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This paper presents a method to stabilise oscillations occurring in a mixed convective
flow in a nearly hemispherical cavity, using actuation based on the receptivity map of the
unstable mode. This configuration models the continuous casting of metallic alloys, where
hot liquid metal is poured at the top of a hot sump with cold walls pulled in a solid phase
at the bottom. The model focuses on the underlying fundamental thermohydrodynamic
processes without dealing with the complexity inherent to the real configuration. This flow
exhibits three branches of instability. The solution of the adjoint eigenvalue problem for the
convective flow equations reveals that the regions of highest receptivity for unstable modes
of each branch concentrate near the inflow upper surface. Simulations of the linearised
governing equations show that a thermomechanical actuation modelled on the adjoint
eigenmode asymptotically suppresses the unstable mode. If the actuation’s amplitude is
kept constant in time, which is easier to implement in an industrial environment, the sup-
pression is still effective but only over a finite time, after which it becomes destabilising.
Based on this phenomenology, we apply the same actuation during the stabilising phase
only in the nonlinear evolution of the unstable mode. It turns out stabilisation persists, even
when the unstable mode is left to evolve freely after the actuation period. These results
not only demonstrate the effectiveness of receptivity-informed actuation in stabilising
convective oscillations but also suggest a simple strategy for their long-term control.

Key words: buoyancy-driven instability, instability control, baroclinic flows

1. Introduction
This paper is concerned with the suppression of oscillations in mixed convective flows
in an open cavity permeated by a through-flow. It is inspired by the occurrence of such
oscillations during the continuous casting of liquid metal alloys. In this type of process,
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solidified metal is pulled from the bottom of a pool of melted metal continuously fed
from above. The pulling speed is adjusted to match that of the solidification front which,
therefore, behaves as a steady but porous boundary for the fluid. A key issue is the ap-
pearance of oscillations resulting in unwanted macrosegregations (Dorward, Beerntsen &
Brwon 1996; Beckermann 2001) near the axis of the melt. We previously showed that the
mechanism underpinning these oscillations could be reproduced in a simple hemispherical
model of the sump (Flood & Davidson 1994) capturing the rather unusual interplay
between the baroclinic convection caused by the cooled lateral wall (Pierrehumbert &
Swanson 1995) and the through-flow (Kumar & Pothérat 2020). Despite ignoring the
complexities of the chemistry, multiple phase and solidification of the real process
(Kuznetsov 1997; Sheng & Jonsson 2000; Thomas & Zhang 2001), the model produced
three branches of linear instability: one supercritical and oscillatory; one subcritical and
oscillatory; one supercritical and non-oscillatory when the Reynolds number Re = u0 H/ν

based on the inflow velocity u0, sump height H and fluid kinematic viscosity ν was
varied. The topology of the oscillatory modes, consistent with observations in the casting
process points to their hydrodynamic nature, and so validates the simplified hydrodynamic
approach. The purpose of this paper is to take further advantage of the mathematical
tractability of this model to design an actuation capable of suppressing these instabilities.

The idea of suppressing oscillations by means of an actuator producing oscillations
at a well-chosen location has been long-exploited in thermoacoustics (Lieuwen 2003;
Dowling & Morgans 2005; Noiray et al. 2009), in particular to control diffusion flames
in combustion (Magri & Juniper 2013, 2014; Juniper & Sujith 2018). However, it is yet
to make its way to metallurgy, where oscillations occur on much larger time scales. Yet,
both problems share similar challenges: the design of an effective control loop requires
not only a sufficiently accurate model of the system’s dynamics but also sensors and
actuators capable of feeding in the controller and enacting its output onto the process.
The high temperatures, the highly corrosive nature of liquid metals and the risk of alloy
contamination precludes the long-term immersion of any such device in the melt. Hence,
just like in combustion problems, their implementation in hostile environments often
proves impractical or unreliable (Mongia et al. 2003), so in both cases, open-loop control
using a single actuator is preferred for its simplicity and robustness. While these techniques
have long been implemented in thermoacoustics with actuators placed within the flow
(McManus, Vandsburger & Bowman 1990; Lubarsky et al. 2003), using them in liquid
metals requires their positioning at the flow boundary. The key challenge is to find an
actuation satisfying these conditions.

A possible solution lies in the idea of structural sensitivity, best voiced in the review of
Luchini & Bottaro (2014) on adjoint equations in stability problems. ‘The key reasoning is
that, if indeed a specific spatially localised region (a wavemaker) acts as the driver of the
oscillation and the rest of the flow just amplifies it, a structural perturbation acting in the
amplifier portion is bound to affect only the amplitude (eigenvector) and not the frequency
(eigenvalue) of the oscillation. Conversely, a perturbation in the wavemaker region mostly
affects the eigenvalue. The structural sensitivity of the eigenvalue thus acts as a marker
for the spatial location of the wavemaker’. For the problem we are considering structural
sensitivity thus offers a method to calculate the position and topology of the actuation best
suited to suppress the growth of the unstable mode underpinning the onset of oscillations.
It is all the better suited as we already identified the unstable modes in a previous linear
stability analysis (LSA) performed for each of the three branches appearing at different
Reynolds numbers (Kumar & Pothérat 2020).

Indeed, structural sensitivity has successfully informed design alterations in devices
where oscillations driven by instabilities took place, as in combustion problems or in
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the recent example of the stabilisation of inkjet in printers (Kungurtsev & Juniper 2019;
Aguilar & Juniper 2020). The other common application of this approach concerns the a
posteriori identification of suppression mechanisms where existing actuators are already
implemented: the long misunderstood suppression of the von Kármán street by a small
control cylinder placed in the near wake (Strykowski & Sreenivasan 1990), was thus
successfully explained when Marquet, Sipp & Jacquin (2008) were able to account for
the feedback of the cylinder on both the unstable perturbation and the base flow. Further,
a similar approach has been used in studying boundary-layer stability (Brandt et al. 2011;
Park & Zaki 2019). Here we consider a different approach aligned with the industrial
requirements of finding actuators best suited to suppress the oscillations and adaptable
when the flow parameters are varied (here the Reynolds number, for example). Since such
an actuator acts either mechanically or thermally on the system, we model this combined
actuation by combining an external force in the momentum equations and an external
source term in the energy equation. Since the adjoint mode corresponds to the Green
function for the receptivity to an external actuation, aligning the forcing on it offers a
way to directly control the amplitude of the unstable mode (see equation (3.10) from
Giannetti & Luchini (2007)). This approach follows a different principle from those based
on base-flow sensitivity, as developed by Marquet et al. (2008). In these, the actuation aims
to alter the base flow to shift the eigenvalue of the unstable mode towards the stable region.
Hence, the idea is to shift the system so that it becomes stable. In our approach, by contrast,
we do not alter the base flow or any other part of the base system but add an actuation that
targets only the unstable mode once it grows. In the strategy using base-flow sensitivity,
the actuation is optimised to alter the base flow, whereas in our receptivity-based strategy,
the actuation must leave the base flow unaffected and act only on the perturbation. Doing
so, however, raises three difficulties. First, we must ensure that the base flow is sufficiently
unaffected by the actuation for the unstable mode to retain the topology targeted by the
actuation. This can be verified using fully nonlinear simulations of the actuated system.
Second, the linear theory does not provide an indication of the amplitude or the phase of
the forcing, neither relative to that of the unstable mode, nor absolute. Both parameters
therefore need to be varied to find the most effective combination for the suppression of
the oscillations. Third, the system may evolve out of the linear regime where structural
sensitivity operates. At this point, the system’s evolution ceases to follow that for which
the forcing was designed in the first place. In control language, the system does not follow
the controller’s model, so further applying the forcing may not result in the suppression
predicted by the linear model. Hence the actuation may only be effective for a finite time.
The question is whether this time is sufficiently long for any meaningful suppression
strategy based on this approach.

We propose to answer these questions by performing the receptivity and sensitivity
analyses (RSA) based on the stability analysis we conducted on the mixed convective flow
in a cavity in Kumar & Pothérat (2020) and numerically apply an external forcing built
as described above. Besides exploring the idea of instability suppression by receptivity-
informed external force, this problem carries three specificities of further fundamental
interest from the physical and mathematical point of view. First, the mixed-convection
character of this flow combines an open flow, for which structural sensitivity analysis
has been perhaps most developed (Giannetti & Luchini 2007; Giannetti, Camarri &
Luchini 2010), with a buoyant flow, for which, to our knowledge, it was only used on
stratified wakes (Chen & Spedding 2017). Aside of this example, open-loop control
(Tang & Bau 1998; Bau 1999) and stabilisation by vibrating walls (Anilkumar et al.
1993; Medelfef et al. 2023) have been implemented in classical Rayleigh–Bénard and
Marangoni flows. The adjoint equations for convective flows also made it possible to
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determine the influence of specific temperature distributions and heat fluxes at the flow
boundaries (see Momose, Sasoh & Kimoto (1999) and others) and to infer past states
of the Earth’s mantle (Bunge, Hagelberg & Travis 2003; Ismail-Zadeh et al. 2004;
Horbach, Bunge & Oeser 2014). Combining adjoint equations with LSA for the purpose of
identifying the sources of convective instabilities and suppressing them, however, presents
a new and interesting mathematical problem.

Convective flows are indeed particularly interesting in this context, as in most cases,
they occur in combination with other effects such as shear flows in mixed convection
(as in Vo, Pothérat & Sheard (2017) and in the present case), or Lorentz and Coriolis
forces in the vast field studying liquid planetary interiors (Roberts & King 2013).
Because of this, the path to instability may follow different branches of instability, either
individually near the onset or simultaneously in more supercritical regimes, leading to
multimodality (Nakagawa 1957; Eltayeb 1972; Aujogue, Pothérat & Sreenivasan 2015;
Horn & Aurnou 2022, 2024; Xu, Horn & Aurnou 2023). For this reason, suppressing
instabilities may require different actuations for different branches. These may even be
used in combination in multimodal regimes, although their effectiveness may be limited
if nonlinear interactions between these modes become significant. Whether the problem
of mixed convection in a cavity may become multimodal when sufficiently supercritical
is, at this point, an open question. For this reason, having in mind the aim of exploring
the feasibility of suppressing convective oscillations using receptivity-informed actuation,
we shall restrict ourselves to weakly supercritical regimes where instabilities are driven
by a single unstable mode in each of the three branches of instability. This still leaves the
question open as to whether the approach would be equally effective for each of them,
especially so as these occur through bifurcations of different nature. Hence, we shall seek
answers to the following questions.

(i) Does the system have significant receptivity in regions of the flow where an actuation
can realistically be applied, in particular near the boundaries?

(ii) Which forcing parameters (phase and amplitude) are best suited for applying an
external thermomechanical actuation, modelled on the adjoint of the eigenmode, to
achieve suppression?

(iii) By how much can the energy of the oscillations be reduced and for how long?
(iv) Does an actuation purely based on linear dynamics remain effective when the

nonlinearities are accounted for?

To answer these questions, we start by formulating the adjoint problem for mixed
baroclinic convection in a nearly hemispherical cavity, as defined by Kumar & Pothérat
(2020) and recalled in § 2, along with a description of the numerical system based on
high-order spectral elements methods. We then identify the thermomechanical source of
the instabilities by performing RSA (§ 3). To determine the optimal phase and amplitude
of the actuation based on the adjoint mode, relative to the unstable mode, we evolve the
linearised equations, varying these values (§ 4). Finally, we put the idea to the test in fully
nonlinear simulations and assess how long nonlinearities are kept at bay (§ 5).

2. Problem formulation

2.1. Governing equations
Following Kumar & Pothérat (2020), we consider a cavity of height H with an upper
free surface where hot fluid is fed in, and a cold, porous lower boundary representing a
solidification front, as shown in figure 1. The cavity is also assumed infinitely extended
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Figure 1. Problem geometry and mesh, with a rigid free surface at the inlet (top), solid side walls and a
porous solid wall at the outlet (bottom, solidification front). The flow enters and leaves the domains at vertical
velocity u0. The sketch also shows details of the mesh. This mesh consists of 348 quadrilateral elements,
and each element is represented by the polynomial order of N = 3. Thus, the total collocation points are
348 × (N + 1)2 = 5568.

in the third direction (ez). The lower boundary is semicircular and connected to the flat
upper boundary by two solid, adiabatic side walls of height 0.05H , with a temperature
difference �T between the top and bottom boundaries. To model a liquid metal of density
ρ, kinematic viscosity ν, thermal diffusivity α, thermal expansion coefficient β, the flow
is assumed Newtonian and since temperature gradients remain moderate, its motion is
assumed well described by the Oberbeck–Boussinesq approximation (Oberbeck 1879;
Boussinesq 1903; Chandrasekhar 1961). This leads to the following non-dimensional
governing equations:

∂u
∂t

+ (u · ∇)u + ∇ p = Ra PrT ey + Pr∇2u, (2.1)

∂T

∂t
+ (u · ∇)T = ∇2T, (2.2)

∇ · u = 0, (2.3)
where u = (u, v, w) is the velocity vector field, T is the temperature field, t is the time and
g = −gey is the gravitational acceleration. The modified pressure p includes the buoyancy
term that accounts for the reference temperature T0 at density ρ0 (Chandrasekhar 1961;
Tritton 1988). The above set of equations are non-dimensionalised using length H , velocity
α/H , time H2/α, pressure ρ0(α/H)2 and temperature �T . The equations feature two
governing non-dimensional groups: the Prandtl number

Pr = ν

α
, (2.4)

which we fixed to 0.02, a typical value of aluminium alloys, and the Rayleigh number Ra,
defined as

Ra = βg�T H3

να
, (2.5)
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which controls the intensity of buoyancy forces relative to viscous forces. A free-slip
boundary condition is applied to the upper boundary at y = 1 with fluid being poured
homogeneously across the boundary at an imposed temperature �T . These boundary
conditions are expressed as

∂

∂y
u × ey = 0, u · ey = RePr, T (y = 1) = 1, (2.6)

where Re is the mass flux Reynolds number based on the dimensional feeding velocity u0:

Re = u0 H

ν
. (2.7)

At the lower boundary S , the solidification front is represented by solid, porous boundary
conditions,

uS × ey = 0, uS · ey = RePr, TS = 0, (2.8)

such that the flux of fluid pulled at S exactly cancels the flux of mass coming from
the inlet. Impermeable, no-slip boundary conditions for the velocity field and insulating
boundary conditions for the temperature field are imposed at the side walls (see figure 1).
These boundary conditions for the temperature field at these side walls ensure that the
temperature field remains continuous along the entire periphery of the domain. The
pressure field in our calculation is obtained by solving the Poisson equation derived by
taking the divergence of (2.1). A consistent Neumann boundary condition for pressure
(Karniadakis & Israeli 1991) is applied at y = 1, on the lower boundary S , and on the side
walls. In the third direction ez , the domain’s infinite extension is represented by periodic
boundary conditions for all flow fields.

2.2. Direct and adjoint perturbation equations
The purpose of this work is to suppress linear instabilities with an actuation specifically
designed to stifle the growth of linear perturbations. Since this actuation will be based on
the linear dynamics of this perturbation, we first need the establish the set of equations
that govern its linear dynamics. From Kumar & Pothérat (2020), linear perturbations
grow from a class of equilibrium solutions of (2.1)–(2.3) and boundary conditions (2.6)
and (2.8) that are planar and invariant along ez , hence of the form U(x, y), T̄ (x, y).
Baroclinicity due to the isothermal condition along the solidification front precludes
any purely diffusive thermal equilibrium, so U(x, y) is never homogeneously zero and
both U(x, y) and T̄ (x, y) must be found as a fully nonlinear two-dimensional (2-D)
solution of the equations. It follows that perturbations to this equilibrium q′(x, y, z, t) =
(u, T )� − (U, T̄ )� = (u′(x, y, z, t), T ′(x, y, z, t))�, are governed by the linear system of
equations governing the evolution of infinitesimal perturbations,

∂q′

∂t
=Lq′, (2.9)

where

Lq′ =
(−(U · ∇)u′ − (∇U) · u′ − ∇ p′ + Ra PrT ′ey + Pr∇2u′

−U · ∇T ′ − (∇ T̄ ) · u′ + ∇2T ′
)

. (2.10)

Since p′ is determined by the constraint ∇ · u′ = 0, it is therefore not included in the
state vector q′. We will refer to (2.9) as the direct perturbation equation, and to L as
the direct linear operator. The boundary conditions for the base flow are the same as those
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for the main variables. As a result, the perturbation variables satisfy the homogeneous
counterparts of the boundary conditions associated with the base flow. Since the base flow
is invariant along ez and L does not explicitly depend upon time, the perturbation can be
written as a linear combination of normal modes of the form,

q′(x, y, z, t) = q̂(x, y)eikz+λt , (2.11)

where k is the wavenumber along the homogenous direction ez and λ= σ ± iω contains
the growth rate, σ and frequency ω. The growth rate, frequency and the wavenumber of
the most dominant mode q̂(x, y) = (û, v̂, ŵ, T̂ )� (also referred to as the direct mode)
are found by solving the eigenvalue problem for λ that result from (2.9) and (2.11). This
is done numerically by means of a time-stepper method (Barkley, Blackburn & Sherwin
2008). Here the eigenmodes are normalised such that ‖q̂‖2 = 1, where ‖ · ‖2 denotes the
standard l2 vector norm of 4 × Ne × (N + 1)2 values that make up q̂. In this context, Ne
refers to the number of quadrilateral elements. For the details of the eigenvalue solver we
refer the reader to § 2.2 of our previous work (Kumar & Pothérat 2020).

Next, we need to work out the form of the actuation that is best suited to suppress the
growth of individual normal modes. The idea we pursue relies on the ideas of Giannetti
& Luchini (2007), who showed that the receptive regions of the direct linear modes are
mapped by the adjoint eigenmodes of the same linearised equations. We, therefore, need to
construct the adjoint operator L∗ with respect to the time-averaged inner product relevant
to the problem (Mao, Blackburn & Sherwin 2015),

(a, b) =
∫

Ω

a · b dV, 〈c, d〉 =
∫ τ

0
(c, d) dt, (2.12)

where a and b are time-averaged vector fields defined on the fluid domain Ω , while c
and d are time-dependent vector fields defined on Ω and time domain [0, τ ]. The adjoint
operator is then defined by the relation

〈q∗, (−∂t +L)q′〉 − 〈(∂t +L∗)q∗, q′〉 = 0, (2.13)

and thus satisfies

− ∂q∗

∂t
=L∗q∗, (2.14)

where q∗(x, y, z, t) = (u∗, v∗, w∗, T ∗)� represents adjoint variables. The expression of
L∗ is readily derived by applying integration by parts to the first term in (2.13),

L∗q∗ =
(

(U · ∇)u∗ − (∇U)� · u∗ − (∇ T̄ )T ∗ − ∇ p∗ + Pr∇2u∗
(U · ∇)T ∗ + Ra Pr v∗ + ∇2T ∗

)
, (2.15)

with ∇ · u∗ = 0. Similarly, the adjoint variables satisfy adjoint boundary conditions
imposed by (2.13). These are identical to the boundary conditions satisfied by the direct
variables, except for the ex and ez components of the velocity field at the upper free surface,
that must satisfy Robin conditions (Barkley et al. 2008)

ey · ∇u∗ − Re u∗ = 0, ey · ∇w∗ − Re w∗ = 0. (2.16)

Like the direct variables, the adjoint variables are decomposed into the normal modes but
obtained as the solution of the adjoint eigenvalue problem, instead of the direct one so this
time, the same eigenvalue solver yields the adjoint mode q̂∗

(x, y) = (û∗, v̂∗, ŵ∗, T̂ ∗)�.
It follows from the biorthogonality property that the eigenvalue of the adjoint mode is
the complex conjugate of that of the direct mode (Salwen & Grosch 1981). Therefore, the
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magnitude of the growth rate and frequency of the adjoint and direct modes are identical
when the real and imaginary parts of the complex eigenvalue are equated.

2.3. Receptivity and sensitivity
Giannetti & Luchini (2007) showed that the adjoint field represented Green’s function for
the receptivity problem. Therefore, the adjoint equations can be used to evaluate the effects
of any external actuation or a generic initial condition on the leading eigenmode of the
direct problem (2.9). This property forms the basis for the analysis in § 4, where we seek to
identify the regions where applying an actuation would most effectively affect the growth
of unstable modes. Our intention is to control the growth of the perturbation from an initial
condition where the unstable mode has already grown measurably, but sufficiently little to
remain within the confines of the linear approximation. For this purpose, we determine
the topology of the actuation on the adjoint eigenmode. A common alternative approach
is to force the system in such a way as to modify the underlying operator such that the
eigenvalue associated with the leading eigenmode remains in the stable region, ignoring
the initial condition. The optimal actuation for this purpose is given by the sensitivity map.
The relative shift in the eigenvalue, and therefore the growth rate associated with the direct
and the adjoint mode incurred by acting at any given location of the flow is given by the
sensitivity map (Giannetti & Luchini 2007; Giannetti et al. 2010; Qadri, Mistry & Juniper
2013)

Si j (x, y) = q̂i q̂
∗
j∫

Ω
q̂�q̂∗ dxdy

. (2.17)

Note that the sensitivity tensor above is based on feedback localised in space, of the
form C0δ(x − x0)q̂. Here, C0 denotes a constant coefficient matrix, x0 indicates the
position where the feedback acts and δ(x − x0) denotes the Dirac delta function. Tensor Si j

determines the relative local intensity of the feedback of individual component q̂∗
j onto the

individual component q̂i of the eigenmode. This quantity also locates the regions of the
flow acting as wavemakers. In particular, since q′ and q∗ contain all three components
of velocity and the temperature, the knowledge of Si j indicates whether the actuation
should be of a thermal or mechanical nature and if mechanical, which component of the
velocity (or combination of all four components including temperature) is most efficient
at altering the growth of the unstable mode. Both the direct and adjoint problems being
linear, amplitudes are relative so we may further normalise the direct and adjoint modes
by choosing (Giannetti & Luchini 2007)∫

Ω

q̂�q̂∗ dxdy = 1, (2.18)

so that the sensitivity tensor is simply expressed as Si j = q̂i q̂
∗
j .

At this point, we reiterate that our study considers the feedback on the perturbed field.
This differs from the approach of Marquet et al. (2008), which examines the effect of
forcing on the base flow. The objective of our study is to apply a forcing based on the
adjoint mode (receptivity) to suppress instability. In general, the forcing influences both
the base flow and the perturbation and this effect can be analysed in detail by studying
the sensitivity to base flow modification as Marquet et al. (2008) do or by validating
the approach using nonlinear direct numerical simulation (DNS) as we do in this paper.
To summarise the difference between these two strategies in a nutshell, our strategy
consists in applying a forcing that suppresses the instability before either the perturbation
or the forcing has sufficiently grown to affect the base flow. The strategy proposed by
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(a) (b)Re = 0; Ra = 7 × 103 Re = 50; Ra = 7 × 103

(c) (d )Re = 100; Ra = 4 × 104 Re = 150; Ra = 8 × 104

0 1

T

Figure 2. Streamlines of the steady 2-D base flow and temperature field for the simulation cases (a) C1,
(b) C2, (c) C3 and (d) C4.

Marquet et al. (2008), by contrast, is to modify the base flow to prevent the perturbation
from growing at all.

2.4. Methodology and choice of parameters
For the reminder of the paper, we shall proceed as follows to find and assess the
actuation best suited to damp the growth of linear instabilities. First, the steady 2-D
base flow solutions are obtained using DNS of (2.1)–(2.3) together with the associated
boundary conditions. Second, the LSA of the 2-D base flow against three-dimensional
(3-D) perturbations is carried out by solving the eigenvalue problem for operator L. These
first two steps were previously carried out over an extensive range of governing parameters
and wavenumbers k in Kumar & Pothérat (2020). Here, we repeat the same approach for
flows that are weakly supercritical so as to focus on cases where the instability is driven by
a small number of unstable modes. The idea behind this strategy is that even in the fully
nonlinear evolution, if the instability remains driven by a small-enough number of modes,
it may be enough to prevent the growth of the most unstable of them to stop the growth
of instabilities altogether. This approach is not expected to be successful if the base flow
is destabilised by a broad spectrum of fast-growing unstable modes, as may be the case in
more strongly supercritical cases. On this basis, we select four typical weakly supercritical
cases illustrating the different instability mechanisms identified in this previous work.

(i) Simulation case C1 (Re = 0; Ra = 7 × 103). This case corresponds to a purely
convective base flow with zero inlet (and outlet) mass flux, i.e. no fluid crosses
the boundaries of the flow domain (see figure 2a). The flow becomes unstable to
a travelling wave at Rac = 5.975 × 103, through a supercritical Hopf bifurcation. The
corresponding branch in the complex eigenmode spectrum is labelled type II.
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Simulation Case Re Ra (Ra/Rac) − 1 NU k

C1 0 7 × 103 0.17 2 6
C2 50 7 × 103 0.13 2 6
C3 100 4 × 104 0.10 1 4
C4 150 8 × 104 0.09 1 6

Table 1. Parameters of the weakly supercritical cases, C1, C2, C3 and C4, were selected for the analysis. Here
(Ra/Rac) − 1 represents the level of criticality, where Rac is the critical Rayleigh number; NU represents the
number of unstable modes; k represents the most unstable mode. Note that Rac for the each case is obtained
from table 2 of Kumar & Pothérat (2020).

(ii) Simulation case C2 (Re = 50; Ra = 7 × 103). This case features an inflow through
the upper boundary as shown in figure 2(b). The flow becomes unstable to a type II
travelling wave through a supercritical Hopf bifurcation.

(iii) Simulation case C3 (Re = 100; Ra = 4 × 104). This case is similar to C2 but with
more intense inflow. The base flow is presented in figure 2(c). At Rac = 3.621 × 104,
it becomes unstable to a leading mode from a different branch (type I), that is still
oscillatory but arises out of a subcritical Hopf bifurcation.

(iv) Simulation case C4 (Re = 150; Ra = 8 × 104). Here the flow is mostly driven by
the inflow (see figure 2d). The instability corresponds to a further branch of the
eigenvalue spectrum labelled type III and yields a non-oscillatory mode through a
supercritical pitchfork bifurcation.

Details of the above selected parameters are tabulated in table 1.
Additionally to this previous analysis, we now need to calculate adjoint modes to

perform the RSA. These are obtained by solving the eigenvalue problem for the operator
L∗ using the same method as for the LSA. Third, the evolution of the normal mode targeted
for suppression is calculated using the linearised Navier–Stokes equations (2.9), to which
a forcing term based on the adjoint eigenmode is added on the left-hand side. We use two
types of actuation to that effect. As the unstable mode is suppressed by the forcing, its
amplitude varies, and so does the amplitude of the actuation. Otherwise, once the unstable
mode is suppressed, the actuation would act as an external force taking the flow away from
its equilibrium. Hence, to assess the ability of an actuation based on the receptivity map
to suppress the unstable mode, we use a forcing of the form

f(x, y, z, t) = α(t)	{Aq̂∗
(x, y) exp [σ t + i(kz + ωt + φ)]}, (2.19)

where α(t) represents the amplitude of the unstable mode normalised by its initial value.
In practice, adapting the forcing to the amplitude in real time would require sensing
and processing capable of extracting the evolution of the unstable mode instantaneously,
which, in the harsh environment of continuous casting, is impractical. Instead, it is much
easier to set a threshold on the sensor output above which an actuation of constant
amplitude is applied. For this purpose, we use a simpler form of actuation,

f(x, y, z, t) = 	{Aq̂∗
(x, y) exp [σ t + i(kz + ωt + φ)]}. (2.20)

In both cases, A and φ represent the initial real amplitude and real phase of the forcing,
respectively, relative to the unstable mode. Note that our strategy is not to choose an
actuation intended to manipulate the eigenvalue associated with the leading eigenmode.
This well-established technique entails applying a force whose linear dependence on
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the unstable eigenmode shifts the leading eigenvalue of the linear evolution operator to
the stable region. The topology of the optimal forcing map is, in this case, provided
by the structural sensitivity, or base-flow sensitivity maps (Giannetti & Luchini 2007;
Marquet et al. 2008). Instead, we chose to apply a predetermined force, i.e. that does not
depend linearly on variable q̂. That actuation is designed to suppress the amplitude of the
unstable mode from a small but finite initial value. Since the actuation does not linearly
depend on q̂, the evolution equation is not strictly linear, its linear part does not change
and neither does the leading eigenvalue. The actuation f has four components. The first
three components represent mechanical forces, and the last component represents thermal
forces. This step serves two purposes. First, it acts as a validation of the strategy. Since the
forcing is derived from linearised adjoint equations, that ignore nonlinear interactions, it
must at least be effective at damping the direct linear mode, to carry any hope of preventing
the full nonlinear growth of the instability. Second, building the forcing on the topology
of the adjoint mode involves a choice of amplitude and phase relative to the direct modes.
To find out the optimal values of both, we carry out a series of linear simulations where
they are varied.

Finally, with the knowledge of the optimal amplitude and phase of the actuation, we test
the suppression of instability with its full nonlinear dynamics through 3-D DNS (the detail
of individual simulations is given in § 5).

2.5. Numerical set-up
The methodology outlined in the previous section involves four types of numerical
computations: 2-D (nonlinear) DNS; direct and adjoint eigenvalue problems; 3-D
evolution of individual eigenmodes through the direct linearised equations; 3-D
(nonlinear) DNS. The solution of the direct and adjoint eigenvalue problems are found
by means of the time-stepping method implemented and tested in detail in Kumar &
Pothérat (2020). The novelty compared with this previous work is the solution of the
adjoint eigenvalue problem, which was validated by making sure the eigenvalues obtained
from both the LSA and RSA yielded the same results down to machine precision.

The nonlinear governing equations (2.1)–(2.3), the direct perturbation equation (2.9)
and the adjoint equation (2.14) are solved using the spectral-element code Nektar++
(Cantwell et al. 2015; Moxey et al. 2020). We adopted a spectral-element discretisation
in the x−y plane with a mesh consisting of 348 quadrilateral elements. For the 3-D
simulations, we used a Fourier-based spectral method (Bolis et al. 2016) for discretisation
in the ez direction. The computational domain extends along ez by 2π . A third-order
implicit–explicit method (Vos et al. 2011) is used for time stepping. For all four types of
numerical calculations, the time step �t was kept constant so that the maximum local
Courant number Cmax remained below unity everywhere in the domain at all times.
The numerical implementation is described and tested in detail in Kumar & Pothérat
(2020). Figure 1 shows the details of a 2-D x−y mesh generated using the Gmsh package
(Geuzaine & Remacle 2009) with polynomial order N = 3 as an example of spatial–
spectral discretisation used in the (x, y) plane. Elements at the edges are more densely
packed than in the bulk, with a ratio of four between the edge sizes of the largest
and the smallest elements. On each element, the flow variables are projected onto the
polynomial basis represented at Gauss–Lobatto–Legendre points. As in our previous work,
we perform a convergence test on the polynomial order for the leading eigenvalue for
each case to ensure the solution is independent of the spectral order. For example, the
leading eigenvalue computed for the simulation case C4 with the polynomial order N = 8
differs by less than 0.04 % from the calculation performed with N = 9. Convergence of the

1013 A20-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
24

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10241


A. Kumar and A. Pothérat

N σ Relative error (%)

6 0.21598 1.67593
7 0.21293 0.24009
8 0.21249 0.03295
9 0.21242 —

Table 2. We examine the relationship between the leading eigenvalues and the polynomial order N . The leading
eigenvalues are computed on the mesh at Re = 150, Ra = 8 × 104 and k = 6. The relative error is calculated
with respect to the case of the highest polynomial order (N = 9).

leading eigenvalue with the polynomial order is presented in table 2. Similar convergence
tests have been conducted for other simulation cases. For all 3-D DNS calculations,
we have retained 32 Fourier modes along ez , which are deemed adequate based on our
previous convergence test conducted in Kumar & Pothérat (2020).

3. Linear RSA
The aim of this section is to identify the most effective location within the flow domain
for an actuation to suppress instabilities using RSA. The receptivity analysis returns a map
of the physical locations within the flow domain where one can act on the instabilities by
applying an external actuation. On the other hand, the sensitivity analysis identifies the
location in the flow domain where this external actuation would incur the greatest flow
alteration. For this purpose, we shall discuss each of the cases C1–C4 outlined in § 2.4.

For case C1, the base flow, represented on figure 2(a), consists of two symmetric
baroclinically driven recirculation cells driven along the solidification front, from the
maximum baroclinicity regions in the upper left- and right-hand corners. Both cells meet
on the axis near the bottom of the domain and drive a strong upward jet there. The leading
unstable mode of type II (with critical parameters kc = 6.3, Rac = 5.975 × 103) arises out
of shear instability near the location of the maximum velocity along that jet (see figure 3a).
It consists of a wave travelling in the z direction, and appears through a supercritical Hopf
bifurcation.

The velocity field modulus associated with the adjoint mode ‖û∗‖, which represents
receptivity, is displayed in figure 3(b). The most receptive region is located at the wall,
where the magnitude of two jets is strongest. The product of direct and adjoint modes
represents the sensitivity and is plotted in figure 3(c). This plot shows that the sensitivity
is symmetric about the central axis, and strong towards the bottom of the cavity.

For case C2, the presence of the inflow through the top boundary opposes the upward
jet seen in case C1 and therefore suppresses the baroclinically driven recirculation.
These are displaced downwards as a result and the shear is less concentrated near the
symmetry axis as represented in figure 2(b). Accordingly, the unstable mode (kc = 6.2,
Rac = 6.168 × 103, figure 3d) is more widely spread along the two directions of space
than in case C1 and stretches down to the bottom of the cavity. It also separates into two
lobes corresponding to each recirculation, whilst keeping a maximum intensity where they
meet at the bottom of the cell. The most receptive region (see figure 3e) lies just below
the upper surface, where the fluid flows into the cavity from either side of the central
axis. The sensitivity, as shown in figure 3(f ), is particularly strong at the bottom of the
domain, where oscillations are caused by the instability. The topology of the receptive
mode has two consequences. First, the most effective location to act on the unstable mode
is not in the bulk of the flow, but near the top surface. Since the inflow directly impacts
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0 3.0 0 3.0 0 3.7

0 3.1 0 9.7 0 5.6

0 7.2 0 21.4 0 7.3

0 5.7 0 11.2 0 3.7

(a) ||û|| ||û*|| ||û|| ||û*||(b) (c)

(d ) ||û|| ||û*|| ||û|| ||û*||(e) ( f )

(g) ||û|| ||û*|| ||û|| ||û*||(h) (i)

( j) ||û|| ||û*|| ||û|| ||û*||(k) (l)

(m)

Figure 3. Spatial distribution of the velocity field modulus (‖û‖), receptivity to momentum forcing (‖û∗‖) and
the Frobenius norm of the momentum structural sensitivity (‖û‖‖û∗‖) for the simulation cases: (a)–(c) C1;
(d)–(f ) C2; (g)–(i) C3; (j)-(l) C4. Panel (m) represents the zoomed region of ‖û∗‖ for C4. The streamlines in
(a), (d), (g) and (j) represent the real part of the unstable eigenmode (	(û)ex + 	(v̂)ey) in the x−y plane.

this region, altering the inflow profile may offer an effective means of applying optimal
actuation. Second, if instead of attempting to control the unstable mode, one follows a
control strategy consisting in modifying the base flow to stabilise the unstable mode,
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the actuation is best applied at the bottom of the cavity. This illustrates that the two
approaches involve very different types of actuation. For the purpose of the application to
casting, the bottom of the cavity corresponds to the locus of the solidification front, which
is the least accessible. The inlet, by contrast, is much easier to access through the upper free
surface.

In case C3, the greater inflow compared with case C2 further suppresses the convective
cells. These now become confined to the lower-half of the domain, and extend over less
than a third of its width (see figure 2c). The topology of the unstable mode (kc = 4.1,
Rac = 3.621 × 104, figure 3g) remains similar to that of case C2, but the lobes of greater
energy are now separated along the jet to join only near the bottom where the mode’s
energy is still maximum. The receptivity is again concentrated near the top surface but has
further contracted in size (see figure 3h). The topology of the sensitivity map still shows a
maximum in the lower part of the sump, albeit more extended towards its centre, along the
main central jet. As in case C2, the regions of actuation for controlling the unstable mode
and for structural sensitivity differ, with the former located in a much more accessible
region of the flow in the context of continuous casting.

Lastly, case C4 corresponds to a different regime where the inflow further suppresses
the convective cells (see figure 2d). The unstable mode (kc = 6.0, Rac = 7.345 × 104,
figure 3j) adopts a different topology with a sharp maximum along the central axis and
four lobes extending either side of it in the middle of the bulk and near the bottom
wall. These correspond to the location where streamlines are at maximum angle with the
vertical direction. Somewhat surprisingly, despite a very different topology in their leading
eigenmode, the receptivity modes in cases C3 and C4 exhibit relatively similar topologies,
both of them being sharply concentrated in the middle of the free surface. The receptive
mode of case C4, however, is concentrated over an even smaller region (see figure 3k).
Additionally, in contrast to cases C2 and C3, the receptivity mode for case C4 features
a maximum exactly in the middle of the inlet, visible on magnified figure 3(m) whereas
the receptivity modes for cases C2 and C3 are split into two lobes, each with a point
of maximum intensity either side of the centre of the free surface. The sensitivity map
occupies practically the entire lower-half of the domain and, as such, remains difficult to
access unlike the region highlighted by the receptivity map.

To summarise, despite different instability mechanisms, cases C2, C3 and C4 all exhibit
receptivity maps showing strong localisation near the surface, whereas their sensitivity
maps show localisation in the lower part of the domain. Since the lower-half is practically
inaccessible in the casting process, the classical strategy of altering the base flow to
stabilise, which would require aligning the forcing with the sensitivity map, is not
practical. By contrast, attempting to actively control the unstable mode requires a forcing
aligned with the receptivity map, which is conveniently located near the upper surface.
Additionally, since the receptivity maps in cases C2, C3 and C4, have practically no
overlap with the sensitivity maps, applying a forcing based on the former will likely not
affect the structural stability of the problem. In this sense, the influence of the forcing
on the base flow has little effect. The receptivity and sensitivity maps for case C1 are
less localised but still exhibit maxima at different locations: on the side of the lower
boundary for the receptivity map and closer to the main jet and farther inside the bulk for
the sensitivity map. In practice, this makes both strategies equally difficult to implement.
Analysis of the components contributing to the sensitivity map provides insight into
the feedback mechanism underpinning the growth of the unstable mode (Giannetti &
Luchini 2007). This is systematically investigated through the sensitivity tensor provided
in Appendix A.
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4. Linear response to an actuation based on receptivity modes
Having now identified the topology of the receptivity modes and their likely effect on
the instability, we shall now proceed to use these modes as a basis for the design of an
actuation. The main question is whether applying such receptivity-based actuation during
the period where instability would grow indeed alters the growth of the instability. With
the application to the casting of alloys in mind, we would indeed seek to at least stifle,
and possibly prevent the growth of the instability as much as possible. The mathematical
expression of the corresponding actuation is provided by (2.20). Importantly, while the
first three components of f(x, y, z, t) indeed represent a force density applied in the
three components of the Navier–Stokes equation, the fourth component applies to the
energy equation (2.2) and, therefore, represents a heat source. The full actuation, therefore,
comprises both a momentum and an energy source in the general case.

4.1. Methodology
In the first instance, we seek the linear response of the system. This step acts as a
validation, as the sensitivity analysis already provided us with an indication of the linear
response we should expect. Two very important aspects still remain to be clarified by
calculating the linear evolution of the leading eigenmode under the effect of the actuation:
first, the time scale of the response and the duration of the effect are not considered in the
receptivity analysis; second, the receptivity does not specify how the relative amplitude
and phase of the receptive mode affect the linear response. Indeed, in (2.19) and (2.20),
the amplitude and phase of the actuation are both relative to the leading eigenmode. Since
the receptivity mode is the solution of a homogeneous linear problem, none of them is
specified. On the other hand the relative amplitude and phase of the actuation can be
expected to greatly influence the system’s response to it. For these two reasons, and to
identify the combination of relative phase and amplitude that optimises the suppression of
the instability, we run a series of linear simulations by adding a source term representing
the receptivity-based actuation on the right-hand side of (2.9):

∂q′

∂t
=Lq′ + f. (4.1)

We conduct a parametric study for the actuation of constant amplitude (2.20), varying
the phase φ from 0 to 2π in increments of π/10 and the amplitude between 0.01 and
0.5 for most of the cases. Then, we conduct a single linear simulation with adaptive
actuation amplitude (2.19), using the most effective combination of A and φ found in
the parametric analysis, to assess whether the receptivity-based actuation indeed fully
damps the unstable mode asymptotically. Each linear simulation is initiated using the
unstable mode obtained from the LSA as the initial condition with amplitude such that the
normalisation condition (2.18) is satisfied, from which both A and φ are fixed. In the linear
simulation, normal modes are decoupled from each other so the time-dependent solution
obtained by initialising the solution with a single normal mode reflects the evolution of
that particular mode only. As such, linear simulations provide a direct measure of the
ability of the actuation based on the receptivity mode to affect the evolution of the unstable
mode. To quantitatively asses this effect, we monitor the time-dependent energy of the
mode, (q′, q′). The lowest value (q′, q′)min reached by this quantity gives an indication
of the damping achieved by the actuation, and the time of occurrence of this minimum
measures the time scale over which this damping is achieved, denoted as t f . Going back
to the example of the continuous casting of alloys as one of the motivations for this work,
the unstable mode may not need to be suppressed indefinitely. Instead, maintaining the
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Figure 4. For the simulation case C1 (Re = 0, Ra = 7 × 103 and k = 6) (a) Minimum value of the strength
of perturbation (q′, q′)min as a function of the amplitude A and the phase φ of the linear receptivity-based
actuation. (b) Dependence of the time t f at which (q′, q′)min occurs on the amplitude A and phase φ. (c) The
strength of perturbation (q′, q′) as a function of time t for both unforced and forced cases. The inset represents
the evolution of both constant amplitude actuation and adaptive actuation from t = 0 to t 
 t f .

unstable mode to a low level for the entire duration of the casting operation, which is
finite, would be sufficient to ensure it does not impact the final quality of the alloy. Hence
the importance of t f is both fundamental and practical.

4.2. Analysis of cases C1–C4
We shall now examine the outcome of this approach in each of the C1–C4 cases, defined
in § 2.4. Figure 4(c) illustrates four examples of the evolution of (q′, q′) for case C1.
The blue curve represents a simulation with no actuation, i.e. one with A = 0 amplitude.
As predicted by LSA, the instability grows exponentially with oscillations of frequency
determined by the imaginary part of the mode’s eigenvalue. The red curve represents
the case with receptivity-based actuation of amplitude A = 0.5 and phase φ = π . In this
case, (q′, q′) decreases over time and reaches its minimum value at t f = 3.65. For t > t f ,
(q′, q′) increases, and crosses the blue curve at t = 7.16. Hence, in this particular case,
the actuation results in an effective suppression of the instability until t = t f . Now, to
determine the optimal value of A and φ, i.e. values that achieve the smallest value of
(q′, q′)min , we vary the phase in the range of 0 to 2π , and for amplitudes between 0.07
and 1.0. The grid map of the corresponding values of (q′, q′)min is shown in figure 4(a)
for case C1. It turns out that A = 0.5 and φ = π are the optimal values of amplitude and
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Figure 5. For the simulation case C2 (Re = 50, Ra = 7 × 103 and k = 6). (a) Minimum value of the strength
of perturbation (q′, q′)min as a function of the amplitude A and the phase φ of the linear receptivity-based
actuation. (b) Dependence of the time t f at which (q′, q′)min occurs on the amplitude A and phase φ. (c) The
strength of perturbation (q′, q′) as a function of time t for both unforced and forced cases. The inset represents
the evolution of both constant amplitude actuation and adaptive actuation from t = 0 to t 
 t f .

phase with (q′, q′)min = 0.06. Simulation conducted with adaptive actuation (2.19) shows
that the unstable mode decays very similarly to the case of constant amplitude actuation
until t 
 t f , but continues to decay asymptotically to zero as t → ∞. This shows that the
receptivity-based actuation indeed suppresses the unstable mode completely.

Further calculations were performed for cases C2 and C3, which, despite corresponding
to different instability branches, return similar results, presented in figures 5 and 6. As
compared with case C1, case C2 has an optimal amplitude that is twice as large, with
a phase shift of 1.7π radians. Therefore, the optimal values are A = 1.0 and φ = 1.7π .
The value of t f is slightly reduced to 2.57. On the other hand, for case C3, the optimal
amplitude is reduced to 0.1, and the optimal phase is shifted to 1.5π . The value of t f ,
however, is slightly increased to 3.93, which implies that the instability can be attenuated
for a slightly longer period of time. As in case C1, the adaptive actuation (2.19) leads
to a decay similar to the constant amplitude actuation until t 
 t f , but it continues to
decay asymptotically to zero as t → ∞, so in cases C2 and C3 too, the receptivity-based
actuation fully suppresses the unstable mode.

Case C4 differs from the other cases in that the leading eigenmode and its adjoint,
which represents receptivity, are non-oscillatory. Consequently, the actuation is also non-
oscillatory and we do not need to determine the optimal phase, only the optimal amplitude.
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Figure 6. For the simulation case C3 (Re = 100, Ra = 4 × 104 and k = 4). (a) Minimum value of the strength
of perturbation (q′, q′)min as a function of the amplitude A and the phase φ of the linear receptivity-based
actuation. (b) Dependence of the time t f at which (q′, q′)min occurs on the amplitude A and phase φ. (c) The
strength of perturbation (q′, q′) as a function of time t for both unforced and forced cases. The inset represents
the evolution of both constant amplitude actuation and adaptive actuation from t = 0 to t 
 t f .

In the absence of a phase, the possibility still remains to reverse the actuation, which
we incorporated into the sign of A. The variations of (q′, q′)min with A are shown in
figure 7(a). For A ≥ 0, (q′, q′)min remains very close to the initial value of (q′, q′) so no
suppression is achieved. For A < 0, by contrast, we observe a sudden drop in the value
of (q′, q′)min at very small amplitudes, with a minimum value at A = −0.03 (see inset of
figure 7a).

Figure 7(c) shows the evolution of (q′, q′) over time for both the unforced and forced
cases with A = −0.03. It appears that the actuation achieves a suppression of the non-
oscillatory mode up to time 5.45. Here again, the adaptive actuation (2.19) suppresses the
unstable mode completely and acts over the same time scale t f as the constant amplitude
actuation.

4.3. The salient features of the linear response to an actuation of constant amplitude
In all cases, the receptivity-based actuation with adaptive amplitude suppresses the
unstable mode asymptotically. This result shows that the theoretical foundations for the
receptivity-based instability control are sound. However, the actuation with constant
amplitude is more useful in practical situations, but induces a more complex response,
which we now discuss in more detail. All four cases show strong similarities, despite the
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Figure 7. For the simulation case C4 (Re = 150, Ra = 8 × 104, and k = 6). (a) Minimum value of the strength
of perturbation (q′, q′)min as a function of the amplitude A of the linear receptivity-based actuation. Inset
represents the amplitude A = −0.03 which corresponds to the lowest value of (q′, q′)min . (b) Dependence
of the time t f at which (q′, q′)min occurs on the amplitude A. (c) The strength of perturbation (q′, q′) as
a function of time t for both unforced and forced cases. The inset represents the evolution of both constant
amplitude actuation and adaptive actuation from t = 0 to t 
 t f .

differences in the nature of the unstable modes. First, the linear actuation has a stabilising
effect up to a finite time t f , effectively suppressing the instability. Beyond this point, the
unstable mode grows again and at a faster pace than when unforced. This means that for
t > t f , the linear actuation becomes destabilising. The reason is that, since the base flow
is fixed in the linear equations we simulate, the actuation’s only effect is to suppress the
unstable mode. Once the mode is suppressed, the system is back to the equilibrium point
defined by the steady base flow. The actuation then acts as an additional force, moving the
system away from this equilibrium. Nonlinear simulations are required to verify whether
the base flow is indeed affected by the actuation and whether the phenomenology observed
in the linear framework is indeed valid. Table 3 shows that t f remains of the order of the
inverse of the growth rate of the unstable mode, as the ratio σ t f remains of the order
of unity for all suppression-optimising cases. The term ‘suppression-optimising’ refers
to seeking the amplitude and phase of the forcing that achieve the maximum reduction in
mode amplitude. The reduction in mode amplitude achieved at t = t f is of approximatively
two orders of magnitudes (see table 3) for the suppression-optimising cases. This suggests
that the actuation is more effective when applied for a finite time t f , then stopped until
the unstable mode regrows to its initial amplitude (i.e. during a time ∼ σ−1), at which
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Suppression-
optimising

Time-optimising

Simulation case σ t f
(q′,q′)min
(q′,q′)t=0

σ t f
(q′,q′)min
(q′,q′)t=0

C1 0.57 0.037 3.43 0.314
C2 0.31 0.040 2.34 0.733
C3 0.51 0.013 2.51 0.272
C4 1.16 0.009 4.93 0.910

Table 3. The normalised value of t f with respect to the growth rate σ for various suppression-optimising and
time-optimising simulation cases. Comparison of (q′, q′)min relative to the initial value of (q′, q′) is shown for
each suppression-optimising and time-optimising simulation cases.

point the procedure can be repeated. Whether this strategy is realistic depends on how this
pattern is affected by nonlinearities.

This pattern also raises the question of whether instead of applying suppression-
optimising, it may be beneficial to seek configurations that achieve the largest value
of t f so as to maximise the time during which the suppression is effective. The term
‘time-optimising’ is introduced to denote the search for amplitude and phase settings that
maximise the value of t f . The corresponding optimal values are shown on figures 4(b),
5(b), 6(b) and 7(b). Unsurprisingly, actuation parameters optimising the suppression and
t f differ. We shall compare how both optimals perform on the nonlinear response in the
next section.

In addition to identifying optimal suppression parameters, our results highlight that
certain combinations of amplitude and phase can instead enhance instability. For instance,
as shown in figure 4(c), the case A = 1 and φ = 0 leads to the most destabilising effect
for Re = 0, and similarly, as shown in figure 6(c), for Re = 100. In contrast, for Re = 50
(figure 5c), the configuration A = 1 and φ = π is more destabilising than A = 1 and φ = 0.
This observation underscores the importance of carefully selecting both the amplitude
and phase in actuation design, as an inappropriate choice can inadvertently amplify
perturbations rather than suppressing them.

5. Nonlinear response to an actuation based on receptivity

5.1. Methodology
The linear simulations confirmed that an actuation designed from the topology of the
receptivity, with a frequency matched to the leading eigenmode was indeed capable of
stifling the linear mechanism responsible for the growth of the leading eigenmode. We
also identified the relative amplitude and phase that maximised its suppression. In reality,
the finite amplitude of the perturbation, whether subject to the actuation or not, activates
a nonlinear response of the system. Although nonlinearities may not measurably deflect
the perturbation’s evolution in its early stages, when its amplitude is still small, it is likely
to govern its dynamics at longer time scales, especially at the point where the actuation
ceases to be efficient. For this reason, the nonlinear effects are essential to determine
how effective the actuation may be at suppressing instabilities, and how long it may
remain so.

Including the nonlinear dynamics, however, raises several technical difficulties. First, the
optimal amplitude and phase were determined without any consideration of nonlinearity,
so we may question whether these remain optimal for the nonlinear evolution. The answer
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Case Re Ra N �t RA t f te f f
te f f
t f

ηa

C1 0 7 × 103 6 5 × 10−3 1 × 10−2 3.65 19.1 5.23 5.21
C2 50 7 × 103 7 1 × 10−4 4 × 10−4 2.57 17.8 6.93 6.30
C3 100 4 × 104 7 1 × 10−4 1 × 10−3 3.92 32.5 8.29 8.27
C4 150 8 × 104 8 5 × 10−5 4 × 10−5 5.45 21.4 3.93 3.93

Table 4. Parameters of our numerical calculations: Reynolds number Re, Rayleigh number Ra, order of
polynomial N , time step �t . Here amplitude ratio RA, the forcing cutoff time t f , nonlinear efficiency time
te f f = t2 − t1 and actuation efficiency ηa = tR/t f based on recovery time tR such that (q′, q′)t=tR = (q′, q′)t=0
for the 3-D DNS.

lies partly in how the suppression is assessed. Following the approach we adopted in the
linear study, we sought the point of lowest amplitude for the leading eigenmode and the
time of this minimum. Since the evolution from an infinitesimal perturbation to that point
involves only very small amplitudes, it is legitimate to assume that nonlinearities would
play little role there and that, consequently, the linear and the nonlinear evolutions would
remain very similar during this phase (Drazin & Reid 2004). One should, however, keep
in mind that if phase and amplitude were sought so as to optimise the saturated state of
the evolution, the full nonlinear equations would need to be included in the optimisation
process (Pringle, Willis & Kerswell 2012). However, our specific purpose of understanding
the influence of the nonlinear effects is better served by keeping a similar approach to the
linear study. Additionally, since the linear study showed that the growth of the leading
eigenmode was only effectively suppressed until t = t f , we shall only apply the actuation
up to that time, and let the flow evolve freely after that time.

Second, the definition of the initial conditions for the nonlinear problem differs from
the linear one: the linear equations indeed return the same evolution regardless of the
amplitude of the initial condition (up to a multiplicative factor), and only the relative
amplitude and phase of the actuation mattered. To transpose our approach into the
nonlinear framework, we shall also specify the amplitude and phase of the actuation
relative to the perturbation. In the nonlinear equations, however, if the unstable mode is
left to grow ‘naturally’ from noise, its amplitude and phase are not specified in the initial
condition, so actuation cannot be fixed a priori. A workaround would be to let the unstable
mode develop up to a trigger amplitude, where both amplitude and phase can be measured,
and then apply the optimal actuation based on these. Indeed, such an approach would be
required in a real process where the onset of instability would need to be detected for
the actuation to be activated. For instance, electromagnetic sensors (Thomas et al. 2001;
Cho & Thomas 2019) can detect the onset of such instabilities. Since our previous study of
the free nonlinear evolution of the leading eigenmode confirmed that it emerged naturally
from noise (Kumar & Pothérat 2020), we shall directly initiate the nonlinear simulation
with the leading eigenmode set to an amplitude such its ratio to the base flow,

RA = (q′, q′)
(Q, Q)

, (5.1)

remains much smaller than unity (see table 4). Here, Q = (U, T̄ )� represents the steady
base flow. Note that for the nonlinear simulations, q′ is obtained by subtracting the base
flow from the entire flow field.
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Figure 8. As a function of time t , the nonlinear evolution of the perturbation energy (q′, q′), in the simulation
cases (a) C1, (b) C2, (c) C3 and (d) C4, without actuation (blue), with actuation maximising t f (orange) and
with actuation achieving maximum reduction of energy (red).

5.2. Analysis of cases C1–C4
The evolution of the perturbation with and without actuation for case C1 is shown in
figure 8(a). The blue curve illustrates the free nonlinear evolution with the flow initialised
with the leading eigenmode for case C1 and no actuation applied. Initially, the energy
of the perturbation (q′, q′) grows exponentially, as predicted by the linear theory, and
this confirms that nonlinear effects do not affect the early stages. These indeed induce a
saturation at t = t1 = 25.4. The envelope of the curve provides an estimate of the saturation
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time, denoted as t1. We consider the saturation time to be reached when the derivative of
the envelope with respect to time falls below 10−3. The red curve represents the evolution
of the perturbation for the same initial conditions, but this time, with the suppression-
optimising actuation applied as we just described. Until t ≈ 10, the actuation results in
a decrease of the perturbation’s amplitude, after which the perturbation begins to grow
slowly. Interestingly, the decay of the perturbation continues well beyond the time of
minimum amplitude found in the linear simulation. Since, however, nonlinear effects are
not expected to play a role for such low amplitudes, as suggested by the exponential
form of the actuation-free evolution, the difference more likely results from switching
off the actuation at t f in the nonlinear simulations. Given the very low amplitude of the
perturbation around t = t f , the system remains governed by linear dynamics so the reason
for the extended period of suppression is that exponential growth from such a low level of
perturbation simply extends over a longer period of time. This suggests that applying the
actuation beyond the time of maximum growth suppression in fact promotes the growth
of the eigenmode. As such, switching off the actuation at t f is optimal. The underlying
suppression strategy, is then to suppress the leading eigenmode down to the lowest possible
amplitude so that the linear mechanism takes as long as possible to act. The nonlinear
dynamics only provide a measure of when this strategy ceases to be effective.

Indeed, after t ≈ 20, the exponential growth becomes sufficient to activate nonlinearities
and the perturbation amplitude reaches nonlinear saturation at t = t2 (t2 is calculated using
the same method as t1 by analysing the envelope of the curve). In order to estimate
the effectiveness of the actuation at suppressing the instability, we define the nonlinear
efficiency time, te f f = t2 − t1, which for case C1 is 19.1 
 5.23t f . In other words, the
actuation prevents nonlinear saturation during 5.23 times the duration of its application,
i.e. it approximately doubles the time to saturation. Even more interestingly, the unstable
mode returns to its initial amplitude at a time tR , ηa = 5.21 times longer than t f , so that it
could potentially be indefinitely maintained at that level by applying the actuation during
t f every ηat f , which costs ηa less energy than applying the actuation continuously. These
results are very encouraging since they validate the linear approach, and show that the
receptivity forcing obtained from the linear analysis is indeed capable of suppressing the
growth of the instability in the full nonlinear system for a long time, not only compared
with the time scale of growth of the instability and to the duration of the actuation t f .

In addition to applying actuation based on the minimum value of (q′, q′), we also tested
the actuation strategy based on the forcing maximising t f . For case C1, the highest t f
value of 21.8 is achieved for A = 0.08 and φ = π . The simulation corresponding to these
parameters is depicted by the orange curve in figure 8(a). Interestingly, the perturbation
energy remains below that of the unforced case until around t ≈ 20, yet it consistently
stays higher than that of the mode with suppression-optimising actuation (A = 0.5), before
reaching nonlinear saturation. Since the perturbation energy for A = 0.08, φ = π exceeds
that of A = 0.5, φ = π , its nonlinear saturation occurs prior to the case of A = 0.5. This
means that suppression-optimising actuation outperforms time-optimising actuation.

Case C2 returned exactly the same phenomenology for the suppression-optimising
actuation, despite the difference in the nature of the leading eigenmodes (see figure 8b).
The values of te f f /t f and ηa are not significantly different than for case C1, but
the time-optimising actuation incurs a different behaviour: although the unstable mode
does not initially decay, it decays briefly at a much later time than for the actuation
optimising suppression, down to a similar level. Shortly after, however, both curves
practically coincide and simultaneously evolve to saturation. In this sense both actuations
perform equally well: this is the only case where the suppression-optimising actuation
does not significantly outperform the time-optimising actuation. Nevertheless, since the
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perturbation remains at a much lower level in the initial stages of evolution for the
suppression-optimising actuation, it is still overall better at suppressing the unstable mode.

Case C3 also produced the same phenomenology shown on figure 8(c), but with
increased values of te f f /t f = 8.29 and ηa = 8.27, i.e. with a much higher efficiency of the
suppression-optimising actuation. By contrast with case C2, however, the time-optimising
actuation is practically ineffective at suppressing the unstable mode as its amplitude grows
to saturation barely later than without any actuation.

Lastly, we applied constant actuations in the nonlinear simulation of case C4, since
the unstable mode is non-oscillatory. Once again, we used the unstable mode as the
initial condition. The non-oscillatory nature of the mode does not seem to play a role
as the evolution of the mode’s energy in all three simulations, without actuation, with
suppression-optimised actuation and with time-optimising actuation show very similar
features to cases C1 and C3, with te f f /t f ≈ ηa = 3.93.

5.3. The salient features of the nonlinear evolution
The overall outcome of the nonlinear simulations is that the phenomenology seen in the
linear simulation remains valid until the nonlinear effects become important and crucially,
this happens when the saturation starts. If an actuation based on the adjoint mode, applied
up to the time of maximum suppression t f the unstable mode does not regain its initial
amplitude until a time ηat f , roughly an order of magnitude longer than t f (ηa = 8.27 in
the most favourable case C3), so as long as the amplitude and phase of the actuation are
optimised for suppression (and not for t f ). Until that point, the evolution follows mostly
the linear dynamics, as the energy of the unstable mode remains small compared with that
of the base flow. The nonlinear effects act shortly after this time, and when they do so,
they incur growth up to the same point of saturation as when no actuation is applied.

In light of this behaviour, an on–off control strategy could offer a viable control strategy.
Repeating a sequence where the suppression-optimising actuation is applied until t f , then
switched off to let the flow evolve until ηat f , may indefinitely keep the flow evolution
in the linear regime, where the actuation remains effective. Thus, this strategy may
confine oscillations to very small amplitudes for an arbitrary length of time. Though, this
strategy needs to be further explored to assess how feasible this approach is in practical
applications.

6. Conclusions
Inspired by the process of continuous casting of liquid metal alloy, we sought to model
the suppression of oscillations in mixed baroclinic convection in a nearly hemispherical
cavity. This problem offered us an opportunity to assess the feasibility of suppressing
oscillatory instabilities by means of an actuation modelled on the receptivity map of
unstable modes. Doing so led us to consider four canonical cases spanning the three
branches of instability for this problem (Kumar & Pothérat 2020): a purely convective
flow subject to a supercritical oscillatory instability (case C1); a mixed convective flow
subject to a supercritical oscillatory instability (case C2); a mixed convective flow subject
to a subcritical oscillatory instability (case C3); a mixed convective flow subject to a
supercritical non-oscillatory instability (case C4).

For this, we first identified the receptivity map for each of these cases. We found that
as the intensity of the inflow increases, the region of receptivity becomes increasingly
concentrated near the inlet surface, i.e. increasingly favourable in the industrial context
where immersing an actuator in the bulk of the melt over extended periods of time is not a
feasible option. To gain insight into the instability mechanism, we analysed the sensitivity
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tensor. We found that for the low Prandtl number of liquid metals, the temperature does not
respond to any actuation feedback, whether thermal or mechanical, whereas the velocity
field is responsive to both thermal and mechanical actuation. This is understandable since
thermal diffusion acts nearly two orders of magnitude faster than viscous diffusion. As
such, acting on the temperature field would require a mechanism O(Pr) faster than one
acting on the velocity field. For C2–C4, the sensitivity map was located in the lower-half
of the domain, hence physically disconnected from the receptivity map. The disconnect
was less obvious in case C1, but still present, despite a slight overlap between the two
maps. This indicates that an actuation in the receptivity region would act on the amplitude
of the unstable mode but not affect its eigenvalue, which would react to a forcing aligned
with the sensitivity map. With these results in hand, we performed linear and nonlinear
simulations of the evolution of the unstable mode with and without actuation to answer
the four questions set out in the introduction.

(i) Since, for all cases (except case C1), the area of receptivity is located near the inflow
surface, the most efficient way to act on the instability in practice is to modify the
inflow. This area is one of the most accessible in casting devices, so this result is
favourable to the application. It must, nevertheless, be understood in the context of the
simplified model we are considering here, and the question remains open regarding
how the receptivity area would change in a more realistic geometry.

(ii) Implementing a thermomechanical actuation modelled on the topology of the adjoint
to the unstable mode to be suppressed (i.e. its receptivity map) led to a suppression
of the unstable eigenmode. To find this result, we scanned possible values of the
amplitude and phase of the actuation with respect to the unstable mode. In doing so,
we found that it was always possible to find a combination of amplitude and phase of
the actuation leading to a significant suppression of the unstable mode. Typically, its
energy could be reduced by two orders of magnitude in all four cases.

(iii) If kept at a constant amplitude, the actuation only had a stabilising effect during a
finite time t f of the order of the inverse growth rate of the unstable mode σ−1, after
which linear simulations proved it to be destabilising, in the sense that it enhances the
growth of the unstable mode, compared with the simulations without actuation. The
reason for this rebound is that, once the instability is suppressed, the actuation acts as
an extra force driving the system away from the equilibrium point corresponding to
the base flow. This led us to consider two strategies for the design of the actuation: one
where amplitude and phase of the actuation are chosen to optimise the suppression
of the mode’s energy (suppression-optimising actuation), and one optimising t f , i.e.
for which the decay of the unstable mode is the longest (time-optimising actuation).
On the other hand, if the amplitude of the actuation was kept proportional to the
time-dependent amplitude of the unstable mode all along its evolution, the actuation
based on receptivity asymptotically led to the full suppression of the unstable mode.
Although this method is more difficult to implement in practice, it demonstrates that
an actuation based on the receptivity map effectively suppresses the unstable mode.

(iv) To evaluate the influence of nonlinearities and verify if the actuation led to a
modification of the base flow and its corresponding equilibrium point, we calculated
the evolution of the unstable mode through the full nonlinear governing equations,
with either type of actuation applied during t f , after which the flow was left to
evolve freely. With suppression-optimising actuation, the energy of the unstable mode
always decayed well beyond t f before it slowly regrew, to recover its initial amplitude
at a time ηat f typically an order of magnitude greater than t f . In that sense ηa
measures the efficiency of the actuation. Time-optimised actuation always led to
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Figure 9. The absolute value of the components of the sensitivity tensor Si j = q̂i q̂
∗
j for the simulation case

C1 (Re = 0, Ra = 7 × 103 and k = 6) in the x−y plane.

significantly lower values of ηa , and even to no suppression at all in case C3. Shortly
after ηat f , nonlinearities incurred a rapid growth leading to a saturation at the same
level as nonlinear simulations without actuation. In all cases, however, the suppression
phase followed the prediction of the linear simulation where the base flow was
fixed. This confirmed that the base flow is not measurably affected by the actuation
and confirms that actuations based on the receptivity map acts on the unstable
mode only.

Crucially, these results applied to all four cases, regardless of whether the unstable
mode is oscillatory or not, and whether it arises through a supercritical or a subcritical
bifurcation. These results open interesting perspectives in view of the suppression of the
instability. A possible strategy would consist in applying a mechanical actuation in the
inflow region based on the receptivity map of the unstable mode, with amplitude and
phase chosen to optimise the suppression of the optimal mode, through the linear evolution
equations. Actuation should then be applied from the point where the unstable mode
reaches a small, arbitrary threshold amplitude, until time t f . For t > t f , the flow should be
left to evolve until the unstable mode regains its initial threshold amplitude, at t = ηat f , at
which point the actuation should be applied again, iterating the procedure for as long as
the flow needs to be stabilised. The success of this strategy relies on the assumption that
the threshold amplitude is sufficiently small for the unstable mode to evolve according to
the linear equations. In other words, the strategy consists in preventing it from entering a
nonlinear regime where the actuation would become ineffective.
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Figure 10. The absolute value of the components of the sensitivity tensor Si j = q̂i q̂
∗
j for the simulation case

C2 (Re = 50, Ra = 7 × 103 and k = 6) in the x−y plane.

The application of this idea raises a number of questions for further studies. First,
we considered only a single unstable mode (or at most two). While similar restrictions
apply to stabilisation techniques based on the properties of the adjoint equations, it is
unclear how far beyond criticality this method would remain effective. Certainly, the
cases studied in this paper showed that it remained effective even when more than one
mode from the same branch was unstable (as in case C2). Another novel aspect of the
mixed-convective problem we considered here, compared with the classical cylinder wake
problem, is that in more supercritical flows, several branches of instabilities with different
underlying mechanisms may become unstable. Since, however, the approach is linear, a
linear combination of optimal actuations for each of the unstable modes may succeed in
stabilising all of them, provided transient growth due to their possible non-orthogonality
does not lead to perturbation amplitudes capable of igniting nonlinearities (Schmid &
Henningson 2001). Such an approach may involve the stabilisation of modes from different
branches if the flow becomes multimodal, as for example magnetoconvective flows do
(Xu et al. 2023). In case one of these modes is subcritical (as for case C3), there is an
additional risk that an altogether different branch of instability may drive the transition,
even below the critical Rayleigh number of the linear stability of the leading eigenmode.
Nonlinear simulations in the subcritical regime have shown subcritical convection was
not ignited by the simple addition of random noise (Kumar & Pothérat 2020). A similar
phenomenon occurs in quasi-2-D shear flows (Camobreco et al. 2021, 2022), where it
turns out that the subcritical transition is still controlled by the linearly unstable mode. If
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(e) |v̂ ||û*| |v̂ ||v̂*|( f ) |v̂ ||ŵ*|(g) |v̂ ||T̂ *|(h)
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Figure 11. The absolute value of the components of the sensitivity tensor Si j = q̂i q̂
∗
j for the simulation case

C3 (Re = 100, Ra = 4 × 104 and k = 4) in the x−y plane.

this is still the case, then a receptivity-based actuation would still be expected to be able to
suppress instability in the subcritical regime.
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Appendix A. Sensitivity tensor
We examine the sensitivity tensor Si j to determine how individual components of the
temperature and velocity fields feedback on each other to drive the instability associated
with the leading eigenmode.

The first noticeable feature is that in all four cases C1–C4 represented on figures 9
to 12, all elements of the tensor associated with |T̂ |, are practically identically zero,
including |T̂ ||T̂ ∗|. This means that the temperature perturbation responds to feedback
from none of the components, not even a thermal one. On the other hand components of
the tensor involving a velocity component and |T̂ ∗| all show a strong response, so that the
temperature field of the perturbation can likely be affected by changes in the velocity field.
This can be understood in view of the low value of Pr considered here (and for other liquid
metals): even if mechanical feedback overcomes viscous forces to act on the velocity field,
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Figure 12. The absolute value of the components of the sensitivity tensor Si j = q̂i q̂
∗
j for the simulation case

C4 (Re = 150, Ra = 8 × 104 and k = 6) in the x−y plane.

it would still need to act on a O(Pr) time scale to overcome thermal diffusion and affect
the temperature field. This is because thermal diffusion (low Pr ) is too fast, preventing
thermal feedback from contributing to instability. Consequently, at low Pr , the instability
relies on feedback through its velocity field, i.e. mechanical.

In case C1, figure 9(a) highlights that the greatest feedback is received by x-component
of the velocity from the perturbation, from the x-velocity component of the actuation.
The maximum coincides with the lower part of the flow domain where the baroclinic jets
turns up, just upstream of the point where they meet each other, and where the instability
starts. Case C2 also features maximum feedback from û∗

x onto ûx . This time, however,
the sensitivity area is localised right at the bottom of the domain, at the point where the
instability is maximum in velocity amplitude. Cases C3 and C4, by contrast, exhibit the
greatest response to a temperature feedback. All three components show high response
in both cases. In case C3, the maximum receptivity is on the v component, but on the u
component for case C4.
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