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Abstract

A Banach space is an Asplund space if every continuous convex function on an open convex subset is
Frechet differentiable on a dense Gt subset of its domain. The recent research on the Radon-
Nikodym property in Banach spaces has revealed that a Banach space is an Asplund space if and
only if every separable subspace has separable dual. It would appear that there is a case for
providing a more direct proof of this characterisation.

1980 Mathematics subject classification {Amer. Math. Soc.): 46 B 20, 46 B 22.

1. Introduction

A continuous convex function on an open interval of the real numbers is
differentiable everywhere except at most on a countable subset of its domain.
There has been interest in the problem of characterising those Banach spaces
where the continuous functions exhibit similar differentiability properties.

The earliest result in this line was given by Mazur (1933) who showed that in a
separable Banach space every continuous convex function on an open convex
subset is Gateaux differentiable on a dense Gs subset of its domain.

Contemporary interest in the problem was renewed by Asplund (1968) who
showed that in a Banach space with separable dual every continuous convex
function on an open convex subset is Frechet differentiable on a dense Gs subset
of its domain.

We say that a Banach space is an Asplund space if every continuous convex
function on an open convex subset is Frechet differentiable on a dense Gs subset
of its domain.
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During the 1970's there was intensive study of geometric equivalents of the
Radon-Nikodym property in Banach spaces. An important development in this
study was the discovery by Namioka and Phelps (1975) that the dual of an
Asplund space has the Radon-Nikodym property. Stegall (1978) established the
full duality: a Banach space is an Asplund space if and only if the dual space
has the Radon-Nikodym property.

So then StegalFs (1975) satisfying characterisation of Banach spaces whose
dual has the Radon-Nikodym property provided the following characterisation
of Asplund spaces.

THEOREM. A Banach space is an Asplund space if and only if every separable
subspace has separable dual.

It was clear from the beginning that Mazur's direct proof was not capable of
being generalised to the Frechet differentiability case. Asplund's proof relied on
renorming theorems and on the use of Fenchel duality of convex functions. The
proof of the final characterisation theorem has been heavily influenced by
geometry of the dual space developed initially to deal with the Radon-Nikodym
property in the dual.

As it now stands the most recent version of the proof as given by Phelps
(1978) depends on an ingenious lemma (Lemma 2.2, Phelps (1978)) which on the
face of it has little natural motivation from the problem itself. Furthermore, the
proof still depends heavily on dual methods. It would appear that there is a case
for providing a more direct proof of the characterisation theorem.

The proof we offer falls into two parts. We prove
(i) a separable Banach space is Asplund if and only if it has separable dual,

and then
(ii) for a Banach space the Asplund property is separably determined; that is,

a Banach space is Asplund if and only if every separable closed subspace is
Asplund.

Ekeland and Lebourg (1976) provided a very general condition which is
sufficient for a Banach space to be Asplund. We conclude with a simplified
version of this proof.

2. The characterisation theorem for the separable case

Consider a continuous convex function <J>on an open convex subset A of a
real normed linear space (X, || • ||) with dual space X*. Given x G A, the set

Wx) ={fe X*:f(y -x)< <K>0 - <*>(*) for ally G A)

of subgradients of <j> at x is a non-empty weak* compact convex subset of X*.
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It is well known (see Phelps (1978)) that the subgradient mapping x (-» d<p(x)
of A into subsets of X* is locally bounded; that is, given a G A there exists a
K > 0 and a 8(a) > 0 such that ||/|| < K for all / G 3<Kx) and ||x - a|| < 5,
and weak* upper semi-continuous; that is, given a E A and weak* open set
W D 9«a) there exists a 6(a) > 0 such that 9«x) C W for all ||JC - a\\ < 8.

It is useful for our purposes to introduce an associated mapping. A mapping
x H»/X on A where fx G 9<K*) is called a support mapping of <f> on .4. It is clear
that if <#> is Gateaux differentiate at x G A then 9<M» is singleton and so the
weak* upper semicontinuity of the subgradient mapping implies that every
support mapping of </> is weak* continuous at x.

LEMMA 1. If there exists a support mapping x H> fx of <f> on A which is weak*
continuous (continuous) at x G A then </> is Gateaux (Frechet) differentiable at x.

PROOF. Given y G X and X G R such that x + \y G A, and fx G 9<J>(*) and

fx+xy e 3<K* + Ay),

fx(Xy) < <*>(* + \y) - <t>(x) < fx+Xy(\y).

Therefore, for X > 0

< UW
and the inequalities are reversed for X < 0. It follows that if there exists a
support mapping x\-+fx which is weak* continuous (continuous) at x then <f> is
Gateaux (Frechet) differentiable at x.

The following general property for continuous convex functions on a Banach
space was given by Kenderov (1974).

KENDEROV'S THEOREM. For every continuous convex function </> on an open
convex subset A of a Banach space (X, || • ||) there exists a dense Gs subset of A at
each point x of which, 9<K*) l'es 'n the face of a sphere of X*.

PROOF. Kenderov showed that the function \f/: A —> R defined by

is lower semi-continuous on A and since X is a Banach space then \f/ is
continuous on a dense Gs subset of A (see Choquet (1969), p. 111). If /̂ is
continuous at x G A and there exists an/x G 9<Kx) such that

*(*) < ll/xll
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then we can choosey G X, \\y\\ = 1 such that

Since \p is continuous at x there exists a A > 0 such that i//(x + Xy) <fx(y) and

\y e d<K* + V ) s u c n t n a t

fx+xy(y) < Hx + Xy) <fx(y).

But this contradicts the fundamental inequalities given in Lemma 1.

The following significant result relating to the function \p was deduced by
Fitzpatrick (1977).

COROLLARY. At any point x G A where ^ is continuous, whenever xn—*x in A
then H/JI -> Il/H for all/„ e d<Kxn) and f G

We now examine the particular contribution of separability to our problem. It
is well known that a Banach space with separable dual can be equivalently
renormed to some advantage. Perhaps the most useful such renorming is with a
Kadec-Klee norm. The following simplified version of this type of renorming
which provides all that we require was given by Davis and Johnson (1973).

LEMMA 2. For a Banach space X with separable dual X*, there exists an
equivalent norm || • || on X with the property on X* that if the sequence {fn} is
weak* convergent to f and | | /J | -> | | / | | then \\fm - f\\ -•() .

Using Mazur's (1933) result on the Gateaux differentiability of convex func-
tions we are now in a position to prove the first stage of the characterisation
theorem.

THEOREM (i) PART (a). A Banach space X with separable dual X* is an Asplund
space.

PROOF. Consider X renormed with a Kadec-Klee norm as given in Lemma 2.
By Mazur's Theorem any given continuous convex function <J> on an open
convex A C X is Gateaux differentiate on a dense GB subset AG of A. By
Kenderov's Theorem the function \f/: A -» R defined by

is continuous on a dense Gs subset A^ of A. Consider <f> on AG n A^ which is a
dense Gs subset of A. Now <f> is Gateaux differentiable on AG n A^ and so every
support mapping of <£ is weak* continuous on AG n A^. However, by
Fitzpatrick's Corollary to Kenderov's Theorem, at each x G AG n A^ whenever
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xn -+ x in A then | |/J| -» ||/|| for all/n e d^xn) and/ e 9<K*)- Therefore, from
the particular property of our Kadec-Klee norm we deduce that every support
mapping of </> is continuous on AG n A^. From Lemma 1 we have that </> is
Frechet differentiate on AG n A^.

The proof of the converse result depends on a dual characterisation of
Asplund spaces proposed initially by Namioka and Phelps (1975) and simplified
significantly through an idea of Kenderov (1977). We give the proof of this
theorem to show that a technique using approximate Frechet differentiability
produces a further simplification.

For a continuous convex function </> on an open convex subset A of a normed
linear space (A', || • ||), given e > 0 we denote by Me(</>) the set of points x G A
such that for some 8(e, x) > 0

0<X<« A

IMI = i

It can be shown that f) e > 0 Â (4>) is the set of points of A where <> is Frechet
differentiable.

The usefulness of approximate Frechet differentiability depends on the follow-
ing property.

LEMMA 3. For a continuous convex function <j> on an open convex subset A of a
normed linear space (X, \\ • ||), given e > 0, the set Afe(<J>) is open.

PROOF. Consider x e A/£(</>). Since <j> is continuous and convex it is locally
Lipschitz; that is, there exists a k > 0 anda 8' > 0 such that

|*C) - 4(b)\ < k\\a - b\\ for all ||a - JC||, \\b - x\\ < 8'.
Now there exists a 0 < 8(e, x) <8\ and an r > 0 such that

Then
<t>(z + 8y) + 4>(z - 8y) -

< r + 4*lk - JC|| when||z - x\\ <8' - 8
o

8' - 8, jr-(e - r)\.
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Since <f> is convex, the expression on the left decreases with 5 and so z E Me(<f>)
for all \\z - x\\ <8".

The dual characterisation of Asplund spaces is expressed in terms of slices.
Given a non-empty bounded set C is a normed linear space X, if for any
continuous linear functional/ on X we write

M(f, C) = sup{f(x): x £ C],

then given a > 0 the subset of C

S(CJ, a) = {x £ C:f(x) > M(f, C) - a)

is called a slice of C. Given a non-empty bounded set C in X* for any x E X
and a > 0 the slice

S(C, x, a) = {/ E C:/(x) > M(x, C) - a)

is called a weaA:* s//ce of C.

THE NAMIOKA-PHELPS-KENDEROV THEOREM, yl Banach space (X, || • ||) is
Asplund if and only if every bounded set in X* has weak* slices of arbitrarily small
diameter.

PROOF. Suppose that C is a bounded set in X* and that there exists an r > 0
such that every weak* slice of C has diameter > r. Let K denote the weak*
closed convex hull of C. Then by the Banach-Alaoglu Theorem K is weak*
compact and every weak* slice of K has diameter > r. We may assume that
0 6 ^ then the positive sublinear functional p on X defined by p(x) =
sup{/(x): / £ K) = M{x, K) is continuous since K is bounded. Given x G X,
since all slices of K by x have diameter > r then for all n e Af

diam{/ G X*:f(x) >p(x) - -^ } > r.

So there exist sequences {/„}, {gn} in K such that/„(.*) >p(x) - r/(3n) and
&,(*) >P(x) - r/0n\ and \\fn - gn\\ >r - \/n. Therefore there exists a se-
quence {yn}, \\yn\\ = 1 such that (/„ - gnXyn) > r - \/n and so

PV + ~ny>) + PV ~ ~nyn) ~ 2f^

) ( \ ) - 2(/n + gn)(x) - g

1 , c \i \ 2r
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This implies that p is not Frechet differentiate at x and so is not Frechet
differentiable at any point of X.

Conversely, consider a continuous convex function <f> on an open convex
A c X. Since the subgradient mapping is locally bounded, given x G A there
exists a neighbourhood of U of x such that 9«i / ) is bounded. Given e > 0 there
exists a z G X and an a > 0 such that the weak* slice S(9<K U), z, a) has
diameter < e. If / G S(d^>(U), 2, a) then / G ̂ x j for some x, G [/. Now
x0 = x, + rz G (/for sufficiently small r > 0. For g G 3<f>(*o)

g(*i - *o) < <K*i) - <K*o),

/(x0 - x.) < <tfx0) - <Kx,).

Adding we have

O<(*- / ) (*o -* i ) - ' (« - / ) (* )
so that

which implies that 3<#>(x0) C S(8<K £0 »̂ «)• Since S(3<K (/) z, a) is a relative
weak* open subset of d<f>( U) we have from the weak* upper semi-continuity of
the subgradient mapping that there exists a 8(x0) > 0 such that for any y G X,
\\y\\ = 1, 3<Kx0 + Xy) and 9<Kx0 - \y) C S(d^(U) z, a) for 0 < X < S. There-
fore, for anyfXo+Xy G 8«x0 + Ay) andfXo_^ G 9</>(x0 - Xy) we have

<»(x0 + Xy) + <>(x0 - Xy) - 2^>(x0)
< U J

< e for 0 < X < 8;

that is, x0 G Afe(</>). We have then that every neighbourhood U of x contains a
point of Me(<j>); that is, for each e > 0, Me(</>) is dense in .4. However, 4̂ is a
Baire space so DneN Ml/n(<j>), the set of points where <j> is Frechet differentiable
on A, is a dense Gs subset of A.

We now complete the characterisation theorem for separable spaces following
the proof of Namioka and Phelps (1975).

THEOREM (i) PART (b). A separable Asplund space X has separable dual X*.

PROOF. If X* is not separable there exists an r > 0 and an uncountable subset
C of the unit ball B(X*) such that | | / - g\\ > r for all /, g G C. Since X is
separable the weak* topology on B(X*) is metrisable so it is second countable.
Therefore, C has at most countably many points which are not weak* condensa-
tion points. We may assume that these points have been deleted from C Now
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by the Namioka-Phelps-Kenderov Theorem there exists a weak* slice of C with

diameter < r. This weak* slice is a relatively weak* open subset of C. But no

point of C is weak* isolated so there exist distinct / , g G C in this slice.

However, this contradicts | | / — g\\ > r.

3. The characterisation theorem for the general case

We now proceed to show that the Asplund property is separably determined.
The first part of this result was obtained by Namioka and Stegall by dual
methods and the proof is outlined in Diestel and Uhl (1977), page 213. The
following more direct proof using the technique of approximate Frechet dif-
ferentiability is due to D. A. Gregory.

THEOREM (ii) PART (a). A Banach space X is Asplund if every closed separable
subspace of X is Asplund.

PROOF. Let <j> be a continuous convex function on an open convex A C X
where the set of points of Frechet differentiability is not dense in A. We show
that there exists a closed separable subspace Y of X such that A n Y ¥* 0 and
the set of points of Frechet differentiability of <j>\ Y is not dense in A n Y. Since
A is a Baire space for some r > 0, Mr(<f>) is not dense in A so there exists an
open set G C A \ Afr(</>). We define inductively an increasing sequence of
separable subspaces {Yn} of X. First choose / f i C and a sequence {z^},
||z^|| = 1 such that

s u p

for all X > 0, and let Y1 denote the closed subspace spanned by>>' and {z*}.
Now given a subspace Y" define a subspace y + l as follows. Choose a
countable dense set {y£: m E N} in Y" n G and for each m e. N choose a
sequence (z*"1}, ||z™|| = 1 such that

s u p

for all \ > 0. Then let Yn+l denote the closed subspace spanned by Y" and
{y£, z£: m,ke N}. Writing Y = U n e N Y" we have that {^: n, m e N} is
dense in Y n G. By the construction, {y£: « , m e N ) C ( ^ n Y) \ A/,(</>| r )
and since (An Y)\ Mr(<t>\ Y) is a closed subset of A n Y we have Y n G C
(An Y)\ Mr(<}>\ y). But then <f>\ Y is not Frechet differentiable on the relatively
open set Y n G.
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The convese result is a special case of the following more general theorem of
Namioka and Phelps (1975) and we include the proof for the sake of complete-
ness.

THEOREM WHICH INCLUDES (ii) PART (b). A closed subspace M of an Asplund
space X is an Asplund space.

PROOF. Let C be a bounded set in M* and K be the weak* closed convex hull
of C. We show that K has weak* slices of arbitrarily small diameter and
consequently that C has weak* slices of arbitrarily small diameter.

Consider the quotient mapping Q: X*-+X*/Mx = M* defined by Q(f) = /
+ M •L. Since q is an open mapping, Q(B(X*)) is a neighbourhood of 0 in M*.
Since K is bounded in M* there exists A > 0 such that Q(KB(X*)) = \Q(B(X*))
2 K. Since Q is continuous when X* has the weak* topology and M* has the
weak* topology, the convex set B = XB(X*) n Q ~\K) is weak* compact in X*
and Q(B) = K. Consider the family of all weak* compact convex sets Ba in X*
such that Q(Ba) = K, partially ordered by set inclusion. By Zorn's Lemma there
exists a minimal set Bo in this family. Now since X is Asplund, given e > 0 there
exists a weak* slice of Bo,

S(B0, x, a) = {/ G B0:f(x) > M(x, Bo) - a)

of diameter < e. Then Ko = Q(B0 \ SiBq, x, a)) is a weak* compact convex set
which by the minimality of Bo is properly contained in K. For any / , , / 2 e
K\K0 there exist gx, g2 e S(50, x, a) such that Q(gx) = / , and Q{gj) - f2 and

l l / i - / 2 I I = I I G U i - &)ll < ll*i - *2II < «•
So diam(AT \ Ko) < £. Since Ko is a weak* compact convex set we have by the
Separation Theorem that there exists a weak* slice of K which does not intersect
Ko and so has diameter < e. We conclude from the Namioka-Phelps-Kenderov
Theorem that M is Asplund.

4. The 'smooth bump function' condition

For a Banach space, Ekeland and Lebourg (1976) gave what is called 'the
smooth bump function' condition to guarantee differentiability properties for a
large class of functions which include the continuous convex functions. This was
done by using a generalisation of the Bishop-Phelps Theorem devised by
Ekeland (1974). We present a proof a little simpler than that offered by Ekeland
(1979) that the smooth bump function condition imphes that a Banach space has
the Asplund property.
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EKELAND'S FORM OF THE BISHOP-PHELPS THEOREM. Let (X, d) be a complete
metric space and \p a proper extended real lower semi-continuous function on X
bounded from below. Given e > 0, there exists an x EL X such that

4>(x) < inf{^(z): z G X) + e and ${z) > xp(x) - ed{z, x) for allz G X.

THE EKELAND-LEBOURG THEOREM. If a Banach space (X, || • ||) admits a real
Frechet differentiable function 9 on X with bounded non-empty support then X is an
Asplund space.

PROOF. Consider a continuous convex function <f> on an open convex A C X.
Given a e. A, there exists an r > 0 such that B[a; r] C A and <$> is bounded on
B[a; r]. Consider <j> scaled and translated so that supp 9 C B[a; /•]. Now 1/9 is
Frechet differentiable on dom 1/9 C B[a; r].

For 1/9 — <f> on B[a; r], given e > 0 there exists an x G B[a; r] such that

( \ ~ <*>)(*) < inf{( j - <*>)(*): z e B[a; r ]} + e and

( I ~ 4>)(z) > ( l ~ *)(*) ~ e lk - *ll ^ r all z G B[a; r].

Since \/9{z) is finite for some z G B[a; r] and 4>(z) is bounded on B[a; r], we
deduce that \/9{x) is finite; that is, x G dom 1/0. Now 1/9 is Frechet
differentiable at x so there exists a 6 > 0 such that B(x; 8) C dom 1/0 and

(ii) j ( z ) - i ( x ) - ( ^ y ( z - x ) < e | | z - x | | for all \\z - x\\ < 8.

Adding (i) and (ii) we have

' (* - * ) < 2eWz ~ XW for a11 Hz " *U < S-
Writing z = x + Xy where ||j>|| = 1, then

<t>(x + \y)-<j>(x)-\^\y)<2e\\\ forall|\|<5 and ||^|| =

Since 4> is convex,

Q < «x 4- Xy) + «x - V) ~ Kx) < 4 £ f o r a l l 0 < A < f i .
Q < <

A
But this implies that x G A/5£(<£). We deduce that for every e > 0, Me(<f>) is dense
in A. However, A is a Baire space so Pi n e N Ml/n(<j>) the set of points where </> is
Frechet differentiable on A is a dense G4 subset of A.

The following well-known result can be deduced quite simply.
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COROLLARY. If a Banach space X can be equivalently renormed to have a norm
Frechet differentiable on X \ {0} then X is an Asplund space.

PROOF. Consider a differentiable function g on R with bounded non-empty
support. If X is normed with norm || • || Frechet differentiable on X \ {0} then
0 = £ ° II • II2 is a 'smooth bump function' for the Ekeland-Lebourg Theorem.

I am indebted to the referee for pointing out that another proof of the
Ekeland-Lebourg Theorem follows from Theorem (i) part (a) and the result of
Leach and Whitfield (1972) that if a Banach space X admits a 'smooth bump
function' then for all subspaces Y of X, dens Y = dens Y*.
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