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Abstract

Reproducibility of a deep-learning fully convolutional neural network is evaluated by training several times the same
network on identical conditions (database, hyperparameters, and hardware) with nondeterministic graphics process-
ing unit operations. The network is trained to model three typical time–space-evolving physical systems in two
dimensions: heat, Burgers’, and wave equations. The behavior of the networks is evaluated on both recursive and
nonrecursive tasks. Significant changes in models’ properties (weights and feature fields) are observed. When tested
on various benchmarks, these models systematically return estimations with a high level of deviation, especially for
the recurrent analysis which strongly amplifies variability due to the nondeterminism. Trainings performed with
double floating-point precision provide slightly better estimations and a significant reduction of the variability of both
the network parameters and its testing error range.

Impact Statement

The use of neural networks for modeling physical systems is a growing trend, a scenario where reproducibility of
training can be crucial not only to reproduce others’ work, but also to allow refining hyperparameters and the
network’s architecture. In this analysis, models trained under solely hardware nondeterminism and their
responses’ variability are discussed and quantified, with a distinction between single and double floating-point
precision. The obtained models and inference results show a significant change, demonstrating the inherent
variability of the training and that conclusions drawnwith only a single training can be limited. This study reveals
that a systematic use of multiple equivalent trainings should be encouraged and comparisons dealing with
accuracy/performance of the neural network should be provided.
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1. Introduction

Reproducibility, namely the principle that a method or experiment can be replicated, is essential in
science. Obtaining reproducible results is complex in deep learning (DL) due to the intrinsic stochastic
nature of the majority of the algorithms, the complex nature of the optimization search spaces, and the use
of nondeterministic computations. Replicating a previous work is specially nontrivial due to the difficulty
to reproduce the experiments’ conditions associated with the high number of details of the settings
(Dadvar andEckert, 2018), the large size databases, and distinct hardware. As such, this topic is constantly
being discussed (Peng, 2011; Ivie and Thain, 2018; Raff, 2019; Pineau et al., 2021; Renard et al., 2020).

While most sources of variability can be removed by a proper andwell-documented setup (fixed seeds,
well-defined hyperparameters, etc.), a computational variability remains due to the numerical nondeter-
minism issued from the rounding of numbers associated with the stochastic order of arithmetic operations
(Whitehead and Fit-Florea, 2011; Chou et al., 2020). It is notably observed when the same code is
evaluated in different hardware (Jézéquel et al., 2015) or with different floating-point precisions (Seznec
et al., 2018). Currently, performance requirements make the use of graphics processing units (GPUs)
mandatory in DL, their major drawback being the difficulty to perform deterministic operations. Different
runs in the same GPU can also be nondeterministic due to use of algorithms that favor performance over
repeatability (Iakymchuk et al., 2016; Jorda et al., 2019).

The use of neural networks for estimating partial differential equations (PDEs) is a growing trend and
has been widely evaluated in the Fluid Mechanics field. Many examples are available on the review by
Brunton et al. (2020); general purpose PDE solvers are also discussed on the literature (e.g., Berg and
Nyström, 2018; Sirignano and Spiliopoulos, 2018; Raissi et al., 2019; Lu et al., 2021). In contrast with
typical DL problems, such as classification problems, the estimation of spatial–temporal PDEs must
guarantee pixelwise precision. For example, the prediction of the unsteady flow dynamics of a wake
downstream a cylinder depends on the accurate modeling of the evolution of the velocity and pressure
fields. Small variations at different regions of the domain, notably close to thewalls and at the shear layers,
may change the dynamics of small-scale structures and return a wrong flow (Lee and You, 2019a). Thus,
even if determinism is not mandatory, levels of accuracy and reproducibility must be mastered, and thus
further evaluated and discussed.

There is no simple and unique definition of reproducibility (Fidler and Wilcox, 2021); thus, it is
important to clarify this concept in order to delimit the scope of the analysis. In this work, reproducibility
is considered as the capacity to train models that would return identical responses (null variability) when
obtained from the samematerials (software, hardware, database, and random number seeds). This follows
the definition presented by Goodman et al. (2016) and Bouthillier et al. (2019) (“methods
reproducibility”) and also evoked in Pineau et al. (2021).

Even if bitwise reproducibility is not fundamental for having a reliable machine learning model,
reducing variability can be extremely advantageous. More reproducible trainings allow for a better
understanding of the learning mechanisms, thus, to enable further improvements in the model’s archi-
tectures and overall performance and, in the case of scientific applications, to have insights on the
underlying physics. Moreover, for recurrent tasks as in space–time physical problems, the inherent
nonlinear nature of neural networks can induce a large error at long times even for a very low initial
variability, as illustrated in Figure 1, with the results obtained in the scope of current work by the same
model trained twice under the same conditions but with nondeterministic algorithms, which also calls for
reproducibility. Similar analysis in the context of Reinforcement Learning (Nagarajan et al., 2018) found
that the GPU nondeterminism has an impact analogous to changing the starting model’s parameters.

Consequently, this paper presents a detailed comparison between several DL models that estimate the
evolution of three PDEs, namely the heat, Burgers’, and wave equations, as benchmarks for time–space-
evolving systems, trained in the same context (identical database, hardware, random number generator
seeds, hyperparameters, software, and hardware) in a GPU with nondeterministic operations. Tests are
performed to evaluate and compare the generalization capacity of the trained models. To the best of the
authors’ knowledge, no previous work has discussed the reproducibility of a neural network when
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estimating time–space-evolving systems. The document is organized as follows. Methodology is pre-
sented in Section 2, with the description of the physical systems, the network architecture, and the training
and testing procedures. The statistical convergence of the procedure and the models’ properties (loss
convergence, kernels weights, and feature fields) are discussed in Section 3. In Section 4, results for the
recurrent analysis are presented for solution benchmarks and a database with randomly defined pulses.
Section 5 closes the document with final remarks. Code, descriptions of the neural network, the numerical
setup, and examples of the estimated fields are available in the Supplementary Material.1

2. Methodology

2.1. Physical systems and solvers

The analysis is performed for three different physical systems: the heat equation (parabolic PDE), the
Burgers’ equation (hyperbolic–parabolic PDE), and the wave equation (acoustic propagation, hyperbolic
PDE). Each problem is trained independently, both in single and double precisions. The computational
domain is a square of size ℓ�ℓ, discretized by N=200 uniform cells of dimension Δx in both directions.
Gaussian pulses are used to initialize the fields. A generic fieldF is started by a background valueF0 and n
pulses:

F x, t = 0ð Þ = F0þ
Xi = n

i = 1

εexp � log 2ð Þd x,xc,ið Þ2
h2w

" #
, (1)

Figure 1. Illustration of the variability induced solely by training nondeterminism with the results
obtained with neural networks trained in identical conditions for themodeling of the heat equation, single
precision. “Best” and “worst” refer to the runs with the smallest and the highest average loss for the test
dataset (see Figure 14). Contour lines are stepped by 1/20 of the color bar limits, null isocontour is

omitted, and the amplitude ε and the simulation details are available in Section 2.1.1.

1 The Supplementary Material is available at https://gitlab.isae-supaero.fr/daep/cnn-multiphysics-repro.
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where x = x,yð Þ are the space coordinates, t is the time, n is the total number of pulses, ε is the pulse
amplitude, d is the Euclidean distance from the center of the pulse xc,i, and hw is the half-width at half
maximum of the Gaussian. When the amplitude ε value is negative, the pulse is referred to as a “negative
pulse.” Details on the implementation and parameters for the considered physical systems are
presented next.

2.1.1. Heat equation
The heat equation, also known as diffusion equation, represents the time-space dissipation of heat:

∂T
∂t

= α
∂
2T
∂x2

, (2)

where T is the temperature and α is the thermal diffusivity. Since the equation is linear, the background
temperature is set to F0 = T0 = 0:0 without the loss of generality. The diffusivity is α = 2:0�10�4 m2=s,
and the pulse’s amplitude and size are, respectively, ε∈ �1:0,1:0½ �—sampled by a random uniform
distribution—and hw = 20Δx (0:1m). Domain has ℓ = 1m of side, and boundaries are adiabatic (null
temperature gradient).

The system is simulated using the lattice Boltzmann method (LBM), where macroscopic quantities,
such as temperature, density, and velocity, are obtained by modeling the microscopic distribution of
particles described by the Boltzmann equation. More details on the method can be found in Krüger et al.
(2017). Simulations are implemented with the open source framework Palabos2 (Latt et al., 2020), using
the BGK (Bhatnagar–Gross–Krook) operator and a D2Q5 lattice.

2.1.2. Burgers’ equation
The Burgers’ equation is a nonlinear PDE used to represent a simplified dynamics of a viscous flow:

∂u
∂t

þu
∂u
∂x

= ν
∂
2u
∂x2

, (3)

where u = u;υð Þ is the flow velocity and ν is the kinematic viscosity. For each pulse, u is initialized with
Gaussian pulses, as in Equation (1), over a null background F0 = u0,υ0ð Þ = 0,0ð Þ; the velocity in y is
unchanged. The sign of the perturbations of u is selected randomly using a uniform distribution (50% of
chance for each sign), and its amplitude and size are ε = �0:1 and hw = 20Δx (0:1m). Viscosity is set to
ν = 5:0�10�4 m2=s. In order to avoid the appearance of shocks, the several initial pulses must be far from
each other. Here, a minimal distance of 2hw is enforced between all pulses when sampling their
coordinates. The computational domain is 1�1mwith null velocity gradient imposed at the boundaries,
and the simulation timestep isΔt = 0:02s. The solver is implemented using the open-source finite volumes
framework OpenFOAM3 (Weller et al., 1998), using second-order schemes in both space and time
(Crank–Nicolson).

2.1.3. Wave equation
Behavior of acoustical waves can be represented by the linear wave equation:

∂
2ρʹ
∂t2

= a2
∂
2ρʹ
∂x2

, (4)

where ρʹ = ρ�ρ0 is the acoustic density and a is the sound speed. In the current application, the ambient
density is set as F0 = ρ0 = 1:0, LBM units. The pulses are of fixed amplitude and size (0.001 and 12Δx,
respectively), and null velocity is imposed at boundaries (reflecting boundary condition). Each timestep

2 Palabos solver: https://palabos.unige.ch/.
3 OpenFOAM solver: https://www.openfoam.com/.
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represents a duration of Δt = 0:0029 ℓ=a, where ℓ = 100m is the domain size and a = 343m=s. This
means that 173 timesteps, that is, 43 recurrences (a recurrence being a jump of 4 timesteps, as explained in
Section 2.3) are necessary for a wave to reach the boundaries from the center of the domain. Acoustic
propagation is also simulated using the LBMwith the Palabos framework, same collision operator as for
the heat equation and a D2Q9 lattice.

2.2. Neural network architecture

In contrast to other time-evolving problems, such as natural language processing, most time-dependent physical
problemsdonot requirea lot of timememory.Onlya fewsnapshotsneed tobe remembered inorder to reconstruct
approximation of the partial derivatives included in the PDEs. In that context, recurrent neural network (RNN)
and long short-termmemory (LSTM)havebeenproved less effective (Fotiadis et al., 2020) for this recursive task
compared with a Convolutional Neural Network (CNN) approach with a few previous snapshots as input. The
latter strategy is therefore used here to output the next time frame in three unsteady physical systems.

The multiscale convolutional neural network introduced byMathieu et al. (2016) is used. As indicated
by the latter authors, the major limitation of a CNN is that it only accounts for short-range dependency.
The use of multiscale network is capable of surpassing this limitation by considering a different structure
size inside each scale. The current network is composed by three scales (N, N=2, and N=4), and the
transitions between them (upsampling and downsampling) are performed using bilinear interpolations.
Each scale follows the principle of the Laplacian pyramid used in image compression (Denton et al.,
2015), similar to a U-Net (Ronneberger et al., 2015).

For the sake of simplicity, a replication padding is used at the borders in order to keep the size of the
feature maps constant and to learn implicitly the physical boundary conditions of the problems (Alguacil
et al., 2021b). Nonlinearity is added by applying the rectifying linear unit activation function. Due to the
nature of the problem, they are not present for the totality of layers so that negative physical quantities values
can be obtained. A simplified representation of the neural network is presented in Figure 2, and details of the
architecture are listed in Table 1. It is composed by a total of 422,419 trainable parameters, divided in
17 convolutions. The neural network is coded using the PyTorch4 framework (Paszke et al., 2019).

Following Alguacil et al. (2021a), the input is composed by four scalar fields, called frames, issued
from the simulations, ordered in time. The output is the following frame, representing the field to be

Figure 2. Simplified diagram of the multiscale neural network. Arrows between boxes indicate a two-
dimensional convolution operation, and boxes’ height and breadth are proportional to the frame

dimension and the number of layers, respectively; interpolation operations are presented by dashed lines
for downsampling and continuous lines for upsampling.

4 PyTorch framework: https://pytorch.org/.
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estimated. A jump of four simulation timesteps is considered between each frame. A datapoint is a group
of these five frames (four inputs and one output), as illustrated in Figure 3, for the three target problems.
Note that the small difference between the frames is associated with the physical limitation of time
marching so that the system physics is correctly captured by the neural network (Alguacil et al., 2021a),
what also illustrates the importance of limiting the error and evaluating the neural network (NN)
reproducibility. The simulated fields are split with no overlap, that is, every datapoint has a group of
unique frames. At each forward pass, data of all frames are divided by the standard deviation of the first
frame before performing the calculations.

As in Mathieu et al. (2016), the L2-norm of the scalar fields and their spatial gradients compose the
loss L:

L =
1
M

XM
k = 1

λL2LL2þ λGDLLGDLð Þ, (5)

where

LL2 = Fk� eFk
� �2

andLGDL =
∂Fk

∂x
�∂eFk

∂x

" #2

þ ∂Fk

∂y
�∂eFk

∂y

" #2

: (6)

Table 1. Network architecture.

Scale N=4�N=4 N=2�N=2 N �N

Number of feature maps 4a, 32, 64, 32, 1 5, 32, 64, 128, 64, 32, 1 5, 32, 64, 128, 64, 32, 8, 1a

Convolution kernel size 3, 3, 3b, 3b 5, 3, 3, 3, 3b, 3b 5, 3, 3, 3, 3b, 5b, 1b

aInput and output.
bNot followed by an activation layer.
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Figure 3. Samples of a datapoint (five frames) for the three equations (more details in Section 2.1). Initial
four frames are used as input, and the last is the target. Contour lines are stepped by 1/20 of the color bar

limits, and null isocontour is omitted.
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2.3. Nonrecurrent and recurrent analysis

The network only accounts for one future frame. Estimation of further scalar fields is done via a recurrent
(autoregressive) analysis, where the output of a given model evaluation is used as input in the following
estimations, as performed in previous works in the literature (Lee and You, 2019a, 2019b; Alguacil et al.,
2021a):

eFf
=N eFf�1

,eFf�2
,eFf�3

,eFf�4
� �

, (7)

where N represents the neural network operator and the exponents the frame number. Preliminary
analysis of the wave equation estimation has shown that there is an average shift of the fields when
performing the recurrent analysis. This effect is contained by a posterior physics-based energy-preserving
correction, as inAlguacil et al. (2021a). The specificity of autoregressive strategies is that the networkwas
trained only to output the next frame, without knowledge on the long-time error produced. For the sake of
simplicity, no long-term loss, as in Tompson et al. (2017) andAjuria-Illarramendi et al. (2020), was added
to constraint this accumulation of error in time. Consequently, small differences due to nondeterminism at
the first recurrence might be amplified nonlinearly by the neural network during the autoregressive
procedure: the evaluation of the long-time variability due to nondeterminism is one of the main objectives
of this paper.

2.4. Training procedure and databases

The fields are initialized with one to four Gaussian pulses, as described by Equation (1), centered between
10%,90%½ � of the domain, in both directions. The number and the position of the pulses are defined
randomly, following independent uniform distributions.

Training and validation databases are composed by 500 simulations (400 for training and 100 for
validation) for each equation, with a total of 4,400 datapoints (3,200 þ 1,200), and scripts and
instructions for reproducing it are available in the Supplementary Material. During the learning phase,
batches of 32 datapoints (160 frames) are considered. Data augmentation is employed to increase the
diversity of the database in the case of heat and wave equations. In particular, random rotation
operations by multiples of π=2rad are performed for the group of fields composing the datapoints
before the training.

Reproducibility of the network is evaluated by performing several trainings with the exact same
architecture, database, and hyperparameters. The seeds of randomnumber generators are equally set at the
beginning of each training. Following nomenclature is used on this document: a “model” refers to the
trained neural network and a “run” refers to a givenmodel issued from an independent training performed
with the just described identical conditions. In the current framework, deterministic algorithms are not
available for all the operations present in the model, such as padding, for instance (Torch Contributors,
2019). On aCPU, all the trainings can be deterministic, but it is impractical due to poor performance. Even
if determinism could be achieved by using another framework, hardware, or model architecture, the use of
nondeterministic algorithms is deliberate as it mimics the training of the same model on different devices
or with distinct versions of libraries and drivers, where determinism may not be guaranteed (NVIDIA
Corporation, 2020a, 2020b).

Since the nondeterminism is associated with the truncation error, the trainings are done considering
two floating-point precisions: single (32 bits, framework’s default, referenced as FP32) and double
(64 bits, FP64). The model and database are exactly the same, and the framework’s default type is
modified at the beginning of the runs. Data are generated in double precision and converted to single
precision for the single-precision trainings using the framework’s default implicit to-nearest conversion.
The number of runs is 10 for single and double precisions per physical system. Such a number of
experiments is in accordance with the number of runs used in traditional hyperparameter optimization
(Li and Talwalkar, 2020). Forty trainings are performed for the wave equation in order to assess the
statistical convergence of the analysis (Section 3.2).
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A total of 1,500 epochs are calculated on each run. In order to have a representative range of the
observed behaviors, models are saved at every 125 epochs, so a total of 12 checkpoints are available at the
time of the postprocessing. Training is performed on an NVIDIAV100 GPU. The average time for the
completion of an epoch (training þ validation) is about 30 s in single precision and 100 s in double
precision, so, respectively, about 12 and 40 hr are necessary per run.

2.5. Testing procedure and databases

Two distinct testing datasets are used for the evaluation of the quality of the trained models.
Benchmarks databases: For each physical problem defined in Section 2.1, three benchmark simula-

tions that are not present in the training database are used, aiming at evaluating the capacity of
generalization of the models. The benchmarks are illustrated in Figure 4 (the pulse half-width used to
generate the training database is maintained for all cases). Note that since the neural network is highly
nonlinear, the principle of solution superposition for linear systems, such as the heat and wave problem,
are not guaranteed, and therefore constitutes critical generalization cases. For each problem, the relevant
benchmark cases are defined as:

• Heat equation:
– Gaussian pulse: a single Gaussian pulse is initialized at the center of the domain with an

amplitude ε = 1:0;
– opposed Gaussians: two opposite Gaussian pulses (ε = �1:0) are placed at the y symmetry axis

with �20Δx of offset from the center of the domain; and
– square pulse: a square pulse of side 2hw is located at the center of the domain with amplitude

ε = 1:0.
• Burgers’ equation:

– Gaussian pulse: the same initialization as for the heat equation is performed, but with an
amplitude ε = 0:01;

– opposed Gaussians: the same initialization as for the heat equation is performed, but with an
amplitude ε = �0:01 and offset of 40Δx; and

– sine wave: a 2D sine wave is defined by u = sin 2πxð Þsin 2πyð Þ= 4πð Þ and v = 0.
• Wave equation:

– Gaussian pulse: the same initialization as for the heat equation is performed, but with an
amplitude ε = 0:001;

– opposed Gaussians: the same initialization as for the heat equation is performed, but with an
amplitude ε = �0:001 and offset of 40Δx; and

– plane Gaussian: a plane wave of Gaussian contour in x (ε = 0:001), and constant shape along the
y direction is investigated. Note that this case is known to be critical when evaluating the
generalization capabilities of neural networks on such a wave problem (Sorteberg et al., 2018;
Fotiadis et al., 2020; Alguacil et al., 2021a).

Figure 4.Fields for the benchmark cases at the start of the simulation. Refer to Figure 3 for colormap and
contour properties.
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Random databases: Sets of 100 simulations with random Gaussian pulses, following the procedure
used for generating the training and validation datasets (see Section 2.4). This database allows the
production of statistics regarding the quality and variability of the models.

3. Analysis of Models

3.1. Statistical convergence of the procedure

The stochastic nature of the nondeterminisitic trainings of DL models on GPUs requires to provide the
results’ statistics over multiple equivalent trainings. However, the number of trainings needed for
converged statistics is still open, and highly depends on multiple factors such as the problem considered,
the floating precision during training, the number of recurrences in unsteady problems, and so forth. This
aspect is quantified in the current analysis on the wave equation where 40 runs are performed in both
single and double precisions.

Since the analysis is focused on the accuracy of the estimations, the recurrent response of the
benchmarks, further discussed on Section 4.1, is chosen as the criterion to evaluate the statistical
convergence of the procedure. Figure 5 presents the convergence of the normalized average root-
mean-square error (RMSE) for the three acoustic benchmarks described in Section 2.5, considering from
1 to 40 runs at recurrences 0 and 99. In order to achieve a �10% deviation from the average error of the
40 trained models (red dashed lines), about 20–30 runs are necessary for single precision, whereas only
3 in double. Since there is no sorting done in the selection of the runs, that is, Run 1 or Run 40 is not the one
with the lowest or highest value of error, there is no control on what will happen at the beginning of the
curves. It is a simple coincidence that most curves start with values under the average. Although statistical
convergence may not be achieved with only 10 runs, it is already sufficient to demonstrate the variability
of the models and to observe the discrepancy between the single and double precision trainings.

Considering the high computational cost required to perform multiple trainings on several physical
problems, only 10 runs are performed for the heat and Burgers’ equations for both single and double
precisions. Even if 40 runs are available for the wave equation, statistics in Section 3 will be drawn using
the first 10 training only for consistency. Again, even if statistical convergence is not guaranteed with this
limited number of runs, it is sufficient to highlight the inherent variability to nondeterminism aswell as the
effect of the floating precision.

Figure 5. Evolution of the normalized average root-mean-square error with the number of models for the
wave equation benchmarks, trainings in single (top) and double (bottom) precisions. Reference is the
average error at the given number of recurrences for the totality of trained models, indicated by the

continuous horizontal line; the hashed lines delineate a range of �10% of that value.
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3.2. Convergence of trainings

The evolution of the training loss in the learning phase for the two groups of runs (single and double
precisions) is shown in Figure 6 for the three physical equations. Trainings are limited here to 10 runs,
which is sufficient to distinguish variability and floating precision effects, yet statistical convergence for
FP32 is not satisfied as shown in Figure 5. In order to compare the variability among the 10 runs, a surface
plot displays the evolution of the relative loss, that is, the losses of a given a run divided by the first run for
each physical system and precision.

The several trainings share a similar overall behavior (value and slope of losses convergence) for both
floating-point precisions. However, comparing the loss betweenmultiple equivalent trainings reveals that
the losses in single precision differ rapidly after a small number of epochs whatever the physical problem
considered. Additionally, 10 different patterns are visible highlighting the high variability and nonrepro-
ducibility since all the trainings are completely different. In contrast, a different trend is observed for
double precision, where trainings become dissimilar only after a larger number of epochs, For instance, all
double precision heat equation models are identical, while for the Burgers’ equation, dissimilarities occur
after 500 epochs with only two distinct groups of results. For the wave propagation in double precision,
losses evolve identically until 400 epochs. After that, four patterns can be seen (Runs 1, 2, 5, 6, and
10 returned identical losses, the same for pairs 3–8 and 4–9). This result is a first insight on how floating
precision affects the training reproducibility. It suggests that reproducibility is governed by the variability
in the gradient descent path leading to potential multiple different local minima depending on the physical
problem considered. Intriguingly, the double-precision trainings were more reproducible for the less
complex physical systems, such as for the heat equation case, implying that the optimization search space
is also less complex for these cases. This aspect is tested by producing the loss landscape along the first
two principal component directions using a Proper Orthogonal Decomposition (POD) as in Li et al.
(2018). The analysis is illustrated in Figure 7 with the loss landscapes of the first run for the heat and wave
equations, single and double precisions. The main difference observed between the two is the apparent
larger gradients in the loss landscape of the former, that is, the contour lines beingmore concentrated in the

Figure 6. Evolution of the absolute (top) and relative (ratio to first run, at bottom) training loss for the
different physical systems. For visualization purposes, only 1 in every 10 values is shown for the

relative loss.
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heat equation problem indicate larger localized gradients, which forces the optimizer toward the optimum
more efficiently than flatter regions.

The statistics of losses for the trained networks are listed in Table 2. Themodels considered are the best
of each run having the lowest training or validation losses as criteria. The training variability is significant
for single-precision trainings, whereas the double-precision runs are more similar. Standard deviation of
the losses is about two times smaller for the latter group.

Differences between the models are further discussed by comparing the weights and feature fields for a
sample input. For these analyses and in the subsequent performance study (Section 4), the best models for
each run (state associated with the lowest validation loss) are considered.

3.3. Comparison of kernels

Apreliminary visual comparison of the convolution kernels is performed. As expected from the evolution
of losses, weights and biases are found different among the groups of runs, especially for single precision.

Figure 7. Two-dimensional visualization of the loss surface for the first run at different precisions (FP32
and FP64), wave and heat equations. The optimizer trajectory is superposed as a blue line with dots,

indicating the training checkpoints. Isocontours are in log scale, from 10�4 to 10�1.

Table 2. Statistics of the final total losses considering all runs in single (FP32) and double (FP64)
precisions for the best model obtained on each training.

Heat equation Burgers’ equation Wave equation

Training Validation Training Validation Training Validation

Single avg, �10�6 0.792 0.703 0.107 0.088 1.546 1.273
std, �10�7 2.473 0.756 0.294 0.230 4.521 2.086
max=min 2.717 1.401 1.925 2.243 2.538 1.569

Double avg, �10�6 0.659 0.642 0.102 0.087 1.446 1.537
std, �10�7 0 0 0.140 0.021 1.795 1.537
max=min 1 1 1.318 1.049 1.345 1.348
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No relationship or clear tendency could be noticed in terms of which kernels and biases were the most
different and their influences on each model’s behavior, which suggests that each group corresponds to a
distinct local minimum with different features, and not to the same minimum with various degrees of
accuracy and close features. A best-matching comparison, that is, looking for groups of similar kernels
from all of the available ones, could be done. However, the presence of similar filters but at different
positions on the network means that they are working with different input feature fields. Simultaneously
checking the similarity of kernels and incoming feature fields would become a very complex task, hard to
interpret. Instead, a global quantitative analysis is proposed and presented further.

For the group of different runs at equal precision of a given physical system, a deviation criterion δ wð Þ
calculated as the pixelwise standard deviation normalized by the maximum value among all runs in the
group is proposed. For a convolution weight w, it is calculated as

δ wð Þ = deviation wð Þ = std wrun = i::nð Þ
max jwrun = i::njð Þ : (8)

The calculation is performed for every individual weight, such that the dissimilarity between the
models is estimated. An example of the application of the deviation criterion is shown in Figure 8, for the
kernels that are, on average, the most contrasting among the heat and Burgers’ equation models trained
with single and double precisions. This result shows that for both equations, at least some filters are
extremely different. It confirms the assumption that even when all runs yield similar loss values, they do
not correspond to the same local minimum, and therefore are indeed different models with potential
different behavior, especially when evaluated in a recurrent mode (Section 4).

It can also be observed that trainingwith FP64was not a guarantee of unique behavior. Considering the
Burgers’ equation, even if the kernels are identical among the two sets of unique networks, the two kernels
are not analogous, with the upper right weight being specially distinct: negative for Runs 1, 2, 6, 8, and
10 and positive for the remaining trainings.

The distribution of the deviation criteria Πδ wð Þ for all convolution weights is displayed in Figure 9,
considering each set of physical system and precision. Runswith single precision have a probability mode
(i.e., the location at which the peak ofΠδ wð Þ occurs) around 0.1–0.2 deviation units, with about 80% of the

Figure 8.Weights, standard deviation, and deviation criterion formost contrasting convolution kernel for
the sets of heat (left) and Burgers’ (right) equation models trained with single (top) and double (bottom)

precisions.
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weights lower than 0.4 units. For the runs with the double precision, the mode corresponds to the null
deviation, representing 35% of the weights. Furthermore, 80% of the weights for the Burgers’ and wave
equations are contained within 0.1 of the deviation criterion. Finally, since all models were found to be
identical for the heat equation, deviation is 0 for all weights for such case. These values reinforce both the
significant variability of the single precision runs, probably converged to multiple local optima, and the
homogeneity of the trainings with double precision.

It can be also noticed that in single precision, Πδ wð Þ is similar for the three physical systems, whereas
large differences are observed in double precision. For instance, the heat equation yields perfectly
reproducible results, whereas Burgers’ and wave equations not. This not only exemplifies that the
behavior of the trainings in FP64 cannot be inferred from FP32, but also suggests that the nature of the
physical system plays a role in its reproducibility.

3.4. Feature fields in nonrecurrent mode

In complement of the computation of the deviation probability functionΠδ wð Þ (Section 3.3) to quantify the
difference between the models, the feature fields produced for a fixed input are also compared. Due to the
size of the network, the analysis is limited to the outputs of each scale (quarter, half, and full), the latter
being the output of the model, used as new input when evaluating the network in recurrent mode
(Section 4).

The first four frames and Frames 99–103 of the Gaussian pulse benchmark are selected as input.
Quantification of the deviation among different models is made using the criterion defined in
Equation (8), here applied to each value that composes the fields. The analysis is split between the runs
in single and double precisions, and the results are shown in Figures 10 and 11.

Even if restricted by the small size of the dataset, this analysis leads to three conclusions. First, a large
variation (order of 10% of the maximum value) is obtained for both the quarter and half scales, indicating
a rather high variability of the response for the hidden layers. Due to the use of nondeterministic
algorithms and the stochastic aspect of the optimization, the fact that each run leads to a unique result
is expected. Nevertheless, it is remarkable that every run leads to a completely different internal
dynamics, being the features observed at hidden layers different in both shape and amplitude. This is
represented by the uniform patches of high deviation. Second, it is clear that double-precision runs are
more uniform, with deviation values lower by around one decade and regions of high deviation being
sparser and smaller, indicating that the global behavior of the network is more similar despite using
nondeterministic algorithms. Third, floating-point precision influence seems to be analogous at different
simulation times. The distinctions between FP32 and FP64 just described are similar when having the
beginning of the simulations as input (Figure 10) or at a later time (Figure 11). Note that in Figure 11, the
ground truth inputs have been fed to the network, even for Frames 99–103, so that the error accumulation
in time is not taken into account here, but will be studied in Section 4.

Figure 9. Probability density of the deviation of the convolution weights for the single and double
precision runs.
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The amplitude of the deviation at the end of the full scale, corresponding to the output of the neural
network, is comparable between single and double runs, with the exception of the heat equation where
FP64 yields a deviation criterion close to the machine precision. For instance, the upper limit of the color

Figure 11. Pixelwise deviation of the feature fields (last field of each scale) for a model input
corresponding to the 99th frame of the Gaussian pulse benchmark, for runs with single and double

precisions. Note that themagnitudes do not correspond to any physical quantity, and colormap ranges are
different for each field, so the shapes of the features are visible.

Figure 10. Pixelwise deviation of the feature fields (last field of each scale) for a model input
corresponding to the starting simulation of the Gaussian pulse benchmark, for runs with single and

double precisions. Note that the magnitudes do not correspond to any physical quantity, and colormap
ranges are different for each field, so the shapes of the features are visible.
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bar for the deviation of the Burgers’ equation feature fields with start of the Gaussian pulse as input
(Figure 10) is 1:60�10�4 for single and 1:90�10�4 for double precisions. A high level of similarity is
expected at that stage of the CNN, since the output field is directly constrained by the loss function which
had similar values (Figure 6). Nevertheless, such small differences are capable of changing the behavior of
the solution when the analysis becomes recursive, aspect that is exemplified in Figure 1 and discussed and
quantified in Section 4. It suggests that a potential strategy to enforce reproducibility in multiscale
networks is to add a loss constraint for each scale output in order to constrain its internal dynamics. For
instance, this could be achieved with a loss combining each scale L =

P
iLi where Li compares the

scaled output with the corresponding downscaled target. However, such a technique could possibly affect
the dynamics of the multiscale architecture and reduce the model’s accuracy since the features do not
necessarily need to reproduce the downscaled target.

4. Performance of Recurrent Estimation

Several models have been obtained from the nondeterministic training, leading to small differences of the
output in single-prediction mode. This section investigates how the nondeterminism inherent to the
training affects the long-time prediction in recurrent mode. This is evaluated by calculating the total loss
(Equation (5)), considering the simulated and estimated fields, starting from the single-prediction mode
(recurrence number r = 0), and reusing the output as a new input (recurrent mode, r> 0). Note that the
recurrent fields are not used as targets when training the neural network, so the name “loss” is an
extrapolation of its concept. Since the loss is calculated considering normalized fields, it is not a direct
quantification of the estimation of the physical accuracy. To do so, the RMSE, issued from physical units,
is also calculated:

RMSE rð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
k = 1

Fk rð Þ� eFk rð Þ� �2vuut : (9)

For convenience, the RMSE values are normalized by the pulse amplitude ε. The recursive analysis is
performed for the nine benchmarks (Section 4.1) and the random pulse databases (Section 4.2).

4.1. Benchmarks test

The evolution of the total loss in the recurrent estimation of the benchmarks for the models trained with
single and double precisions is presented in Figure 12. The generalization capacity of the neural network
to capture the underlying dynamics is evidenced by the fact that a similar performance is obtained for
features that were not present in the training database (e.g., negative and planar pulses in the case of wave
propagation).

The loss (and consequently the error) remains relatively small even after 100 recurrences, showing the
overall quality of the estimation through time. The curves are similar when comparing the runs with the
same floating-point precision or the two groups of runs. For the wave equation, for instance, losses
approachL = 0:01 in the two graphs, that is, both single and double precisions resulted in similar overall
accuracy for the tested benchmarks. The quality and similarity of the two groups of runs is also present
when comparing the evolution of the error criterion RMSE, presented in Figure 13.

In spite of the general quality and similar behavior, an important spread exists among the different runs
for the single-precision trainings. Table 3 presents the statistics of the maximum to minimum ratio for the
10 models available per physics and precision considering the recurrent analysis illustrated in Figure 13.
Error max/min ratio peaks at 64 for single-precision trainings (heat equation and square pulse bench-
mark), and curves fluctuate around 5–10. For double precision, such a ratio is always lower than 12 for all
the physics and benchmarks, with an average value ranging from 1 to 4.

In conclusion, both single and double precisionmodels yield a similar behavior on the benchmarks, with
a slightly better accuracywhenusing double precision.However, the comparisonof several runs explicit that
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Figure 12. Evolution of total loss for the recurrent test of benchmarks for models trained with single (left)
and double (right) precisions; number of curves for double precision are reduced due to superposition of

identical responses.
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wave equation

number of recurrences

Figure 13. Evolution of the root-mean-square error normalized by the pulse amplitude for the recurrent
test of benchmarks for models trained with single (dotted line) and double (full line) precisions; central

line represents the average among the runs, and band indicates the minimum to maximum range.
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a high variability is present, especially for models obtained with single precision. Results also highlight that
the recursive strategy amplifies the differences due to the nondeterministic training, which makes repro-
ducibility a crucial element to take into account when applying neural network to recursive tasks.

4.2. Random pulses test

A statistical approach is used to compare the recurrent test results for the random databases. For each
simulation, the same recursive test used for the benchmarks database is performed. The evolution of the
testing losses is represented for a subset of recurrences (0, 5, 10, 25, and 50) in Figure 14. Each boxplot
describes the distribution of the loss for the 100 simulations that compose the test database, at the given
number of recurrences.

For most of the models, the median loss at recurrence 0 (evaluation of the model as it was trained) is
lower than the converging amplitude in training (L around 1:5�10�6). For the heat equation, compari-
son of average losses at recurrence 0 returns a factor 3.58 between the worst (Run 3) and the best (Run 8)
models trained with single precision and 1.00 for double precision (response is the same for all runs). For
Burgers’ equation, the values are 2.47 and 1.23. The wave equation is the one with the largest range, with
ratios 14.42 and 6.03. Clearly, this variation is not a direct outcome of the training losses’ ratios for the
different runs (Table 2) and is another indication of the increased difficulty for the neural network to learn
the wave equation case because of its hyperbolic nature.

The relationship between the models’ training losses and their performance on recurrent mode is
examined. Since the focus is on the accuracy of the estimation, RMSE is considered instead of the loss.
In Figure 15, the average error and min–max bands for the 100 simulations in the database are plotted
against training losses for recurrence numbers 0, 10, and 50. After several recurrences, small deviations
observed during training, here quantified by the models’ training losses, are significantly amplified.
The recursive error variability is elevated, and no conclusions can be made in terms of a direct
relationship between the variability and accuracy during the training and the inference. This means
that using the validation or training loss as the sole criterion for inferring on a model’s quality is not
sufficient for the current cases.

Important conclusions can be drawn from the acoustic propagation results. The model trained with the
biggest error both for the benchmarks (Figure 12), and the random pulse database (Figure 14) is Run 7 for
both precision. This result indicates that using a few double-precision trainings does not guarantee a more
precise network or lesser variability when compared to a unique or a few single-precision trainings. That
is, even if statistically the models obtained with double precision will probably be less variable, mostly
due to the repeatability of themodels, the individual runs can result in an error range as big as in the case of
single precision. As a general rule, authors recommend that, on the minimum, one must not consider a
singlemodel representative of the neural network capacity tomodel time-evolving systems, since only the
GPU nondeterminism can produce significant changes in the models.

Table 3. Minimum, maximum, and average of the max/min ratio of the recursive root-mean-square
errors considering the benchmarks from 0 to 100 recurrences.

Heat equation Burgers’ equation Wave equation

GP OG SP GP OG SW GP OG PG

min Single 2.705 1.657 1.135 1.985 1.809 1.300 3.154 1.320 1.897
Double 1 1 1 1.001 1.250 1.064 1.213 1.276 1.042

max Single 16.809 18.905 64.272 14.516 4.844 4.541 14.279 4.162 11.939
Double 1 1 1 1.243 1.565 1.825 11.089 1.901 4.581

avg Single 8.379 8.905 32.278 7.071 3.621 2.962 6.216 2.689 5.324
Double 1 1 1 1.110 1.427 1.434 4.205 1.520 2.099

Abbreviations: GP, Gaussian pulse; OG, opposed Gaussian; PG, plane Gaussian; SP, square pulse; SW, sine wave.
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In order to investigate if the precision used on training has an impact in the accumulation of error during
the recursive inference, the scope of the analysis is extended by considering the complete set of models
available per run (one in every 125 epochs, 12 models per run) in the wave equation case, and not only
considering the best models per run as in the previous experiments. On this analysis, not shown here for
conciseness, no clear distinction could be made in terms of amplification of the initial errors for models
trained with single or double precision.

Further evaluation of the floating-point precision influence at the time of inference is performed by
converting the models, that is, performing the inference with double precision for a model trained with
single precision and vice versa. Figure 16 shows the evolution of the percentual disparity between the
inference with the proper precision (the FP32 model evaluated in single precision and the FP64
model evaluated in double precision) and the flipped precision (the FP64 model evaluated in single
precision—“FP64 as FP32”—and FP32 model evaluated in double precision—“FP32 as FP64”) for the
Burgers’ and wave equations, when using the first run for each precision. Recurrent estimation until
r = 100 of the benchmarks returned an absolute disparity in RMSE lower than 0.1%when compared to the
inference performed with the proper precision. In other words, there is no apparent increase in error
accumulation due to the use of single or double precision in testing. This indicates that inference may be

Figure 14.Box plots of the total loss for the different models obtainedwith single precision (top) and double
precision (bottom), considering the random pulse databases at multiple number of recurrences. The central
lines indicate the median value, the box limits represent first and third quartiles, the whiskers represent the

median �1.5 times the interquartile range, and continuous lines connect the average for each run.
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performed with a lower precision with reduced impact in accuracy while gaining in performance (factor
1/3 in calculation time for the current application).

5. Conclusions

Reproducibility of a fully convolutional neural network used to model time-evolving physical systems
(heat, Burgers’, and wave equations) has been assessed by performing the same training several times
under GPU nondeterminism. The use of deterministic calculations is, up to now, not always available and
may also not be consistent among distinct hardware. Since the training nondeterminism is associated with
the truncation error, tests are performed with single (32-bit) and double (64-bit) precision.

Runs with single precision revealed a large variation in terms of parameters and results. For the current
test cases, the use of double precision was capable of limiting the variability of kernels by a factor 2, and
constrained the error in the recurrent analysis, while slightly increasing the models accuracy. Compared to

Figure 15. Average recurrent test error versus validation loss for all simulations in random pulse
databases at multiple numbers of recurrences (0, 10, and 50), filled markers for single precision and

empty markers for double precision; error bars indicate minimum to maximum range.

noitauqeevawnoitauqesregruB
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Figure 16. Evolution of the absolute disparity of the root-mean-square error for the recurrent test of
benchmarks for models when comparing inference with proper and flipped precisions (Run 1): trained in
single and inference in double (FP32 as FP64, full line) and for trained in double and inference in single

(FP64 as FP32, dotted line), for the Burgers’ (left) equation and the wave (right) equation.
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the single-precision runs, computation cost wasmultiplied by 2 in terms ofmemory and by 3 for the training
time. This important gain in cost may be prohibitive for more complex networks and equations, such as in
the evaluation of three-dimensional problems, and a hybrid strategy—multi- or mixed-precision
(Micikevicius et al., 2018)—could also be envisaged. In addition, it was observed that performing training
with double and inference with single precision resulted in negligible loss of accuracy.

The test with a broader number of simulations showed that there is an important range of variation
associatedwith the differentmodels.Although the overall quality of the approximation is almost unmodified
when training with single or double precision, the latter produces models that return more uniform results
when tested, what is directly associated with its similarity at null recurrence. However, there is no guarantee
that the variability of models will result in less variability of results, unless all models are unique.

The results presented here are for a single neural network architecture, a natural extension of this work
would be performing similar analysis for different architectures. Candidate strategies to the increase of the
precision that could also reduce the variability, but were not tested in current work, are: to impose hidden
layer reproducibility by additional terms to the loss function, effectively constraining intermediary results
with their corresponding target fields; the use of physics informed network (Meng et al., 2020); or the use
of “long-term loss” (Tompson et al., 2017). Furthermore, the analysis can be extended by evaluating
whether the variability and the influence of the floating-point precision are similar with an RNN, such as
an LSTM architecture. The hybridization of CNN predictions with classical simulation tools (Ajuria-
Illarramendi et al., 2020; Um et al., 2020; Özbay et al., 2021) could also limit the variability of results, in
particular for long times, even if still submitted to model variability.

The performed analysis has shown a high variability associated with a typical fully CNN model,
trained to reproduce time-evolving fields. Based on the highlighted behavior, it is recommended that
analogous work should be performed whenever possible when modeling physical systems, where small
deviations may lead to divergences or the onset of instabilities. This is reinforced by the apparent absence
of direct relationship between learning phase metrics and the inference errors among the best models
obtained on each run. Reproducibility must be given a continuous focus during the development of data-
driven physical surrogates, particularly if one aims at producing robust, application-oriented models such
as solver accelerators.
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