 1 − j, 0}. We
need to check the cases where d � g + 1, involving five curves and six coefficients, which
we compute directly. �
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We now prove that C3 consists of independent curves, whose ith member we denote
by Ci. We examine the matrix Γ = (γi,j), whose ith row is obtained by writing the
curve Ci in the basis {F1,1,j,n−j−2}g

j=1. That is, γi,j is defined by

Ci =
n∑

j=1

γi,jF1,1,j,n−j−2.

The rows of Γ that come from the (1, 1)-curves in C3 look like rows of the identity matrix.
In particular, since all the curves F1,1,j,n−j−2 with j odd are in C3, this means that we
can use these rows to echelonize all the columns with odd indices. Thus, it is enough
to show that the submatrix M of Γ consisting of rows labelled by the (3, 3)-curves and
columns corresponding to F1,1,j,n−j−2, with j even, has full rank. Apply Lemma 8.1.
This shows that after dropping the leftmost column of M , corresponding to F1,1,2,n−4,
we obtain a submatrix N that is lower triangular with non-zero entries on the diagonal.
Thus, N and M have rank k − 3 if g is odd and k − 2 if g is even, and Γ has full
rank.
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