Proceedings of the Edinburgh Mathematical Society (2009) 52, 445-487 ©
DOI:10.1017/S0013091507000806 Printed in the United Kingdom

DEPENDENCE OF THE WEYL COEFFICIENT ON
SINGULAR INTERFACE CONDITIONS

MATTHIAS LANGER! AND HARALD WORACEK?

! Department of Mathematics, University of Strathclyde, 26 Richmond Street,
Glasgow G1 1XH, UK (ml@maths.strath.ac.uk)
2 Institut fiir Analysis und Scientific Computing, Technische Universitit Wien,
Wiedner Hauptstrasse 8-10/101, 1040 Wien, Austria
(harald.woracek@tuwien.ac.at)

(Received 22 June 2007)

Abstract  We investigate the influence of interface conditions at a singularity of an indefinite canonical
system on its Weyl coefficient. An explicit formula which parametrizes all possible Weyl coeflicients of
indefinite canonical systems with fixed Hamiltonian function is derived. This result is illustrated with
two examples: the Bessel equation, which has a singular end point, and a Sturm-Liouville equation
whose potential has an inner singularity, which arises from a continuation problem for a positive definite
function.
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1. Introduction

A canonical system is a system of differential equations of the form

0

gx(t, z)=zJH(t)z(t,z), te€]0,L), (1.1)
where z = (z1,22)T, H(t) is a real and locally integrable 2 x 2-matrix-valued function
on [0, L), H(t) > 0, which does not vanish on any set of positive measure, J denotes the
symplectic matrix

0 -1

J::10

and z is a complex parameter. The function H is called the Hamiltonian of the sys-
tem (1.1). Canonical systems frequently arise in mathematical physics, for example,
in Hamiltonian mechanics or from the equation of a vibrating string (see, for exam-
ple, [2,4,13,24]). Also, canonical systems can be viewed as natural generalizations of
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Sturm-Liouville equations. There are various approaches to an analysis of equation (1.1);
some of them employ operator theoretic methods (see, for example, [3,17,19,21-23,35]).
A canonical system is said to be in the limit point case at L if

L
/ tr H(t) dt = oo.
0

A decisive role in the spectral analysis of canonical systems of this kind is played by the
Weyl coefficient qy associated with the Hamiltonian H. We will recall its construction
later (see (2.5)). At this stage we only state its most important properties. It belongs
to the class Ny of Nevanlinna functions, that is, ¢z is analytic in C \ R, ¢z (%) = qu(2)
and Im g (z) > 0 for Imz > 0. The function gy completely describes the spectrum of
problem (1.1) with boundary condition z;(0,z) = 0, and the measure in its Herglotz
integral representation can be used to construct a generalized Fourier transform. The
inverse spectral theorem due to de Branges states that the assignment H — qp yields
a bijection of the set of all Hamiltonians (up to changes of scale) and the set Ny (see
[6-8,37]. The proof of this deep result is contained in de Branges’s theory of Hilbert
spaces of entire functions [9]; many of its components can also be interpreted by means
of the theory of symmetric and self-adjoint operators in a Hilbert space, in particular by
means of Krein’s theory of entire operators [18].

Recently, a generalization of the notion of a Hamiltonian and a canonical system to
an indefinite (Pontryagin space) setting was given (see [28,30]). Motivation to study
an indefinite generalization of canonical systems can be drawn from various sources. For
example, the class NV has a generalization to an indefinite setting which has proved to be
useful in various contexts (namely, the set N<o, of generalized Nevanlinna functions; we
will recall its definition later, see (2.7)) and thus has been studied intensively. In view of
de Branges’s inverse spectral theorem, it is natural to ask how the class of Hamiltonians
has to be enlarged in order to have a bijective correspondence H — ¢z onto the set Moo
via a construction similar to the Weyl coefficient. On the other hand, in various contexts,
differential equations of Sturm—Liouville type appear which have singularities that do
not behave too badly; for example, the potential might be not locally integrable at a
single point but satisfies only a weaker growth condition. It turns out that constructions
similar to the construction of the Titchmarsh—Weyl coefficient are often possible and
lead to generalized Nevanlinna functions, which again describe the spectrum of the given
problem (see, for example, [1,14-16, 31]). Hence, it is natural to ask what the most
general singular differential expression looks like, such that building up a Weyl theory in
the setting of N is possible.

The answer is given by the notion of general Hamiltonians, whose definition will be
provided in detail later (Definition 2.1). For the moment let us content ourselves with the
rough picture that a general Hamiltonian b consists of a Hamiltonian function H which
has finitely many inner singularities, i.e. is defined and locally integrable on a set of the
form [og,01) U (01,02) U+ U (0pn,0n+1), and of two collections of real parameters b, 0.
Thereby H models the potential which has singularities at o1, ..., 0,, the parameters
b model a contribution of the singularities which is concentrated in these points and 0
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models the part of the singularities which is in interaction with the local behaviour of H
at the singularities. Intuitively, we can think of a choice of (b,?) as a choice of singular
interface conditions at oq,...,0,.

Our present work addresses the following question: how does a different choice of the
parameters (b, ), while keeping the Hamiltonian function H fixed, influence the spectral
theory of the indefinite canonical system under consideration? More specifically, given
a general Hamiltonian h = (H,b,0), we ask for an explicit description of the family of
all Weyl coefficients of general Hamiltonians 6 = (H, 6,6) with the same Hamiltonian
function than b and arbitrary parameters (b,9). The answer is given in Theorem 5.4,
which is the main result of this paper. In order to keep the technical effort of establishing
explicit formulae bearable, we restrict ourselves to a certain special case (Remark 2.3).
For the case of a general Hamiltonian that arises from a Sturm-Liouville equation with
a singularity at the left end point, the formulae can be significantly simplified (Corol-
lary 5.5).

The question we raise and answer in this paper seems natural from a theoretical point
of view. However, our major motivation is found in the spectral theory of Sturm—Liouville
problems with singular end points or inner singularities. We will explain this intriguing
topic in detail for potentials with a singular end point. In the case of inner singularities,
similar phenomena occur and similar arguments can be applied.

1.1. Sturm—Liouville equations with singular end points and
canonical systems

Let us review the classical theory of Sturm—Liouville equations. Consider an equation
of the form

—y"(t) +q()y(t) = My(t), t€[0,00), (1.2)

which is regular at 0 and in the limit point case at co. Then the minimal operator is a
symmetry with deficiency indices (1,1), i.e. for every A € C\ R there is, up to a constant,
exactly one solution of (1.2) that is in L?(0,00). A realization of the Sturm-Liouville
equation, i.e. a self-adjoint extension of the minimal operator, describes the behaviour of
the equation and can be used to solve the eigenvalue problem. Direct and inverse spectral
problems play an important role in the analysis of the equation.

A scalar function can be associated with the potential ¢(t): its Titchmarsh—Weyl coef-
ficient. It is constructed as follows: let 6(¢, A) and ¢(¢, \) be solutions of (1.2) that satisfy
the initial conditions

000,\) =1, 0(0,\)=0, 60,\)=0, &0\ =1 (1.3)

Such solutions exist for each A € C and are unique. Since the deficiency indices are (1,1),
there exists a unique coefficient m(X) such that for each A € C\ R

0(-,A) +m(\)o(-,\) € L*(0, 00). (1.4)

The function m()) is called the Titchmarsh-Weyl coefficient of the equation (1.2) and
is a Nevanlinna function. There is an intimate relation with the extension theory of the
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minimal operator, namely m(A) is, up to a constant, Krein’s Q-function connected with
the minimal operator and one particular self-adjoint extension.

The Titchmarsh—Weyl coefficient describes the spectrum of every self-adjoint realiza-
tion of (1.2), and hence solves the direct spectral problem. An inverse spectral problem is
posed as follows: can the potential be recovered from the Titchmarsh—Weyl coefficient?
The answer is yes. This deep result contains some classical inverse theorems, e.g. the
recovery of the potential from two different spectra if they are discrete. As a Nevanlinna
function, m(\) possesses a Herglotz integral representation. The measure involved in this
representation can be used as spectral measure for a generalized Fourier transform. In
particular, this shows that the spectral multiplicities of all self-adjoint realizations are 1.

If the potential q is regular at 0, then we may summarize as follows.

(i) The minimal operator has deficiency indices (1,1). If the equation is considered
only on a finite interval (0,7), the corresponding minimal operator has compact
resolvent.

(ii) For every A € C there exist solutions having the initial values in (1.3). They depend
analytically on A € C.

(ili) There exists a Fourier transform into an L?-space whose elements are scalar func-
tions. In particular, the spectral multiplicity of any self-adjoint realization is 1.

(iv) The Titchmarsh-Weyl coefficient determines the potential uniquely.

If the potential ¢ is singular at 0, i.e. not integrable at 0, but still in the limit circle case,
then the situation is very similar except that the fundamental system of solutions 6(-, A),
@(-,\) can no longer be defined by initial conditions; one has to use their asymptotic
behaviour at 0 instead.

One way to approach these matters is to rewrite the Sturm-Liouville equation (1.2) as
a canonical system (1.1). This is possible by making a suitable transformation from y to
the vector function = and setting 22 = \. Thereby the facts that Weyl’s limit point case
prevails at infinity and Weyl’s limit circle case prevails at 0 mean that (z¢ € (0, L))

L o
/ tr H(t)dt = oo and / tr H(t) dt < oo,
T 0

0

respectively. The respective Weyl coefficients are related by qm(z) = —z/m(z?). The
theory of canonical systems is more general than the theory of Sturm-Liouville equations,
i.e. there are many Hamiltonians which do not arise from rewriting a Sturm—Liouville
equation. However, items (i)—(iv) above are even valid for all canonical systems.

The situation changes drastically if the potential is so singular at 0 that at this end
point the equation is also limit point. Then the minimal operator is self-adjoint; hence,
there is only one self-adjoint realization of (1.2). Concerning the above-mentioned items
related to the spectral theory of the equation, one can say the following: for real values
of X\ there need not exist any solution of (1.2) belonging to L? at 0; if the equation
is considered only on a finite interval (0,7, the corresponding minimal operator may
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have a continuous spectrum; a Fourier transform can be defined only into an L?-space
whose elements are 2-vector functions, and, actually, the spectral multiplicity of the (self-
adjoint) minimal operator can be 2; in general, the potential can be recovered not from
a scalar function, but only from a 2 x 2-matrix Titchmarsh—-Weyl function.

We see that, for strong singularities of the potential, in general much of the spectral
theory breaks down. However, there are quite a few potentials known which, although
being limit point at both end points, show a behaviour similar to the regular case. For
example, in [16] a class of strongly singular potentials was found for which there exists a
family 6(-, \) of solutions which belong to L? at 0 and that is defined and analytic on a
neighbourhood of the real line. From this knowledge a scalar function m(\) is constructed
quite similarly to the regular case. It is no longer a Nevanlinna function but it still gives
rise to a scalar measure which can be used to define a generalized Fourier transform
into a space of scalar functions (from which we obtain in particular that the spectral
multiplicity of the self-adjoint operator is 1). For inverse problems for equations with
certain types of singularities, the reader is directed to [20], where the potential can be
recovered from a scalar function.

When seeking to explain why some potentials (despite the fact that the limit point
case prevails) behave ‘as if they were regular’, probably the most convincing argument is
to come up with an operator model that is naturally related to the potential and where
the ‘minimal operator’ has deficiency indices (1,1). For some potentials this goal can be
achieved by employing the theory of indefinite canonical systems. The fact that thereby
one leaves the Hilbert space setting and deals with operator models in Pontryagin spaces
(i.e. spaces with an indefinite inner product whose negative index is finite) is only a minor
inconvenience.

In order to treat a given singular potential in this way, one first has to rewrite equa-
tion (1.2) as an indefinite canonical system with some general Hamiltonian b = (H, b, ).
Since our potential is defined and locally integrable on the open interval (0,00), it is
natural to use a general Hamiltonian which has just one singularity, namely at 0. Thus,
we may define the Hamiltonian function H on the interval (0,00) from ¢ by means of
the same formulae as in the regular case. To the left of 0 we will just put a ‘massless’
interval in order to regard 0 as a singularity of h; this interval is described by a so-called
indivisible interval (see (2.1)) in H. This choice is natural, since to the left of 0 there is
no potential anyway.

The singular interface condition at 0 represented by the parameters (b,0) of b, which
we have not yet chosen, can be thought of as a singular boundary condition. The mean-
ing of a choice of b and 0 is by no means clear. Actually, any choice has equal merit,
gives rise to realizations of equation (1.2) and can be used to deduce the desired direct
and inverse spectral results. Sometimes a specific choice of (b,0) might be motivated
from plausible physical conditions or from anticipating the outcome for the Titchmarsh—
Weyl coeflicient, e.g. by analogy to related regular equations. However, in general, the
question arises of how a change in the singular boundary condition (b,?), while stick-
ing to the Hamiltonian function H naturally obtained from the potential, will affect the
Titchmarsh—Weyl coefficient of f. This is the question we answer in Theorem 5.4.
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1.2. Organization of the paper

We close this introductory section with a short description of the contents of this paper.
In §2 we recall the definition of general Hamiltonians and maximal chains of matrices,
and some results from earlier work which are needed in the present considerations. Max-
imal chains of matrices are the generalization to the indefinite setting of fundamental
matrices of solutions of a canonical system. Between the singularities, the rows of such
a maximal chain of matrices satisfy the differential equation (1.1); at o it is the iden-
tity matrix and at oq,...,0, it is connected depending on b and 0. In §3 we deal with
a transformation ¥, of matrices, which is the major technical tool for the proof of our
main result (Theorem 5.4). The definition of ¥,,, may seem a little ad hoc, but one should
bear in mind that the same transformation has already been successfully applied in [27]
in order to study the local structure of singularities in matrix chains. In the latter, a
more intrinsic explanation of T, was also provided.

Then, in §4, we introduce a perturbation of matrix chains depending on a parameter
e € R xR x [0,00). It is shown that this perturbation is exactly a local version of
changing the data b, 0 in h = (H, b,0) translated into the language of matrix chains (cf.
Propositions 4.6 and 4.7). Section 5 is devoted to the statement and proof of Theorem 5.4.
A perturbation g of the Weyl coefficient of a given general Hamiltonian f is thereby
introduced, and the maximal chain whose Weyl coefficient equals gy, is computed explicitly
(see (5.9)). This is obtained in the following way: first the transformation ¥, is applied
to one matrix chain that is connected with the given Hamiltonian function H. This moves
the singularity at oy to the right, so that the transformed matrix chain is now continuous
at o1. Then the perturbation from §4 and, finally, the inverse of the transformation %,
are applied.

At the end of § 5, we illustrate the proposed method of approaching the spectral theory
of singular Sturm-Liouville equations with two examples. Firstly, we investigate the
Bessel equation. We have chosen this classical and well-studied equation since it beauti-
fully shows the indefinite phenomena. Also, it is accessible to explicit computation and
recently various attempts were made to obtain an intrinsic explanation for its compar-
atively nice behaviour known from classical studies (see [10,14,15,31]). Secondly, we
investigate a potential with an inner singularity, namely q(t) = 2/(t — 1)2, t € [0, 00).
We have chosen this second example since we have found that the treatment of inner
singularities within the framework of indefinite canonical systems is even more natural
than for potentials with a singularity at the boundary. Moreover, this particular poten-
tial occurred previously in relation with a continuation problem for a positive definite
function, and hence many of the necessary computations are readily available [32].

Finally, let us remark that the method instantiated in these two examples will apply
to a wide class of potentials with singularities either at the boundary or in the interior
(for example, potentials involving a Dirac delta function and its derivatives). At the
present stage it is unclear ‘how strong’ the singularity may be so that the proposed
approach via indefinite canonical systems will work. To provide a thorough investigation
of such situations, in particular to find explicit measures for the allowed strength of the
singularity in the potential, will be the subject of future work.
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2. Indefinite canonical systems

In this section we provide the definitions of general Hamiltonians, maximal chains of
matrices and their Weyl coefficients.

2.1. Definition of general Hamiltonians

First we introduce some preliminary notation. An interval (a, 3) is called H-indivisible

of type ¢ if

H(t) = h(t)€ss, te (), (2.1)
where &, := (cos ¢, sin ¢)T and h(t) is some scalar function that is positive almost every-
where.

With any Hamiltonian H a number A(H) € NU {0, 00} is associated (see [28, Def-
inition 3.1]) which in some sense measures the growth of H towards L. For example,
A(H) = 0 means that fOL tr H(t) dt < oo or, if fOL tr H(t) dt = oo and the interval (L;, L)
is H-indivisible for some Ly < L, then A(H) = 1.

Assume that fOL tr H(t) dt = co. The Hamiltonian H is said to satisfy the Hilbert—
Schmidt (HS) condition if the resolvents of one and hence of all self-adjoint extensions of
the minimal operator Trin (H ) associated with H on [0, L) are Hilbert—Schmidt operators.
In this case, the growth of H towards L, as measured by A(H), is extremal in one direction
&4 in the sense that, for a unique angle ¢ € [0, 7), we have

L
/ ESH(1)Ey dt < oo (2.2)
0

(see [29, Theorem 2.4]). This angle will be denoted by ¢(H).

Let H be a function defined on an interval (L_, L) which takes real and non-negative
2 X 2-matrices as values, is locally integrable on (L_, L) and does not vanish on any set
of positive measure. Fix o € (L_, L) and set H,(t) := H(a+t),t € [0,L4 — «) and
H_(t):=H(a—t),t€[0,a0— L_). Then Hy are Hamiltonians. We say that H is in the
limit point/circle case at Ly or L_, if Hy or H_, respectively, has this property. The
conditions (HS) and (HS_) and the numbers Ay (H) and ¢+ (H) are defined similarly.
These numbers do not depend on the choice of . In the following we also call such a
function H defined on an open interval (L_, L) a Hamiltonian.

Definition 2.1. A general Hamiltonian b is a collection of data of the following kind:
(i) n e NU{0}, 00,...,0n+1 € RU{£o0} with 09 < 01 < -+ < Op41;
(ii) Hamiltonians H;, i = 0,...,n, defined on the respective intervals (o;,0;41);

(iii) numbers 61,...,6, € NU{0} and b;1,...,b;5,41 € R, i =1,...,n, with b;1 # 0
in the case 6; > 1;

(iv) numbers d;o,...,di2a,—1 €R,i=1,...,n, where

A; = max{A, (H;_1),A_(H;)};

(v) a finite subset E of {00,011} U U\ o(0i, 0i41)-
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This collection of data is assumed to be subject to the following conditions.

(H1) Hy is in the limit circle case at o¢ and, if n > 1, in the limit point case at oy. H;
is in the limit point case at both end points o; and 041, i =1,...,n—1. If n > 1,
then H,, is in the limit point case at .

(H2) Fori=1,...,n—1 the interval (0;,0;41) is not H;-indivisible. If H,, is in the limit
point case at o,41, then, in addition, (o, 0y41) is not H,-indivisible.

(H3) We have A; < 00, @ = 1,...,n. Moreover, Hy satisfies (HS.), H; satisfies (HS_)
and (HS;) for i =1,...,n— 1 and H, satisfies (HS_).

(H4) We have ¢+(Hi—1) = (b_(HZ), 1= 1, N

(H5) Let ¢ € {1,...,n}. If for some e > 0 the interval (o; — €, 0;) is H;_1-indivisible and
the interval (0;,0; + €) is H;-indivisible, then d; = 0. If additionally b; 1 = 0, then
also dy < 0.

(E1) 09,0n41 € E, and EN (04,0;41) # @ for i = 1,...,n — 1. If H, is in the limit
point case at 0,41, then also EN (0, 0,41) # &. Let i € {0,...,n}; if (a,0441) or
(04, ) is a maximal H;-indivisible interval, then o € E.

(E2) No point of F is an inner point of an indivisible interval.

The number

i=1

is called the negative index of the general Hamiltonian h. Moreover, h is called definite
if ind_ h = 0, and indefinite otherwise. We say that h is in the limit point case or limit
circle case if H,, has the respective property at o,1.

In order to shorten notation we shall write a Hamiltonian b that is given by the data
n, 00y.--,0n+1, HOa v aHny 617 .. 76n7 bi,jv di,jv E as

h: (H>baa)>

where H represents the Hamiltonians H;, including their number n and their domains
of definition (¢;,0;41), b represents the numbers ¢; and b; ;, and 0 represents the num-
bers d; ; and the subset E. However, we also identify H with a function defined on
Ui_(0i, 0i41) such that H(t) = H;(t) for ¢t € (04, 0441). Hopefully, this will not cause
any confusion.

Remark 2.2. Intuitively, this notion can be understood as follows: its purpose is to
model an indefinite canonical system. So we deal with the differential equation ' = zJH f
given on an interval (o9, 0,,41) which involves some kind of singularities which are located
at the points o;, 4 = 1,...,n. Condition (H1) says that the differential equation is regular
at og, so that the initial-value problem at o is well posed, but that o1, ..., 0, actually
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are singularities. Moreover, and this is condition (H2), two adjacent singularities o; and
o;+1 must be separated by more than just a single indivisible interval. The meaning of
(H3) is that the growth of H; towards a singularity is not too fast. Moreover, (H4) is an
interface condition at o;.

The numbers 6, € NU {0} and b;1,...,b; 5,41 model the part of the singularity o;
which is concentrated at o;, whereas the numbers d; g, . .., d; 2a,—1 model the part of this
singularity which is in interaction with the local behaviour around o;. The elements of £
in the vicinity of o; determine quantitatively what local here means; more precisely, the
points in E split the set | J;_ (0, 0i41) into pieces that contain only one singularity. The
freedom of this interaction is, by the first part of (H5), restricted if indivisible intervals
adjoin both sides of ¢;. The possibility that on both sides of ¢; indivisible intervals adjoin,
and at the same time b; ; = 0, can occur by the second part of (H5) only in the case of
‘indivisible intervals of negative length’, the simplest possible kind of singularity.

Remark 2.3. We will subsequently confine our interest to general Hamiltonians with
negative index 1. Let us explicitly state which data are needed to obtain an object of
this kind. In order to have ind_ h = 1, the general Hamiltonian b must consist of: two
Hamiltonians Hy and H; defined on intervals (0g,01) and (o1, 09), respectively, which
are subject to the conditions of Definition 2.1 and satisfy A = 1; a number 6 € {0,1};
a number b; € R, which is negative if 6 = 1; another number b € R in the case when
0 = 1; real numbers dy, di; and a finite subset E, which can be chosen to be of the form
{50, 81} with sg = 09, s1 € (01,02).

2.2. Weyl theory for indefinite canonical systems

Let us recall the construction of the Weyl coefficient of a canonical system: let
u(t,z) = (U(t,z)ij)f’jzl be the 2 x 2-matrix solution of

0
Ev(t,z)J =zv(t,z)H(t), t€][0,L), (2.4)

Note that the rows of v are solutions of (1.1). Then, for each fixed z € C\Rand ¢t € [0, L),
the function ¢, +(7) := v(t,2) *7, 7 € CT UR U {00}, maps the closed upper half-plane
onto a disc; here we denote by CT the open upper half-plane, and for a 2 x 2-matrix
function M = (m;)7 ;_; and a scalar function o we define

miiQ + Mi2

M x o = .
Mo + Ma2

If ¢ increases, the discs ¢, (CT UR U {oo}) form a nested sequence. In the limit ¢ /L
we thus obtain a limit disc. It degenerates to a single point if and only if

L
/ tr H(t) dt = 4o0.
0

In this case, one says that for the Hamiltonian H Weyl’s limit point case prevails (other-
wise, one says that H is in the limit circle case) and defines the Weyl coefficient of H
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as

qu(z) == th/‘ni q:+(7), Te€RU{o0}. (2.5)

This limit does not depend on 7 € R U {oo} and exists locally uniformly on C\ R.

In order to build up a Weyl theory for indefinite canonical systems, one has to have
available an analogue of the fundamental solution v(t, z) in (2.4). This is achieved by
the notion of maximal chains of matrices. Their definition also requires some preliminary
notation.

Let W be a 2 x 2-matrix-valued function

W = (wij)ij:l :C— (C2><2

such that the entries w;; are entire functions, w;;(z) = w;;(z), det W = 1, and W(0) = 1.
If K € NU {0}, we write W € M, if the 2 x 2-matrix-valued kernel

W (z)JW (w)* = J

Z—w

Hy (w,z) :=

has x negative squares on C. We set

Mgm = U Mua M<oo = U MV?

0<r<k veNU{0}

and write ind_ W = k to express that a matrix function W belongs to M.
Matrices of the class Mo, which are linear polynomials play a special role. Recall
that a linear polynomial matrix W belongs to M ., if and only if

1 —lzsin ¢ cos ¢ Iz cos? ¢ >

2.6
—lzsin? ¢ 1+ Ilzsin ¢ cos ¢ (26)

W(Z) = W(l,qb) (Z) = <

for some [ € R and ¢ € [0, 7). In this case the number of negative squares of the kernel
Hyw is equal to 0 or 1, depending on whether [ > 0 or [ < 0. Matrices of the form W 4
are related to indivisible intervals; actually we have

9
ot
For a matrix function W we denote by t(W) the trace functional (W) := tr(W’'(0).J).

Wity (2)J = Wi )(2)€6€5,  t € [0,1].

Definition 2.4. A mapping w : T — M. is called a maximal chain of matrices if
the following axioms are satisfied.

(W1) Its domain Z is of the form (o¢,01)U---U(0p,0n+1), where og < 01 < -+ < o, <
On+1 S 00,

(W2) The function w is not constant on any interval contained in Z.
(W3) For all s,t € Z, s < t, we have w(s) lw(t) € M. and

ind_ w(t) = ind_ w(s) +ind_ w(s) tw(t).
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(W4) If t € T and for some W € Moo, W # I, we have W tw(t) € M.y and
ind_ w(t) = ind_ W + ind_ W~lw(t), then there exists a number s € Z such that
W =w(s).

(W5) We have lim; ., t(w(t)) = +oo. If n > 1, there exist numbers s,t € (0, 0ny1),
such that w(s) !w(t) is not a linear polynomial.

The set of all maximal chains will be denoted by M. The matrices wg; := w(s)tw(t)
are called transfer matrices.

It was proved in [27, Lemma 3.5] that the function ind_ w(t) is constant on each
connected component of Z and takes different values on different components. Moreover,
by (W3), it is non-decreasing. In particular, it is bounded and attains its maximum on
7. This allows us to define ind_ w := max;c7 ind_ w(t). The set of all maximal chains
w with ind_ w = k will be denoted by IM,. It was also proved in [27, Lemma 3.5] that for
any chain w € M., we have limy ,, w(t) = I. Hence, we can always extend a maximal
chain w continuously to Z U {0} by putting w(og) := I.

Due to the condition lim¢ ~,,,, t(w(t)) = +oo in (W5), for any maximal chain of
matrices the limit

wi= lim w(t)*T

q t ' on41 ( )

exists locally uniformly on C\R for 7 € RU{co} and does not depend on 7. The function
. 1s a generalized Nevanlinna function, actually ind_ ¢, = ind_ w (see [26, Lemmas 8.2,
8.5]). Recall here that a function ¢ belongs to the class N, x € Ny, if it is meromorphic

in C\ R, ¢(z) = q(z) for every z in the domain of ¢ and the kernel

w)

Kq(w,2) = Q(Zz%q (2.7)

g

has k negative squares. We also write ind_q = & if ¢ € N,. The set of generalized
Nevanlinna functions is then defined by Nco = (J,2 o Ns.

With a general Hamiltonian h there can be associated a maximal chain wy (see [30]).
On the intervals (0, 0;41) it is a solution of the differential equation in (2.4) and the initial
condition at og is wy(0g) = I. The jump over the singularities o1, ..., 0, is determined
by the data b, d; however, this relation is highly implicit; note that by (H1) the limits
limy o, wy(t) and lim; »,, wy(t) do not exist. Moreover, one has ind_ wy = ind_ b.

The Weyl coefficient of b is defined as the function gy := qu, . The indefinite analogue
of de Branges’s inverse spectral theorem states that the assignment h — gy yields a
bijection of the set of all general Hamiltonians (up to changes of scale) and the set N< o
of all generalized Nevanlinna functions (see [30]).

2.3. Some more preliminaries on chains of matrices

Chains which can be obtained from each other by a change of variable will share their
important properties. This idea is formalized by the notion of reparametrization.
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Definition 2.5. Let J7, J> be subsets of R and let w; : J; =& M, i =1,2. Then we
say that wy is a reparametrization of w; if there exists an increasing and bijective map
a: Jo — Jq such that ws = wy o . In this case we write wg v w1.

The relation «~ yields an equivalence relation on M. ,. Clearly, each of the subsets
M., « € NU {0}, is saturated with respect to «~.

Intervals where the chain is of a particularly simple form often play an exceptional
role. If s1,89 € [0,L) \ {01,...,0,}, $1 < S2, the interval (s1,s2) is called indivisible of
length | and type ¢ if w(s1) 'w(s2) = Wi 4) (see (2.6) for the definition of W, 4)). If
I >0, then (s1, s3) is contained in the domain of w, and

(W(s1) 7 w(t))telst ) > Wito))tefo,n-

Note that (W(z,g))ico, satisfies the differential equation (2.4) with H(t) = £4&5 for t €
(0,1), i.e. the interval (0,!) is H-indivisible of type ¢. If, on the other hand, I < 0, then
there exists exactly one point o; which is contained in (s1, s2), and

(w(s1) T w(t))teqsysal\fos} “ W(—1/t41/2,6))tel2/1,—2/1\ {0}

An interval (s1,0;) or (0y,s2) which has the property that for all ¢ in this interval the
matrix w(s1) " tw(t) or w(t) “lw(sa), respectively, is a linear polynomial is called indivisible
of infinite length.

We will also need the notion of finite maximal chains, which are bounded analogues of
a maximal chain.

Definition 2.6. A mapping w : Z — M, is called a finite mazimal chain of matrices
if
(W1g) the set Z is of the form [0, L]\ {o1,...,0n}, where 0 < 01 < -+ <0, < L < 0

and it satisfies the axioms (W2)—(W4). The set of all finite maximal chains will be denoted
by ML,

The same reasoning which led to the proof of [27, Lemma 3.5] shows that w(0) = I
for any finite maximal chain w.

A finite maximal chain can always be extended to a maximal chain in various ways
(see [27, Lemma 3.7]). In fact, such extensions are obtained by appending another chain.
A formalization of this procedure gives rise to the following notion of linking chains.

Definition 2.7. Let 71,72 € R and let w; : J; - Moo, @ = 1,2. Assume that
sup 71 € Ji and inf Jo € Jo, wo(inf J5) = I. Then we define a map w as follows: choose
increasing bijections 7 of [inf J1,sup J1] onto [0, 1], w2 of [inf Ja, sup J2] onto [1, 2], and
let wy Wwa : p1(J1) U pa(J2) = Mcoo be defined as

wiler (1)) for t € p1(J1),

w1 Wwo)(t) :=
L)t {WI(SUPJI)W(QOQ_l(t)) for t € (o).

Note that these definitions agree for t = 1. We say that the function w; W ws is obtained
by linking w1 and ws.
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It is easy to see that the operation W is associative up to reparametrization, i.e.
w1 W ((JJQ ] w,?,) oy (wl (] (UQ) (] ws.

Moreover, if wy «~ w] and wy e~ wh, then also w Wwg «~v wi Wwh.
In our context, the following fact, which follows from the discussion concerning linking
of chains at the end of [26, §7], is of interest.

Remark 2.8. Let w; € ﬂﬁi, wo € My and assume that neither of the following hold:
(i) wy ends with an indivisible interval of infinite length and ws is just an indivisible

interval of the same type and infinite length;

(ii) wy ends with an indivisible interval of negative length I and ws starts with an
indivisible interval of the same type and length ls > —I;.

Then w; Wwe € M, .
Sometimes the following notation is also practical.

Definition 2.9. Let 71,72 € R and let w; : J; — Moo, @ = 1,2. Assume that
sup J1 ¢ J1 and inf Ja ¢ Jo. Then we define a map wy W wy by the following procedure:
again choose increasing bijections ¢4 : [inf J1,sup J1] — [0, 1] and 3 : [inf Jo, sup Jo] —
[1, 2] Define w1 L'HWQ : (,01(jl) U QOQ(jQ) — M<oo as
wl(cpl_l(t))v te 901(\—71)3
wa (03 (), t € pa(Ta).

In the same way as W, the operation W is associative and compatible with reparametriza-
tions.

Definition 2.10. Let J C R and let w : J — M. Let J be the set of all
points ¢ € J such that the limit lim,_,; se7 w(s) exists. Then we can define a function

Cw:J — Moo by
Cuw(t) :== u_j(t)’ te jA’
lims_y¢, ser w(s), teJ \ J.

We speak of completion of the given function w.

w1 B’Jwg(t) = {

Sometimes it is useful to apply the transformation
W(t) := Nqw(t)NZ,

where

Na — ( CoOs & SlIlOt) (28)

—sina  cosa

and « € [0, 7). The corresponding transformation for the Hamiltonian is

H(t) = N.H(t)N?, (2.9)

which changes the direction: ¢(H) = ¢(H) — . For two general Hamiltonians of the
form h = (H,b,0), h = (H,b,0) with H = N,HN}, the Weyl coefficients are related as
follows: q = Nq * qy.
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3. The transformation ¥,,

We will employ the transformation 7y, of matrices (see [27, §4]). Let us recall the defi-
nition; later we extend the transformation to chains of matrices (which will be denoted
by Tpn).

Definition 3.1. Let W = (Wj;)7 ,—; be an entire matrix function with W (0) = I, and
let m € R\ {0}. Set

a(W,m) = 1 — miV4 (0)

and
1
swm) =m0 g 0w 0) - 207, 0).
We say W € dom 7y, if (W, m) # 0, and in this case define
L _m 1 m(ﬂ(Wnn) +1>
T (W) := z | W(z) | «(W,m) a(W,m) =z
0 1 0 a(W,m)

It was proved in [27] that 7., (W) is entire and takes the value I at z = 0. Moreover,
it W e M, then T,,(W) € M, with

0 ifa(W,m)>0,
K=r+4q1 if a(IW,m) <0, m<DO0, (3.1)
-1 if a(W,m) <0, m > 0.
For later reference let us state the following facts, which were shown in [27].
Remark 3.2.
(i) The transformations 7, and 7_,, are inverses of each other: if W € dom Ty,, then
T (W) € dom T_,, and
T (T (W) = W.
This is also reflected in the formulae
1 B(Tm(W),—m) _ B(W,m)

a(Tm(W),—m) = aWom)’ (T (W) =) = a(W.m)’ (3.2)

(ii) The transformation 7,, preserves indivisible intervals; i.e. if Wi, Wy € dom T,
satisfy W, ' Ws = Wi,¢), then T (W) 1T (Wo) = Wi 3) with some appropriately
chosen numbers [, ¢.

(iii) The value ¢(7,,(W)) is explicitly given as

(T (W) = P m) (lel(o) 3 mWé’l(O)) I UATO R (V)

a(W,m) 2 2 6

+Mmmm@@—mmmmw%m—£%gy<w)
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In the present context the following observation will be of importance.

Lemma 3.3. Let w(t),w(s),&(t),w(s) € dom T,,. Then we have

Ton (W) T (W(s)) = T (@ () T (@(5)) (3.4)
if and only if
Ot)ro(s) = A@t) - w(t) " tw(s) - A(s), (3.5)
with
a(@(t),m)  m(B@(),m) —ﬂ(w(t)7m))+m( L )
All) = a(w(t), m) a(w(t),m)a(@(t), m) z \a(@(t),m) alw(t),m)
; (e (t),m)
a(w(t),m)

Proof. From the definition of 7,, we see that

T (@)™ Ton (w(5))

Pw(t),m) 1
a(w(t),m) —m += 1 m(Bw(s)m) 1
_ (C“(“’(’fl)’m) ) o | () m) (a<w<s>,m> )
0 NEORD 0 a(w(s),m)
From this, and the same relation with w replaced by @, it follows that (3.4) is equivalent
to
. B@t),m) 1Y\ Blw(t),m) 1
fewom —n(SEFT D [eeom (GG
ts — 1 1
’ (@), m) 0 o (), m)
1 Blw(s)m) 1 N CORDIE A
s | A5),m) ’"(a(w(s),m) i ) a(G(s), m) <a<A<s>,m> " )
0 a(w(s), m) 0 a(w(s),m)
This is, however, equivalent to the asserted form of w;,. O

We will employ an additivity property of the functions (W, m) and S(W, m).

Lemma 3.4. Let W,V be entire, let W(0) = V(0) = I, detW =1 and let m € R.
Then

2
=
=
2
!

a(W,m) —mVy(0),
BWV,m) = B(W,m) + B(V,m) + 2mWs, (0)V{,(0).
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Proof. We have
(WV)'(0) =W'(0) + V'(0), (WV)"(0) = W"(0) + 2W'(0)V'(0) + V"(0).
From this the first asserted relation is immediate. For the second relation we compute

BWV,m) = %(Wéﬁ(o) + 2[W5; (0)V{;1(0) + W55(0)V5; (0)] + V31(0))
+ m(Wa1(0) + V1 (0)) (W11 (0) + V41 (0)) — 2(W71;(0) + V1(0))
= B(W,m) + B(V,m) 4 2mWy,; (0)V};(0) + mW3,(0) V3, (0)
+mV3; (0)W71,(0).

Since we assumed that det W = 1, we have Wi, (0) = —W/{,(0), and this gives the desired
equality. O

Corollary 3.5. Let w be a chain of matrices and let (s_, s ) be an indivisible interval
of type 0. Then the functions a(w(t), m) and S(w(t),m) are constant on (s_, s ).

Proof. For a matrix W(; o) (see (2.6)) we clearly have W(’l’o)m(O) = W(IZ,O)H(O) =0
and (W 0y, m) =0. Let t € (s_,s1) be given, then w(t) = w(s_)W(1),0), and hence

a(w(t),m) = a(w(s-),m) —mW, (0) = a(w(s-),m)
and

Blw(t),m) = Blw(s-),m) + B(Wa,0),m) + 2mw; 51 (0)W(, gy, (0) = Blw(s-),m).
(]

The transformation 7Ty, can be applied to chains of matrices [27, §§ 4, 6]. In fact, it can
be used to locally decrease or increase the negative index of a chain depending whether
m > 0 or m < 0. In particular, it allows us to locally remove or produce singularities. We
shall, for the convenience of the reader, explicitly discuss the situation which occurs in
the present context. Let us first describe what happens when singularities are produced.

Let w € M, w: [0, L] — My, and assume that m < 0 is such that a(w(L),m) < 0.
The function w(t)4,(0) depends continuously on ¢ (see [27, Lemma 3.5]) and is locally
non-increasing. Hence, also a(w(t),m) is continuous and, since m < 0, is locally non-
increasing. Moreover, a(w(0),m) = 1, and hence there exist points o_,0 € (0,L) such
that

>0 fortel0,0-),
a(w(t),m){=0 fortelo_,o], (3.6)
<0 forte (o,L].

The transfer matrix w,_, belongs to M and has the property that

W0 (0) = — 2 (a(w(o),m) — alw(o),m)) =0,

o_o,21 m
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Since Wy _.11/Wo_ 0,21 € No and we_.11(0) = 1, wy_o,21(0) = 0, this implies that wy_ ¢ 21
vanishes identically and hence
Wo_o = W(l,O)a

where [ := t(w(0)) — t(w(o_)). This shows that we can write

w e w001 W (Wit0))tefon W (Wot)te(o,L]-
From the results of [27] we now obtain the following.

Corollary 3.6. Let w € ML, w : [0,L] — My, be given. Let m < 0 be such that
a(w(L),m) < 0 and let o_ and o be defined according to (3.6). Then the chain

sm(("j) i="Tmo w|(0’,L]

belongs to MM} . Its singularity has the property that (%, (w(t)))5;(0) is unbounded when
t approaches the singularity.

Proof. By the definition of o_ and o we have w(t) € dom 7y, for all ¢ € [0,0_)U(o, L].
By (3.1) we have Ty, (w(t)) € M, (1), where

(t) = {0 for t € [0,0_),

1 forte(o,L]

Note that, clearly, T, (w(0)) = I.
Let @ € M be the finite maximal chain going downwards from 7,,(w(L)). By [27,
Lemma 4.5], we have

ind— (T (1)~ T (w(s))) = ind- Tpn(w(s)) — ind— Tru(w(?));

hence, by (W4), each matrix T, (w(t)), t € [0,0-)U (0, L], occurs in w. However, by (3.3)
the function (7, (w(t))) depends continuously on ¢t € [0,0_) U (o, L] and satisfies

Jim (T () = +oe, im (7 (w(0) = —oc.

Hence, by [25, Theorem 13.1], every matrix w(s) is equal to a matrix T, (w(t)), i.e. we
have w = %, (w).
Since

(T (w(£)))21(0) = —————w(£)3,(0),

we see that (7, (w(¢)))5;(0) is unbounded when ¢ approaches o_ from the left or o from
the right. O

Now we shall describe how singularities can be removed. Let @ € M, @ : [0,0) U
(0, L] =& M<oo, and assume that w(t)5;(0) is unbounded when ¢ tends to o. Moreover,
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let m > 0 be such that a(w(L), m) < 0. Since m > 0, the function a(w(t), m) is locally
non-decreasing. Moreover, a(w(0),m) =1 and a(w(L), m) < 0; thus,

>0 forte|0,0),
<0 forte (o,L].

a(w(t),m) {

It follows that w(t) € dom7T,, for all ¢ € domw and T,,(w(t)) € My (see (3.1)).
By [27, Lemma 4.5] each matrix 7,,(cw(t)) belongs to the finite maximal chain going
downwards from 7y, (ww(L)). Moreover, the chain (7, (@ (L)))tcdom = 18 almost maximal,
as the following corollary shows.

Corollary 3.7. Consider a chain w € M} with domw = [0,0) U (o, L] such that
lim;_, |@(t)5,(0)] = co. Moreover, let m > 0 and assume that a(w(L), m) < 0. Then
the chain

Tn(@) : C(Tim 0 @(0,0)) & (Wit,0))tef0,e] ¥ C(Ton © @l(0, 1))
with e := limy o t(Tp 0 @w(t)) — lim¢_, t(Tom 0 w(t)), belongs to M.

Proof. Denote by w the finite maximal chain going downwards from 7, (w(L)), and
let ¢ : domw — domw be such that 7, (w) = w o t. By (3.2) we have

th/H(l, afwo(t),—m) = th\ir(lj afwo(t),—m) =0.

By (3.3) the function t(7,,(w(t))) is continuous on [0,0) U (o, L]. Clearly,

I To(@(0) =1 and lim Ton( () = T ((L))

If we set o_ :=limy », t(t), o4 = limy , ¢(t), then

wio_) = lim Tp(w(t),  w(oy) = lim T (w(t)).

t o t\o

/

Moreover, w (0) =0, and hence w,_o, = W(c ) for some appropriate number e >

o_oy,21
0. In summary, we obtain that the chain ¥,,(w) as defined in the statement of the
corollary is equal to w. O

Remark 3.8. The transforms ¥,,, and ¥_,,, are inverses of each other in the following
sense: let w € ML, domw = [0, L], and m < 0 with a(w(L),m) < 0 be given. Then the
construction of Corollary 3.7 can be applied to the chain %,,(w) and the number —m,
and we have T_,,(T,,(w)) = w. Conversely, let @ € M, and m > 0 be given such that
the hypotheses of Corollary 3.7 are satisfied. Then Corollary 3.6 can be applied to the
chain ¥, (w) and the number —m, and we have T_,,,(%,,(w)) = w.
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4. A perturbation of chains

Throughout this section let w € 93”(6, w : [0,L] = My, let m < 0 be fixed and assume
that a(w(L),m) < 0. Let o_ and o be defined as in (3.6) and set | := t(w(c)) — t(w(o_))
so that

w e wlio,o_ 1 W (Wir,0))eeio,n ¥ (Wot)te[o,L)-

Let ¢ := (e1,e2,e3) € RxR x[0,00). We define a perturbed chain w, (see Definition 4.3).
Before we can do so, however, we need the following supplement to [27, Lemma 4.2] and
one corollary of these results.

Lemma 4.1. Let M € M, be given.

(i) Let x, A € R\ {0}, v,v € R. Then the matrix

14

(4.1)

<

I

=
=

X A

is entire and satisfies M(0) = I if and only if x = X\ and v = v. In this case
M e M.

(ii) Assume that M5;(0) =0, and let x, A\,u,u € R\ {0}, v,v € R be given. Then the
matrix

is entire and satisfies M (0) = I, if and only if \ = x, u = p and

_MMé&@)

In this case M € M,,.

Proof. Necessity in (i) is clear since we must have M (0) = I. Sufficiency follows since
the factors in (4.1) are iJ-unitary.

Assertion (ii) follows by inspecting the explicit form of M (see the set of formulae at
the beginning of the proof of Lemma 4.2 in [27], in particular part (IV)) and by repeating
the arguments for counting the negative index of M. O

Corollary 4.2. Let W be an entire matrix function with W(0) = I. Moreover, let
e1,e2,61,62 € R, A € R\ {0}. Then the matrix function

1 —e _ & l 54_872
W = 1T wilx 'z
0 1 0 A
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is entire and takes the value I at z = 0 if and only if

A= 1762W2/1(0), €9 = €9,

e1 — 2eaW1(0) + e3W3, (0) W1, (0) + 2e3W4,(0) (4.2)

1= 1 — eaWh,(0)

Proof. Solve [27, Lemma 4.2, equations (1)—(3)] and the equations in Lemma 4.1,
respectively, for A, v and pu. O

Now we are ready to define the perturbed chain ws.

Definition 4.3. Choose S € (0, L] such that 1 —eaw); 5,(0) > 0, t € [0,5]. Such a
choice is possible by the continuity of wy, 5;(0) and the fact that w;,, 5;(0) = 0. Define

€2 1 ea(t)
. I —e1—— — e(t)+
Wgt = < Wot A(t) 1( ) z ) t € [0-3 S]a
0 1 0 A(t)

where A, €1, €2 are given by

A(t) == 1 — eqwl,; 5, (0), ga(t) := ea,
e1 — 2eawgy 11(0) + e%wgt,Zl(O)w{jt,ll(O) + %e%wgt,ﬂ(o) (4.3)

1 - 82W:7t,21 (0)

61(t) =

With this notation set

we = Wj,0_1 W (Wit0))teo,es] ¥ Wot)ie[o,s]-

We will always assume that w, is parametrized such that w,(t) = w(a,)W(esﬁo)Wgt for
t€lo,S].

Lemma 4.4. We have w, € MY,

Proof. In view of Remark 2.8 it is sufficient to show that (Wat)te[g’ s] € ot Clearly,

W,, = I. Next note that, since A\(t) > 0 for t € [0, 5], by [27, Lemma 4.2] and Lemma 4.1,
all matrices

At) —e(t) — —— 1 5 €2(s)
Wat(z)_lwo's (Z) = 1 ’ Wts )\(8) 61( ) z )
0 Ol 0 A(s)

where 0 < t < s < S, belong to M. Moreover (cf. the explicit formulae for Wat given
in the proof of [27, Lemma 4.2]),

- 1

!/

at,21(0) = Tt)w‘;t’m(o)’ (4.4)
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and

<, , wyy11(0) ’
ot.12(0) = €1(t)wyy 11(0) + 52@)? + A(t)wegy12(0)

Wl 99(0
- elA(t)wthQ(O) a 62)\@)%() - elsl(t)wét,zl(o)
" 0 "m0
— (erealt) + eaes ()220 oy St

Hence, since w,+ depends continuously on ¢ with respect to locally uniform convergence,
also t(Wy¢) = W7, 15(0) — W/, 51(0) depends continuously on ¢ € [o, S]. It follows that
(Wat>t€[a,S] S m(f) O

Lemma 4.5. We have
alw(t),m) = ——=="—> te(o0,9].

In particular, a(w,(t),m) <0 for t € (o, 5].

Proof. Since the chains w, and w coincide to the left of the indivisible interval whose
right end point is o, and by Corollary 3.5 the number a(w.(c), m) is constant on this
interval, we have

a(we(o),m) = alw(o),m).

Since a(w(o), m) = 0, we obtain from Lemma 3.4 that

a(w(t),m) = a(w(o),m) = mwg, 2 (0) = —mwg, 2, (0), } (45)
Awe(t),m) = a(we(0),m) —mWyy 5, (0) = —mWg, 5 (0). '
Using (4.4) we conclude that
. Wi 21(0) _ a(w(t),m)
afw(t),m) = —m )\?t) = n
O

By our assumptions and the previous lemma we may apply Corollary 3.6 to w as well as
to w, and, in this way, obtain two chains ¥,,(w) and T, (w.) belonging to i . We assume
that %, (w) and %, (w,) are parametrized such that ,,(w)(t) = T (w(t)), t € (0,5], and
Tin(we)(t) = Tm(we (1)), t € (0, S].

Proposition 4.6. The chains %,,(w) and %,,(w,) coincide to the left of the singular-
ity o. We have

Tm(We)ts = Tm(w)es, o<t <s<S.
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Proof. We shall employ Lemma 3.3. To this end we must compute

awe(t),m)

a(w(t),m) and  f(we(t),m) — B(w(t),m).

We have already seen in Lemma 4.5 that

a(we(t),m) 1

a@O.m) AW (4.6)
From this and (4.5) it also follows that
1 B 1 oAt -1 (T—eawyy 00(0) =1 )
o) alem) e . el @ om D

Again, since to the left of the indivisible interval whose right end point is ¢ the chains w,
and w coincide and B(w, (), m) is constant on this indivisible interval (see Corollary 3.5),
we have

ﬂ(we(a), m) = ﬁ(w(a), m)
By Lemma 3.4 we have, for t > o,
Bleelt), m) = Bae(0), m) + BWou,m) + 2mise (o) (W11, 0),
Blw(t),m) = B(w(o),m) + Bwot,21,m) + 2mw(0)5 (0)wey, 11 (0)-
Since mw(0)5;(0) =1 — a(w(o), m) = 1 and also mw,(c)5;(0) = 1,
Blwe(t),m) = B(w(t),m) = B(War,m) — B(war,21,m) + 2(Wiy11(0) = why,11(0)).
From the definition of W,; and (4.4) we find that

P wgt,Ql(O)

" _ Yot,21Y)
at,21(0) - )\(t) 5

i1 (0) = w;t,u(o) e W;t,m(o) . wf,'t’Ql(O)
oL A(t) Y0 279

Hence, we can further compute
ﬂ(we (t)7 m) - ﬂ(w(t)7 m)

m ~ ~ ~
= (2W(/7/t,21(0) + chIrt,21(0)Wc/rt,11(0) - 2W(/7t,11(0)>

m
- <2w¢/7/t,21(0) + mwclrt,Ql(O)wért,ll(O) - 2“-’;—@11(0))

+2(W7;11(0) — why11(0))
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mwgt,Ql(O) wét,Zl(O) W;t,n(o) w;t,Ql(O) wgt,Zl(O)
T2 a0 " ( ) T @ 2A<t>)

m
- (2“’:7/15,21(0) + mwt/rt,Ql(O)w:rt,ll(O)>

m 1 e e
= Ewgt,m(o) ()\(t) - T;)Qw;tﬂl(o) - 1) - 7”‘*}:715,21(0)2>\71

100 0) (555~ 1)
It follows that
A2 (Bwe(t).m) = Bw(t),m))
= S (O)(MD) = 2ty 21(0) = A(t)?) = muyy 1 (0)%er
- muly 11 (0w 1 (0)(1 = M)

m
= Ewgt 21(0)(— e2wat 21(0 )2) mwat 21(0)261
+mwat 11(0)wy, ( )(262w0t 21(0) — egw;t,21(0)2)
(0)
—mw; o ( ( — 2e0wg 11(0) + egwtlrt,ll(o)w;rt,ﬂ(o)

m

— — L a@(t),m)* A1 ).

Using this computation and (4.6), we conclude that

m(Bwe(t), m) — Bw(t),m)) _ —mA(t)*(B(w.(t), m) — Bw(t),
a(we(t), m)a(w(t), m) A(t)?efwe (t), m)a(w(t), m)

_ a(w(t),m)?\(t)e1(t)
At)2a(we(t), m)a(w(t), m)

m))

=e1(t). (4.8)
Since, for o0 <t < s < S, we have
1 ea(t)\ 1 £9(s)
R . e1(t) + —— €1(s
w7 ol =W = (30 PO (R YT
0 A(t) 0 A(s)
we conclude from (4.6)—(4.8) that the hypothesis (3.5) of Lemma 3.3 is satisfied. O

Next we show that Proposition 4.6 has a converse, i.e. that every chain that has the
same transfer matrices as the given chain w is of the form w,.

Proposition 4.7. Let & € M, & : [0, L] — Mo, be given. Assume that a((L), m) <
0 and let 6_, ¢ be defined as in (3.6). Suppose that there exist continuous and strictly
increasing embeddings

L6, L] = o, L), t—:[0,6-] —=[0,0_],
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with 14 (6) = o and _ bijective, such that
Wl =wor_

and

(Zm(d))ts :gm(w)wr(t)wr(s)a o<t<s< L.

Then there exists a triple e € R x R x [0, 00) such that we oty =& 7).

Proof. Without loss of generality let us assume that 6 = o and that ¢, is the inclusion
map [0, L] C [0, L]. By Lemma 3.3 we have

W = A(t) i A(s), o <t<s<L.

We now take a closer look at the entries of A(t). First note that, by our assumption that
T (@) and T, (w) have the same transfer matrices,

(T (@(s)), —=m) — a(Tm(w(s)), =m) = a(Tm(@(t)), =m) — a(Tm(w(t)), —m)
for 0 <t < s < L. Since, by [27, (4.21)], for any matrix W € dom 7T,

1

(T (W), —m) = W’

we conclude that the number

ea(w,w) := m<a(@(1),m) - a(w(i),m)>

does not depend on t € (o, L]. Since limy, a(w

(t),m) = 0, this also implies that
o el m) _
tNo a(O(t), m)

For arbitrary t € (o, L] we can write A(t) = wtﬁA(i)d’Lt' Hence, the limit limy , A(t)
exists; in particular, the limit

also exists. Let s € (o,L] be fixed; then for arbitrary t € (o,L] we have @, =
A(t)"tws A(s). If in this relation we let ¢ tend to o, we obtain

1 —e(w,w)— e2(®,w)
Wy = z wesA(S).
0 1
By Corollary 4.2 we must have
1 216
—— €1(s)+
A(s) = | As) 1(5) z

0 A(s)
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where A, €1, g2 are defined by (4.3) with e; = e1(d,w) and ey = eg(@,w). This just says
that we have
LDUs:VT/Us, o< s< L.

Set e3(w) == t(w(0)) —t(w(6-)) and e := (e1(w, w), e2(w,w), e3(®)); then

=061 ¥ Wieg@),0) ¥ (Pot) 0.1

= wlio,0-1 9 Wiea@),00 ¥ Wot)ye (o, i)

zwe|[0,ﬁ].

5. Main theorem

Let h = (H,b,0) be an indefinite Hamiltonian in the limit point case with negative
index 1. Since ind_ h = 1, h can have only one singularity, i.e. H = (Hy, Hy), where Hy
is defined on [0g,01) and Hy on (o1,02). Moreover, by Remark 2.3, A = 1, and hence
0 = (dp,d1). Also, 6 € {0,1}, and b; < 0 in the case 6 = 1. Moreover, we assume that

g1
/ (1,0) Ho () <1> dt < oo, (5.1)
oo 0
which is not an essential restriction because the Hamiltonian can always be transformed
using (2.9) such that (5.1) holds (see (2.2)). Denote the Weyl coefficient of § by ¢y, so
that gy € M.

Let v € My be the unique maximal chain of matrices whose Weyl coefficient is gy.
Without loss of generality we assume that v is parametrized similarly to H, i.e. that
dom v = [0g,01) U (01, 02), and that v(¢) is a solution of the differential equation

%U(t)] =zv(t)H(t), t€ [09,01)U (01,02),

v(og) = I.

Note that the function v(¢) can be computed explicitly from H, by solving the canonical
differential equation, only on the interval [og,01). Moreover, note that v(t) is also a
function of z, and we identify v(¢)(z) and v(t, z) as they appear, for example, in (5.8).

Due to our condition (5.1), we have lim;_,,, |v(t)5;(0)] = co. Hence, there exists L >
o1, such that a(v(L),1) < 0. Define w := %1 (v[sy,)\{01})- Then w € ML and is, if
appropriately parametrized, explicitly given by

7-1(U(t+l))’ te [O—Oflaa——%
w(t) = { [lims o, T1(v(s))] < (1) (t _f—>z> , teloo, ol
Ti(v(?)), t> o,
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where [ and o_ are defined by the relation

l=01—0o_ = lim (71 (v(s))) — lim (71 (v(s))) (5.2)
sN\o1 s/o1
(see Corollary 3.7). Note here that it follows from (5.1) that the limits on the right-hand
side of this relation exist. Actually, the limits

lim 7y , lim T
Jim 1(v(s)) Jim Ti(v(s))
exist locally uniformly on C and belong to Mj. Recall from [27, Theorem 4.4] that w
can be continued to a maximal chain @ whose Weyl coefficient is equal to gq(2) — 1/=.
To simplify notation, let us denote a(v(t),1) and S(v(t), 1) as follows:

a(t) =1 —v(t, 2)5,(0), } 53)
B(t) := Fu(t, 2)5,(0) + v(t, 2)5; (0)v(t, 2)}; (0) — 20(t, 2),(0). ’

Here primes denote differentiation with respect to the variable z and an evaluation after
this denotes evaluation of z.

Proposition 5.1. The limit

1w,
M(z) := lim v(t, z) | a(t) aft) =z (5.4)
Do 0 a(t)

exists locally uniformly on C\ {0}.
The function T := M~ x gy belongs to Ny U N7, and

1
lim —7(iy) =1
yﬂlinoo in(ly)

Proof. We compute

R CORV !
v(t, 2) | a(v(t),1) av(t),1) =z
0 a(u(t),1)
N N OB
("2 (N ) vy [0 D) et Tz
0 1 0 1 0 a(v(t),1)
1
= Z | Ta(v(t, 2)). (5.5)
0 1

Thus, the limit (5.4) exists locally uniformly on C\ {0}.
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Let t € [09,01). The matrix T;(v(t)) belongs to w and thus also to &. Hence, there
exists 7+ € Ny UN; such that T7(v(t)) * 7w = gy — 1/2. We compute

I COR VNSNS T -
o) | ow®. 1) a(w®).) "z )| xg= | 2| T@)|  *a
0 a(u(t),1) L\0 1
r 1
1 N
= | Tito(®)™! || *a
I 0 1
= Ti(ol) "+ (1 1)

The limit ¢ o1 on the left-hand side of this relation exists and is equal to 7. Since
No UM is closed, we obtain 7 € Ny UN.
We have

. 1 Iz
Jim Ti(u(t) =wlo-),  wlon) =wlo) (O 1)

and lim »,, 7 = 7. Hence, w(o1) * (7(2) — lz) = gy — 1/2. This implies that 7(z) — Iz
is the Weyl coefficient of the maximal chain &(o1) *@(t)|t>0, . Since this chain does not
start with an indivisible interval of type 0, we conclude from Theorem 5.7, Lemmas 5.2
and 7.5 and the proof of Theorem 7.1 in [26] that

1
lim —(r(iy) — liy) = 0.
Jm o (r(iy) — liy) =0

O

Definition 5.2. For a triple ¢ = (e1,e3,e3) € R x R X [0,00) let us define a function
qy(z) on C\ R as

1 (6371)2761763

q5(2) == M(2) 2| M(2) 7t x gy (2), (5.6)
0 1

where the matrix function M is defined by (5.4).
The definition (5.6) of ¢i can be rewritten in two (sometimes more convenient) ways.

Proposition 5.3. Denote by gy -, the intermediate Weyl coefficient

. = i t,
s (2) = lim v(t,2) %0
and let
t
Mgl = lim ’U21( ’Z)
t o1 Ck(t)
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be the left lower entry of M. Moreover, set

e
pe(2) i =(e3—1)z—e1 — ?2

Then

aj(2) = <I+pe(z)M21(Z)2 (q’“’; (Z>> (1 qu(z))) *ay(2)

s () — 0y (2P M (2
% (2) = i) ) (2)pe) M ()% 1

Proof. To see the first formula, compute
M 1 pe ML= M1 Mo 1 pe My —Myo
0 1 Moy Moo 0 1 —My1 Miys
_ M1 peMiy + Mia Moy —Myo
My peMay + Moz | \ —Mar My,

_ (1= pe M1 My pe M7
—pe M3, 1+ peMy1 Moy

M
=1+p. <M;> (—Mm Mu)

= I+peM221 <Qbial> (71 qhygl) .

In the last line we used the fact that

My (2) _ limy g, vii(t, 2)/a(t) = go.0. (2)
Ma2i(2) iy g, v21(2, 2) /() o

In order to show the second formula, we furthermore compute

edtVlgy - b, -
1 ” —peM3 1+ peMEiqyo

and hence

and

(1 7p9M221qf)701)qh +p¢M221q§,01 —q
—peMZqy + (L +peM3qyor)

qQy — qp =

(1 = peM31qy.0, )9y + PeM31G5 5, + PeM31q7 — (1+ peM31 .0, )y

—peM31qy + 1+ peM3 gy 0,

_ PeM3 (@00 — )
PeM3) (qh.0, — qy) +1
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The functions g can be used to describe the set of all Weyl coefficients a4 of indefinite
Hamiltonians which differ from § only in the scalar parameters dy, di, 6, b1, and by (in
the case when 6 = 1). The following theorem is the main result of this paper.

Theorem 5.4. Let h = (H,b,0) be an indefinite Hamiltonian in the limit point case
with negative index 1 and Weyl coefficient gy, where H is defined on [0g,01) U (01,032)
with a singularity at 1. Assume without loss of generality that

/0:1(1,0)H(t) ((1)) dt < oo,

Let v(t, z) be the solution of the initial-value problem

%U(t, z2)J = zv(t,z)H(t), tE€ [og,01), v(00,2)=1, (5.8)
and let M and q; be defined by (5.4) and (5.6). Moreover, let Wy denote the set of all
Weyl coeflicients 4 of indefinite Hamiltonians b = (H,b,0), ind_ b = 1, with H = H.

Case 1. Assume either that for all s_ € [0¢,01) the interval (s_, o1) is not indivisible,
or that for all s; € (01,02) the interval (o1,sy) is not invisible. Then the assignment
e — gy maps R x R x [0, 00) bijectively onto Wy.

Case 2. Assume that there exist s_ € [0g,01) and s € (01,02) such that both
intervals (s—,01) and (01,s4) are maximal indivisible. Then the assignment ¢ — ¢ is a
bijection of

{—bl} X (—OO,do] X {0} if 6= 0,

(R x R x [0,00)) \ {{_bz} x (—o00,do] x {0} ifo=1

onto Wy .
If 6 =0 and ¢ € {=b1} x (—00,dg] X {0} or 6 =1 and ¢ € {—by} x (—o0,dp] x {0},
then gy is the Weyl coefficient of the positive definite Hamiltonian

H(t+s_ —si+(do—e2)), t€(og—s-+sy—(do—e2),5+ — (do —e2)),

H.(t):= <8 (1)>, t€ (s4 — (do —€2),54),

H(t), t>s,.

Proof. The proof of this result is carried out in several steps. In the first three steps
we deal with Case 1. Without loss of generality we assume that oy = 0, 02 = co and set
g ::=01.

Step 1 (construction of chains with Weyl coefficient gy (Case 1)). Let ¢ €
R X R x [0,00) be given, and let S and w, be defined as in Definition 4.3. Set

ve(t) 1= To1(we) W (Ust)te(s,o0) (5.9)
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and assume that v, is parametrized such that

v(t), te€[0,0),
Ve(t) = < T-1(we)(t), t € (0,9],
T_1(we)(S)vse, te (S,00)

Let 0 <t < s<S; then
T 1w () T1 (@d)(s) = Ta@)(O)~ T (@)(s) = vt o(s).
From the definition of v, it is now immediate that
Ve () T (s) = v(t) tu(s), o<t <s<oo.

Since v is a maximal chain, the interval (o, 00) is not indivisible. Since we assume that
Case 1 prevails, in particular the singularity o of T_;(w,) cannot lie in an indivisible
interval with negative length. It follows that we can apply Remark 2.8, and conclude
that v, € 9.

Let ¢ be the Weyl coefficient of the chain v,, and let h, be the indefinite Hamiltonian
with Weyl coefficient ¢. Since v and v, have the same transfer matrices, they satisfy
equation (1.1) with the same H between the singularities; hence, . is of the form b, =

(H,be,0.).
We will now show that g = qf]. Since ve s = Vg for 0 <t < s < 00, by Lemma 3.3 we
have that
Ti(ve() ™' Ti(ve(s)) = A®) " Ti(v(t) " Ti(v(s))Als) (5.10)
whenever all transforms are defined, and where A(t) is equal to
a(Ti(ve(t)), —1) B(Ti(ve(), =1) = B(Ti(v(t)), =1)
a(Ti(v(t), 1) a(Ti(v(t), =1)e(Tr(ve(t)), —1)

Let 0 <t < S. Then Ti(ve(t)) = we(t) and T1(v(t)) = w(t). Hence, by (4.6)—(4.8), we
have ) )
€2
— )+
A = | 2@ =70 e (0, 5],
0 At)
where A, €1, €2 are defined by (4.3). From their definition we see that
]. €1 + Q
lim A(t) = zZ . (5.11)
tN\o 0 1
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Let 0 < t < s < co. By (5.10) we have
Ti(ve(s)) = Ti(ve (D) AW®) T Ti(v() ™' Ti(v(s)) Als)-
Letting t tend to ¢ from above yields

Ti(ve(s)) = we(0) z | w(o) ™ Ta(v(s))Als)

It follows from (5.5) and the definition of 7; that

ORI
ve(s) (O‘(Ue(s)al) a(ve(s), 1) + z)
0
1

Oé(’l)e(S), 1)
_ (O

1 1 6712761763
—C ﬂw@q( (s =0 z)Mm>%w@M@
0 1 0 1

R

) Ti(ve(s))

e Dy e e 1 B(v(s), 1) -
Y 1 ( 3 l) 1 Z) M_lv(s) a(v(s), 1) Oé(U(S)a 1) + z A(S)
0 1 0 a(v(s),1)

We conclude that
1 (eg—l)z—el—e—2
Ve(8) koo =M z | M~ u(s) x 00 (5.12)
0 1

whenever s € (0,00) is such that both v,(s) and v(s) belong to dom 7;. Let a € (o, 0]
be such that (a,00) is a maximal indivisible interval of type 0 of the chain v, and thus
also of the chain v,. Then

a5 :tli/r‘r(llv(t)*oo, q= tli/r‘rtllve(t)*oo.
We have

sup{t € (0,a) : v(t) € dom T} = sup{t € (0,a) : v.(t) € domT;} = a,
and hence we obtain from (5.12) that ¢ = -
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Step 2 (surjectivity (Case 1)). Let § be an indefinite Hamiltonian with ind_ b = 1
which is of the form h = (H, &,d), and let § be its Weyl coefficient. Let © be the maximal
chain whose Weyl coefficient is ¢, and assume that ¢ is parametrized such that dom v =
domuv, 0(t) = v(t), t € [0,0), and Dy = vy, for 0 < t < s < co. Choose L € (o0, L]
such that a(0(L),1) < 0, and put & =%, (?l19, 7]\ {0})- By Proposition 4.7 there exists
¢ € RxR x [0,00) such that & = w,. Let v, be the maximal chain constructed in Step 1.
We have

velL) = Tor(we( D)) = Toa (@) = o(L).

Since v, ;, = v;, = 0;, for all t € (0,00), this shows that 0 = v..

Step 3 (injectivity (Case 1)). Let ¢! = (e},ed,el), ¢ = (e2,¢2,e3) € RxRx [0, 00),
and assume that qgl = qff.

For any ¢ € RxR X [0, 00) the number e3 can be reconstructed from the Weyl coefficient
gy, as the limit

1
— - —1 [
€3 Y 11+n iy (M~ * dp (iy))

by Proposition 5.1 and (5.6). We conclude that in the present situation el = e3.

Let v',0? € 9M; be the corresponding maximal chains and assume that they are
parametrized such that

vi(t) = u(t) = v3(t), te[0,0),

and

Utlszvtszvfs, o<t<s<oo.

Since these chains have the same Weyl coefficient, there exists a continuous and increasing
bijection ¢ of [0,0) U (0,00) onto itself, such that v? = v! o ¢. It follows that, for
o<t<s<oo,

Uts = UtQS = Uc,lo(t)ga(s) = U@(t)‘P(S)' (513)

In particular, this implies that

t(u(p(s))) — tv(p(t))) = tv(s)) — t(v(t),

and hence the number
7 = t(u(p(t))) — tv(?))

does not depend on ¢ € (o, ).

Consider the case when v = 0. Then it follows that v(p(t)) = v(t), and hence that
¢ =1id, i.e. v! = v?. We see from (5.11) that this implies e} = €7 and el = 3.

Assume now that v # 0. We shall derive a contradiction. Assume without loss of
generality that v > 0. Then we always have (t) > ¢. Since H; satisfies the (HS) condi-
tion (see [28, §2.3]), there exists ¢ € [0,7) such that (cos ¢,sin ¢)H;(t)(cos ¢,sin¢)?T is
integrable at 0. With N, defined in (2.8) it follows that

(Ngtr/20(t)N_g_7/2)1(0)
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remains bounded when t — o. However, by (5.13),

v(e™"(0)) = v(0)vo,p-1(0) = -+ = V(0)Vo,p-1(0) * * - Vgp=n+1(0)p=n(0) = V(0)Ug -
It follows that
(N 7/2V00(0) N—p—r/2)21 (0) = 0,

and hence that vy ,0) = W(y,¢4r/2) for some v > 0.

Let 0 <t < s < oo be given. Since t(v(¢™(0))) = t(v(0)) + ny, this number tends to
+o0 if n — do0, respectively. Hence, there exist n_,ny € Z such that ¢~ (0) < t and
s < ¢"*(0). Thus, we have

Winy—n_ ¢+n/2) = Vo™= (0)™+ (0) = Vg™ (0)tVtsVsia™+ (0)

where all three factors belong to M. This, however, implies that each of these fac-
tors, in particular vy, is of the form W, ¢4 2) with some u > 0. We have reached a
contradiction, since the whole interval (o, c0) cannot be indivisible.

In order to settle Case 2, we first start with a particular case which is accessible to
explicit computation.

Step 4 (Case 2 and [0, o) indivisible). Assume that [0, 0) is indivisible. Then the
chain v(t) is given on the interval [0,0) as

with some increasing function y(¢) with v(0) = 0 and lim; », y(¢) = +o0. It follows that

a(t) =1+~(t),  Bt)=0

and
1
M = lim ( 1t O) 1+~(t) z
t7e \ ()2 0 1470
11
1+ ~(t) z
= lim
/e V(1)
1+~(t)
o 1
= z (5.14)
—z 1
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This yields (with p(z) := (e3 — )z — e1 — e2/2)

1 p _ 1 0
qéM(O f)M l*qb<—z2pe 1>*qb

qn _ —1
—22peqy +1  —1/qp + [(e3 — )23 — €122 — e22]’

(5.15)

Now we use the assumption that there is an indivisible interval also to the right of o.
Let sy be the right end point of the maximal indivisible interval to the right of o, i.e.
sy = sup{s > o : (0, s) indivisible} > o. Then, by the definition of the maximal chain
associated with an indefinite Hamiltonian (see [30]),

1 0 ..
, 0=0,
(—Zdo —+ 22b1 1)

v(sy) = 1 0
, o=1.
(—Zdo + 2%by + 23b; 1)

Moreover, the chain v(¢) is given on the interval (o, s1] as

1 0
. ) =0,
—z(do +A(t)) + 2%b; 1
o(t) =
1 0 .
N 2 3 » 0=1,
—Z(do +’7(t))+2 by +2°b; 1
with some increasing function 4(t) with 4(s;) = 0 and limy\ , ¥(t) = —oo0.
From (3.3), we compute
(1)
HTi(v(t))) = )
for t < o and
—b% +do +4(t) 5—0
L4do+A4(t) ' ’
HTi(v(t))) = )
—1)2 + do + ’Y(t) .
14 do +A4(¢)

for t > o. It follows from this, (5.2), lim; », v(t) = co and limy\ , 4(t) = —oo that

,_Jo. e=o,
—by, 6=1.

Let ¢ € Ny be the Weyl coefficient of the positive definite maximal chain (v, ¢)¢>s,

and set
doZ—b12’2, 5:0,
p(z) =

doZ*ngz*blZ?’, o=1.
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Then
q _ -1

-pg+1  —(1/q)+p’

qy =
and using (5.15) we get
-1
—(1/q) +p+[(es = 1)2% — e12% — €2

4

ay =

Since
623—€+b Z2+d—€ Z, O:Oa
p+ [(63—1)23—61,22 —ez] = 3 (ex 1) (do 2)
e323 — (e1 + b2)2? + (do — e2)z, 0 =1,

we conclude that

e3 =0, e = —b1, e3 <
a5 €Ny = ’ e
e3 =0, eg = —by, ez <

dy if6=0,
do if 6= 1.

Note here that, since s is not the left end point of an indivisible interval of type m/2,

we have
1 -1

lim ———
y=-+oo y q(iy)
Consider the case when ¢ € Ny. Then

e _ -1 . q _ 1 0 N
%= (=1/q) + (do —e2)z  —(dg —e2)zq+1 \ —(dog —ez)z 1 ¢

Hence, gy is the Weyl coefficient of the positive definite Hamiltonian

H.() = <8 (1)) ; t € (s+ —(do—e2),84),

H(t), t> s,

Next consider the case that ¢ € Ni. Again the maximal chain whose Weyl coefficient is
equal to gy can be guessed easily. We have

_( 1 0>
DT ot les—np—et—e) 1)

2

which implies that p + [(e3 — 1)2® — €122 — e22] € Ni. Hence, the maximal chain with

Weyl coefficient ¢y is given by

(;t)z f) , teo.0).

( 1 O) t € (o,54],
_(p+[(€3—l)z —elz _622 ,3/ ) +

1
v 3 s )
((p+ [(e3 — )23 — €122 — ea2]) ) o -

Ve =
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480
because sy is not the left end point of an indivisible interval of type /2. Moreover, the
= (H,b,,0.), where

indefinite Hamiltonian §, corresponding to this chain is given by b,
07 €3 = 0)

deo = do — e2, deq1 =0, 0, = {

1, e3> 0.
e1r+b ifo.=0,0=0,
P ) e1+b ifée=1,6=0,
be,l =4€+ b2 if O¢ = Oa 0= 17 e,2 = cp e ..
p e1+by ifo,=1,06=1
—e3 if 6, =1,
We see that, if e runs through the set
—b1} x (—o0,dp] x {0}, 6=0,
{=01} x( o] x {0} (5.16)

R xR x [0,00
xRl )\{{1)2}><(oo,d0]><~{0}7 o=1,

then b, runs through all possible indefinite Hamiltonians of the form (H, b, 0).
We will use the following general observation to reduce Case 2 to the situation treated

above.
Step 5 (g — ¢° is compatible with cutting off). Assume that s_ € [0,0) is not
an inner point of an indivisible interval. Then we can consider the maximal chain

O(t) :=vs_4, tE€[s—,0)U(0,00)

and the corresponding indefinite Hamiltonian §. Its Weyl coefficient a5 equals v(s_) " txgy.

We shall prove that
C=uv(s_) " xgf, e€RxRx[0,00).

Let «, 8, M be defined by (5.3) and (5.4), respectively, and let &, B and M be defined

correspondingly for the chain © instead of v.

We compute

s 1
o) [ alt) at) =
0 a(t)
18 1
E ’U(S,)f}(t) a(t) a(t) + z
0 a(t)
(w1 (29[S - 2250 + Hat) - e
= U(S_)U(t) Oz(t) a(t) z (t)
0 at) 0 g( 5
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We see that the last matrix on the right-hand side of this relation possesses a limit B for
t /o, and that M = v(s_)MB.
We have a(t) = &(t) — v(s-)5;(0). Since lim; », a(t) = +00, the relation

lim (zz(t) =1
t o at)
holds. It follows that B is of the form
1
1 o—
B = v z

0 1

with some 7,9 € C. Again set p(z) = (e3 — 1)z — e1 — (e2/z). We obtain

1 _
qéM(O pf)M L gy

~ 1 ~
= U(S_)MB <0 pf) B_lM_lU(S_)_l *qh

=wv(s_) * -

Step 6 (finishing Case 2). Assume that s_ :=inf{s € [0,0) : (s,0) indivisible} > 0
and let h be as in Step 5. Let by be a general Hamiltonian with negative index 1 of the form
h1 = (H,b1,01). Then, by Step 4, the Weyl coefficient a5, of hy = (H|[s_ 0)U(,00)5 b1, 01)
can be written as qg with a unique triple e. It follows from Step 5 that

gy, = v(s,)*qﬂ1 = U(s,)*qg = Qs

in particular, g, must belong to Ni.
Conversely, let ¢ be in the set of parameters described in Step 4 (see (5.16)), so that
qg € Ni. Then the general Hamiltonian whose Weyl coefficient equals qg is of the form

(H|[s_,a)u(a,oo)v be, De)'

Since s_ is not an inner point of an indivisible interval in H, the maximal chain with
Weyl coefficient v(s_) x qg = q;, corresponds to the general Hamiltonian (H, be, 0.).

If ¢ is a parameter such that qé € Ny, then clearly v(s_) *q% € N, and it is the Weyl
coefficient of the positive definite Hamiltonian given in Theorem 5.4.

All assertions of Theorem 5.4 are proved. ]

Let us point out one particular case.
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Corollary 5.5. Let h be as in Theorem 5.4 and assume that [0g,01) is indivisible.
Then the function gy can be written as
e -1
T = (=1/qp) + [(e3 — 1)23 — €122 — e32]’

and

= lim ———.
y——+o0 1y3qy (1y)

Proof. The first formula is just (5.15). From Proposition 5.1 and (5.14) we get
1

1 —= -1 1 1
T:Mﬁl*qb: z *qbziqb /Z:—— 3
p 0 th z z qh
and hence 1
= lim —7(iy)= lim ———
Yoo in<1y) y oo iy3qy (iy)
by Proposition 5.1. ]

We illustrate the above results with two examples.

Example 5.6. Consider the Bessel equation, a classical and well-studied object. This

is the equation
2_ 1

() + Ty = (), t€ (0,%0), (5.17)

where v is a non-negative parameter. For a discussion of this equation and corresponding
integral transforms, see, for example, [11,12,34,36]. Recently, some attempts were made
to use indefinite inner product structures in its study [10,14,15,31].

At the point oo the limit point case always prevails. At the point 0 we have the limit
circle case if and only if v < 1, and for such values of v the Weyl coefficient m(\) is given
by

A = — Lo
() =~ N,

where ¢ := 221771 (v)2 sinv - €. Moreover, it is known that the self-adjoint realiza-
tions of (5.17) show a nice behaviour, regardless of whether the equation is in the limit
circle or the limit point case at 0.

For v < 1, the Bessel equation can be transformed into a canonical system (1.1). In

fact, if we set
!

z 2tY

z1(t) = Lo (y’(t) + (t)>7 zo(t) =t %y(t), 2% =)\ (5.18)

then we obtain a canonical system with Hamiltonian

Ha(t) = (tg t0a> , (5.19)

where o = 2v — 1.
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Consider now the case when v > 1. Following our general rule on how to rewrite a
Sturm-Liouville equation that is in limit point case at both end points as an indefinite
canonical system, we should use a general Hamiltonian which has only one singularity,
namely 0, and whose Hamiltonian function is defined to the right of 0 by the potential
and to the left of 0 just as one indivisible interval. This gives

1 {0 0
= —1
2 (o 1>, te(-1,0),

t* 0
, te(0,00).
(0 t“) ( )

In [33] it is shown that this function actually qualifies for being the Hamiltonian function
of a general Hamiltonian. Moreover, for a certain choice of parameters by and 0g, the
corresponding maximal chain of matrices and its Weyl coefficient is computed. It is shown
that for a € (0,00) \ (2N — 1) the function w, (¢, 2) defined as

H,(t) :=

1 0

wa(t, z) = (1+1)Z L t e (-1,0)

and
(t.2) AP (W) v L, g (2t) 22T 0 ()2 L (2t)
Wa(t, 2) ==
—27"T(1 — )2t T (2t) 2791 (1 — v)2¥tV J_,(2t)

), t € (0,00),

is a maximal chain of matrices with negative index k = [(a + 1)/2] whose corresponding
general Hamiltonian b, consists of the Hamiltonian function H, and some parameters
by, 09, and whose Weyl coefficient gy, is equal to

(03

gy, (2) = cz™ %, Imz > 0, (5.20)

2 r a+1\V . fa+1 a+1
C .= . 2 S1n 72 exXp 41 2 T r.

[e%

where

is defined such that there is a cut at the negative real axis and z7¢

Here the power z~
is positive for positive z.

If a € 2N — 1, naturally, formulae must be modified and get more complicated. For
this case a maximal chain whose corresponding general Hamiltonian has Hamiltonian

function H, is given explicitly in [33]:

v P (v) v LT, (2t) ' (v) 27T g, (2t)

bt 4

2V (=7Y, o1 (2t) + 2log(2) Jy—1(2t))
9—v
I'(v)

wa(t,z) = ()

2Vt (—7Y, (2t) + 2log(2)J, (2t))
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where a and v are again related by o = 2v — 1. Tts negative index is equal to (o +1)/2,
and its Weyl coefficient is

—  _ Imz>0, (5.21)

()]

We see that our present results, Theorem 5.4 and Corollary 5.5, will cover the cases
a € [1,3). For such values of a, the parameters by and 9 leading to the above Weyl
coefficients (5.20) and (5.21) are actually given as

where

1
Tt % ae(13),
E:= {_Lt()}v 0=0, bp=di =0, do= -

ln%to—'y, a=1,

where tg is an arbitrary number in (0, c0) and - denotes the Euler-Mascheroni constant.

An application of Corollary 5.5 yields that, for @ € [1,3), all possible Titchmarsh—
Weyl coefficients of general Hamiltonians with negative index 1 which are of the form
h = (Ha, b,0) are given by

1
—e323 + €122 + eaz + (2%/c)
1

—e323 + e122 4 exz + zlog(—iz)

ifl<a<3,
@, (2) =

if a =1,

where (e1,e2,e3) € R X R x [0, 00).

Example 5.7. Consider the following equation of Sturm—Liouville type:
2
() + my(t) = My(t), te0,00).

This appeared in [32] in connection with an extension problem of positive definite func-
tions. Apparently the potential has a singularity at the point 1 and is not integrable at
this point.

If we consider this equation only on the interval [0, 1), then we have a Sturm—Liouville
problem which is regular at 0 and in the limit point case at 1. Using a transforma-
tion similar to (5.18), this problem could be rewritten as a canonical system (1.1) with
Hamiltonian (¢ € [0, 1))

(t—1)2 0
H(t) = 1 : (5.22)
(t—1)

Let us consider the equation over the whole interval [0,00) and proceed according to
our method of associating a general Hamiltonian with a singular potential. Thus, we

https://doi.org/10.1017/50013091507000806 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091507000806

Dependence of the Weyl coefficient on singular interface conditions 485

should choose a general Hamiltonian h which has one singularity, namely 1, and whose
Hamiltonian function is obtained by applying the same transformations as used above
for t € [0,1) to the right of the singularity. In this way we obtain that the Hamiltonian
function of b is simply given by the formula (5.22) for all t € [0,00) \ {1}.

Of course it is now unclear how to choose the parameters b and 9. For a certain choice,
namely, for
to

E={0t}, 6=0, b=d =0 dy=

with ¢y € (1, 00), the corresponding maximal chain of matrices w(t, 2), t € [0,1) U (1, c0),
and its Weyl coefficient ¢(z) have been computed in [32]. There it is shown that

sin zt — z cos zt 1 (t 1) _— t cos zt
_— — —(t— sin zt —
z(t—1) 2
w(t, z) = (5.23)
sin zt sin zt (t—1) .
—(t—1)cosz
t—1 z

for t € [0,1) U (1,00), and that
o1
qy(z) =1+ gt

Moreover, it is seen that the negative index of the chain w is equal to 1.
Next we must compute the data needed for an application of Theorem 5.4. From (5.23),
however, we easily obtain

sin z . CoS 2
cos z — sin z +
M(z) =
—sin z CcoS z
and
. 1
7(2) =1, =0, gp,1(2) = — — cot z.
z

Hence, the totality of all Weyl coefficients of general Hamiltonians with negative index
1 which are of the form h = (H,b,9) with H as in (5.22) is

L) i 1 (ezz —e1 —(ea/2))(1 +itanz)
a5 (2) = +z+ 1= (i+ sz —e1 — (ea/2)) tan 2

where (e, ez,e3) € R x R x [0, 00).
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