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Abstract

Wind derivatives are financial instruments designed to mitigate losses caused by adverse wind conditions.
With the rapid growth of wind power capacity due to efforts to reduce carbon emissions, the demand
for wind derivatives to manage uncertainty in wind power production is expected to increase. However,
existing wind derivative literature often assumes normally distributed wind speed, despite the presence of
skewness and leptokurtosis in historical wind speed data. This paper investigates how the misspecification
of wind speed models affects wind derivative prices and proposes the use of the generalized hyperbolic
distribution to account for non-normality. The study develops risk-neutral approaches for pricing wind
derivatives using the conditional Esscher transform, which can accommodate stochastic processes with any
distribution, provided the moment-generating function exists. The analysis demonstrates that model risk
varies depending on the choice of the underlying index and the derivative’s payoff structure. Therefore,
caution should be exercised when choosing wind speed models. Essentially, model risk cannot be ignored
in pricing wind speed derivatives.

Keywords: Wind derivative; wind speed modeling; conditional Esscher transform; model risk; risk-neutral pricing;
generalized hyperbolic distribution

1. Introduction

As the net zero commitments gather global momentum, the wind power industry has experi-
enced record growth in recent years. With almost 94 GW of capacity newly added in 2021, the
total global wind power capacity has reached 837 GW (Global Wind Energy Council, 2022). The
average annual electricity demand covered by wind power plants increased to 14% in Europe in
2021 (WindEurope, 2022). As more countries seek to meet their renewable energy targets, wind
power is expected to comprise a higher share in the electricity market.

Wind turbines depend on the immediate availability of wind for energy production. Given
that storing wind for later use is infeasible, the inherently intermittent and non-storable nature
of wind results in significant fluctuations in power generation. This variability creates revenue
uncertainty for energy producers (Dowell & Pinson, 2016; Zhang et al., 2014). To mitigate the
financial impacts of unfavorable wind conditions, wind derivatives have been developed as a risk
management tool (Alexandridis & Zapranis, 2013).

The payoffs of wind derivatives are associated with an index representing wind conditions or
wind power production in specific geographical areas and time periods. Alexandridis & Zapranis
(2013), Benth & Benth (2009), and Rodriguez et al. (2021) suggest using accumulated wind speed
over a time period as the underlying index since wind speed is a critical determinant of wind power
production. The European Energy Exchange trades wind power futures based on the average load
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factor, calculated as the ratio of produced wind power to installed production capacity. Nasdaq’s
wind power future is written on the German wind index NAREX WIDE, a synthetic index derived
from wind conditions and wind turbine power curves.

Wind derivatives make payouts to energy producers when adverse wind conditions result in
low wind power production, mitigating revenue losses. This financial protection allows energy
producers to maintain stability in their operations and revenues, thereby making renewable
energy projects more appealing to investors and promoting the global shift towards cleaner energy
sources (Gatzert & Kosub, 2016). By transferring the risk associated with wind power production
to financial markets, wind derivatives contribute to the growth and resilience of the renewable
energy sector.

As the demand for renewable energy and effective risk management tools grows, further
research in the field of wind derivatives becomes increasingly important. In this paper, we con-
tribute to the wind derivative literature by investigating the pricing of wind derivatives, which is
fundamental to the development of the wind derivative market.

We consider futures and options written on wind speed indices. The pricing of such wind
derivatives necessitates two key components: a wind speed model and a pricing approach.
Misspecification of the wind speed model can result in considerable pricing errors. Several
researchers (Benth & Benth, 2009; Alexandridis & Zapranis, 2013; Rodriguez et al., 2021) assume
normally distributed wind speeds when pricing wind derivatives. However, wind speed data often
exhibit skewness and excess kurtosis (Gracianti et al., 2021), violating the normality assumption.
This paper aims to examine how misspecification of the wind speed model affects wind derivative
prices.

Our contribution to this paper is fourfold. First, we propose the use of the generalized hyper-
bolic (GHYP) distribution for capturing the skewness and leptokurtosis observed in wind speed
data. To the best of our knowledge, this is the first instance of applying the GHYP distribution
in wind speed modeling. Our proposed model not only accounts for non-normality but also
incorporates various stylized features of wind speed.

Second, we develop risk-neutral pricing approaches that are suitable for both the proposed
parametric wind speed model and the semi-parametric model proposed by Gracianti et al.
(2021). By applying the conditional Esscher transform for the change of measure, we obtain wind
derivative prices.

Third, we compare wind derivative prices under different distribution assumptions and assess
how the extent of model risk varies with the underlying index and payoff structure of the deriva-
tive. This comprehensive analysis allows us to better understand the impact of distribution
assumptions on wind derivative pricing, thereby highlighting the importance of accurate wind
speed modeling.

Fourth, the wind speed modeling and wind derivative pricing, as discussed in this paper, exem-
plify how actuarial expertise can be applied to address the financial uncertainties associated with
renewable energy and climate change mitigation. Actuaries are adept at creating sophisticated
models to capture the complex dynamics and uncertainties in financial and environmental data.
In this paper, actuarial expertise is leveraged to develop more accurate models for wind speed,
which is essential for pricing and risk management of wind energy. Actuaries have a strong back-
ground in pricing and valuation of complex financial instruments. We demonstrate how actuaries
can apply their knowledge to the development of innovative pricing methodologies for wind
derivatives, which account for the non-normal characteristics of wind speed data and other factors
influencing wind power production. Actuarial science has long been instrumental in quantifying
and managing risks, and as the world faces unprecedented challenges due to climate change, the
need for actuarial expertise in tackling these risks becomes increasingly urgent. Our work aims to
inspire further research in the area of climate-related problems and encourage the development
of innovative solutions.
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Gracianti et al. (2021) find that wind speed exhibits several stylized features, including tempo-
ral correlation, seasonality in both mean and variance, volatility clustering, and non-normality.
Although various time series models (Benth & Benth, 2009; Alexandridis & Zapranis, 2013;
Rodriguez et al., 2021; Benth & Benth, 2010; Benth & Saltyté, 2011) have been proposed previ-
ously for wind speed, only a subset of the stylized features is considered in these models. Gracianti
et al. (2021) capture all these features with a semi-parametric model, in which bootstrap is used to
retain the non-normality, and a seasonal-autoregressive-seasonal-generalized autoregressive con-
ditional heteroskedasticity (s-AR-s-GARCH) structure is used to incorporate all other features.
The parameters in the s-AR-s-GARCH structure are estimated with the quasi-maximum likeli-
hood (QML) method, which assumes normality. However, the bias of the QML estimator is not
studied for the wind speed data.

To reduce potential bias in model estimates, we propose that the GHYP distribution and its
two special cases — normal inverse Gaussian (NIG) and hyperbolic (HYP) - be used for capturing
the non-normality in wind speed. The GHYP distribution is a flexible distribution class that nests
HYP, NIG, Student’s ¢, variance-gamma, and normal distributions. It has been shown to provide
a good fit to daily stock returns, which also exhibit leptokurtosis, by Bibby & Serensen (2003)
and Chen et al. (2008). Our proposed wind speed model amalgamates the s-AR-s-GARCH struc-
ture and an error term that follows a GHYP distribution. Although the NIG distribution has been
adopted by Ah¢an (2012) and Cabrera et al. (2013) for temperature and rainfall modeling, we have
yet to see any application of the GHYP distribution in wind speed modeling. The proposed para-
metric model can be easily estimated using the maximum likelihood (ML) method. By comparing
the estimates obtained from the QML method and the ML method with the GHYP distribution,
we show that the bias of the QML estimator is significant.

Risk-neutral pricing is widely used for equity derivatives. The idea is to change the real-world
measure to a risk-neutral one under which all assets have the same expected rate of return, namely
the risk-free rate. There have been multiple attempts to price wind derivatives with the risk-neutral
approach. Benth & Benth (2009) represent wind speed dynamics with a continuous-time autore-
gressive model, and the Girsanov theorem is used to obtain the risk-neutral wind speed dynamics.
Alexandridis & Zapranis (2013) employ a similar approach with Benth & Benth (2009) for pricing
wind speed futures. Benth & Pircalabu (2018) adopt non-Gaussian Ornstein-Uhlenbeck-type pro-
cesses for wind power production index and derive the risk-neutral prices of wind power futures
using Esscher transform. However, the Girsanov theorem and Esscher transform do not apply
to the wind speed dynamics proposed in this paper. The Girsanov theorem is applied to wind
dynamics driven by Brownian motions by Benth & Benth (2009). The s-AR-s-GARCH structure
with non-normal error terms is unsuitable for the Girsanov theorem. Although Benth & Pircalabu
(2018) use a gamma distribution for log wind power index to allow for skewness and leptokurtosis,
their model assumes deterministic volatility. The Esscher transform cannot be applied to models
with stochastic volatility. Therefore, our proposed wind speed model requires a different approach
for the change of measure.

We adopt the conditional Esscher transform to meet our pricing needs. The conditional
Esscher transform is developed by Bithlmann et al. (1996) as a generalization of the Esscher trans-
form to serve a more general class of stochastic processes. The conditional Esscher transform
has been employed to price derivatives when the underlying asset follows various stochastic pro-
cesses, including a GARCH process with Gaussian and non-Gaussian innovation distributions
(Siu et al., 2004; Badescu & Kulperger, 2008), a regime-switching geometric Brownian motion
(Elliott ef al., 2005), and a Markov-modulated jump-diffusion model (Elliott et al., 2007). The
conditional Esscher transform is well-suited for the proposed wind speed dynamics.

We show two different approaches to using the conditional Esscher transform. In the first
approach, the risk-neutral wind speed dynamics are derived using the conditional Esscher trans-
form. The wind derivative prices are determined by simulating wind speed under the risk-neutral
measure. In the second approach, wind derivative prices are determined by simulating wind speed
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under the real-world measure and by evaluating the Radon-Nikodym derivatives associated with
the conditional Esscher transform. This approach is also considered by Badescu & Kulperger
(2008) for stock option pricing. While the first approach can be more computationally efficient,
the second approach is more versatile since it does not require risk-neutral dynamics. For the
semi-parametric wind speed model proposed by Gracianti et al. (2021), only the second approach
can be applied.

To assess the impact of model misspecification on wind derivative prices, we compare prices
obtained under three distribution assumptions: normal, GHYP, and non-parametric. Futures and
put options written on two types of wind speed indices are considered in the pricing. We examine
whether the extent of model risk changes with the choice of the underlying index and derivative
payoff structure.

The remainder of this paper is organized as follows: section 2 describes the fundamentals of
wind power generation; section 3 constructs wind speed derivatives; section 4 introduces the
wind speed data used in this paper; section 5 presents wind speed models with different distribu-
tion assumptions and their estimation; section 6 discusses the risk-neutral pricing of wind speed
derivatives using the conditional Esscher transform; section 6 summarizes the pricing results and
assesses model risk in wind derivative pricing; and section 7 concludes the paper.

2. Wind Power Generation

In this section, we provide some fundamental facts underlying the operation of wind turbines
that are relevant to our research. Modern wind turbines convert the kinetic energy of wind into
mechanical energy and subsequently into electrical energy (Manwell et al., 2009). Wind turbines
consist of several components, including a rotor with blades, a nacelle housing the generator, and
a tower supporting the structure. When wind flows across the turbine blades, it creates lift forces
that cause the rotor to rotate, driving the generator to produce electricity.

Wind power generation is influenced by various factors, including wind speed, wind direction,
air density, turbine specifications, and geographical location (Manwell et al., 2009). Wind speed is
the most crucial factor affecting wind power generation, as the amount of kinetic energy available
in the wind is directly related to wind speed. The relationship between wind speed and power
output can be described using the power curve of a wind turbine. The power curve, which depends
on turbine designs, represents the electrical power generated by a turbine as a function of the
wind speed at a specific hub height. There are three important wind speed thresholds in the power
curve:

e Cut-in wind speed, typically around 3-4 m/s: This is the minimum wind speed at which a
wind turbine starts generating power.

e Rated wind speed, typically around 11-16 m/s: The turbine reaches its maximum or rated
power output at this wind speed.

e Cutout wind speed, usually around 20-25m/s: This is the wind speed at which the turbine
shuts down to prevent damage caused by extremely high winds.

Wind turbines start to rotate and generate power when wind speed exceeds the cut-in speed.
Power production increases with wind speed until wind speed reaches the rated speed at which
the turbine produces the maximum power output. As wind speed continues to increase, the power
output remains constant or is reduced slowly. When wind speed exceeds the cutout speed, wind
turbines shut down to prevent damage.

3. Wind Speed Derivatives

The payoffs of a wind speed derivative can be associated with an index that measures wind speed
or wind power production in pre-specified geographical areas and time periods. For simplicity and
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transparency, this paper considers two cumulative wind speed indices proposed by Alexandridis &
Zapranis (2013) and Caporin & Pres (2012), respectively. The first index is the sum of the daily
average wind speed over a pre-specified period, while the second index is the sum of daily average
wind speed between the cut-in and cutout speeds over a pre-specified period. Mathematically,
these two cumulative wind speed indices (CWSI) over the period of [fy, ;] are expressed as

follows:
t
()
CWST,) =Y W, 1)
t=ty
31
CWSI? =3 W 1< Wi <), (2)

=ty

where W; is the average wind speed at the turbine height during period ¢ (we assume daily periods
in this paper), / and u are the cut-in and cutout speeds, and 1( - ) is an indicator function which
takes the value of 1 if | < W; < u and 0 otherwise. Since turbines only operate when wind speed is
between the cut-in and cutout speeds, CWSIE?O)JI] is a better indicator of the amount of wind power
production. In this paper, we set the cut-in and cutout speeds at 3 m/s and 25 m/s, respectively,

which are typical values for wind turbines.’

We examine wind derivatives with two types of payoff structures: futures and options. Let
us denote D as the tick size of the future or option, K as the option strike price, and F as the
future price. At the time tj, the producer enters a derivative contract written on a wind speed
index CWSI[y, 1,1 as defined in (1) or (2). At the derivative expiration date #;, the derivative payoff
g(CWSI[y, +,1) is expressed as follows:

Future pay-oft: g(CWSI(4, 1)) =D (CWSI[tO,tl] - F) ,
Put option pay-off: g(CWSI(;, 1) = max (D(K — CWSIj,1,1),0) .

Since a lower wind speed index generally results in lower wind power production, a wind
energy producer should short the future or long the put to hedge the uncertainty in wind power
production. When the realized wind speed index falls below the future price or strike price, the
producer is expected to produce less wind energy and thus suffer from revenue loss. At the same
time, the producer receives a positive payoff from the derivatives to offset the revenue loss from
wind energy production.

4. The Wind Speed Data
4.1 The historical data
We obtained the hourly average wind speed at the Bergen station in the period of 2017-2021

from the German Weather Service.2 The Bergen station is located in Niedersachsen, the state in
Germany with the highest number of turbines and installed wind power capacity. We compute
the daily average wind speed by taking the mean of the hourly average wind speed on the same
day. Missing values are present in the hourly wind speed dataset. If the hourly values are missing
for the entire day, the daily average is imputed by the mean of the daily average values on the same
day but in other years with data available.

The left panel of Fig. 1 displays the time series plot of daily average wind speed at the Bergen
station, with seasonal patterns clearly visible. The right panel shows the day-of-year average wind
speed, calculated as the average wind speed values for the same day over the years 2017-2021,

Thttps://www.energy.gov/eere/articles/how-do-wind-turbines-survive-severe-storms)
2h‘ftps:/ /www.dwd.de/EN/climate_environment/cdc/cdc.html
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Figure 1. Left panel - time series plot of daily average wind speed at Bergen station in 2017-2021. Right panel - day-of-year
average wind speed, with a red LOWESS smoother line.

and the red line represents the corresponding LOWESS smoother. The right panel reveals higher
daily average wind speed and variability in winter and lower values in summer. Table 1 provides
descriptive statistics for the daily average wind speed. The notable skewness (1.39) and excess
kurtosis (2.58) indicate a positively skewed and strongly non-normal wind speed distribution.

4.2 Wind speeds at turbine height
The wind speed data at the Bergen station are collected by weather transmitters located 10 m
above the ground. Wind turbines, the height of which ranges from under 60 m to over 170 m,
experience much stronger wind than weather transmitters. To estimate the wind speed at turbine
height, we transform the wind speed obtained from weather stations using the wind profile power
law, which is expressed as follows:

h\a
w=v(=), 3)
s

where W is the wind speed at the turbine height /i, V is the observed wind speed at the weather
station height s, and a is the power law exponent. The power law exponent varies with atmo-
spheric conditions and land features (Spera & Richards, 1979). It is set at 1/7 in several studies
(Burton et al., 2011). Burton et al. (2011) suggest the following approximation for the power law
exponent:

1

In (h/z0)’

where zg is the roughness length representing the surface roughness. Typical roughness length
for open farmland with few trees and buildings is 0.03 m, while typical roughness length for
an offshore wind farm is 0.001 m. In the following analysis, we assume that s =10, h =90, and
zp = 0.03, which yield a power law exponent of a = 0.1249.

5. The Wind Speed Model
5.1 The s-AR-s-GARCH model

The pricing of wind speed derivatives requires a model that can adequately capture the features
of wind speed and provide good wind speed predictions in the contract period. We capture the
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Table 1. Statistics of the daily average wind speed at the Bergen station in 2017-2021

Minimum Maximum Median Mean St. Dev. Skewness Ex. Kurtosis

0.28 6.30 1.45 1.65 0.82 1.39 2.58

features of wind speed with the s-AR-s-GARCH model proposed by Gracianti et al. (2021). This
model is expressed as follows:

=Wt +yr (4)
P
= Z apyi—p + €1 (5)
p=1
€ = 0121, (6)
zy ~1.i.d.(0, 1), (7)

where 11, is the unconditional mean of the wind speed on day ¢, y; is the demeaned wind speed, ¢;
is the error term, P is the number of AR terms, a, is the AR coefficient, o; is the volatility on day
t, and z; is a random variable following a distribution with zero mean and unit variance.

Seasonality in daily average wind speed and variance of daily average wind speed is incor-
porated into the model by including the Fourier series in the dynamics of u; and o;. Volatility
clustering is captured by a GARCH(U, V) model for o;. Mathematically, y; and oy are further
modeled as follows:

X d(t)
e =co+ ; Pc.r COS (2nr—> + Z @sr Sin (27rrﬁ> (8)
) S d(t) ®)
o =w+ Z Ye,r COS (27rr—) + Z Ys,r SiN <2nrﬁ)
Uf=1 v
+ Z auetz_u + Z ,Bvatz_v, 9)
u=1 v=1

where R and S represent the numbers of terms summed in the Fourier series, and d(t) denotes the
day of the year and cycles through 1,2, . . ., 365.

Gracianti et al. (2021) provide an in-depth discussion of the motivation of this model based
on the study of the daily wind speed at various German weather stations. Similar models have
also been considered in Taylor et al. (2009). To avoid repetition, we summarize the key arguments
for this model presented in Gracianti et al. (2021). As observed in Fig. 1, seasonality presents in
both the mean and variance of wind speed. Therefore, the Fourier series is used in both mean
and volatility models to capture seasonality. The AR structure is used to incorporate cyclical
effects, and the suitability of an AR structure can be verified by examining the ACF and PACF
plots of deseasonalized wind speeds. Volatility clustering is found to be significant upon check-
ing the autocorrelation of squared residuals obtained from fitting an AR model to deseasonalized
wind speeds. Overall, the s-AR-s-GARCH model demonstrates reasonable goodness of fit and
out-of-sample forecasts.

The values of P, R, S, U, and V are selected to minimize the Akaike information criterion
(AIC). The considered value ranges are as follows: P=1,...,5,R=1,2,85=1,2, U=1,2, and
V =1, 2. Gracianti et al. (2021) examined the ACF and PACF plots for the wind speeds at various
stations in Germany and found that a maximum of five AR lags is sufficient for most stations.
Fourier series with one or two terms have been commonly employed to model seasonality in tem-
perature and wind speed due to its parsimony (Campbell & Diebold, 2005; Taylor et al., 2009;
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Table 2. Estimated parameters and their standard errors for the s-AR-s-GARCH model using QML estimation

Co ay az $s,1 $c,1 ® ay B V5,1 Yl
1.6090 0.5181 —0.0350 0.1506 0.2402 0.2827 0.1314 0.2687 0.0294 0.1600
(0.0307) (0.0262) (0.0248) (0.0406) (0.0406) (0.0655) (0.0301) (0.1476) (0.0142) (0.0401)

Espen & Jurate, 2012). They have been shown to be sufficient in removing seasonal fluctuations in
their wind speed observations. Consequently, we allow the number of Fourier terms, R and S, to
take values of 1 or 2. While the GARCH(1,1) model is often sufficient for capturing the volatility
dynamics in wind speed data (Taylor et al., 2009; Gracianti et al., 2021), some cases call for a more
elaborate GARCH(2,2) structure (Tol, 1997). As a result, ARCH and GARCH orders, U and V, are
assumed to take a value of 1 or 2. We further discuss the model estimation and order selection in
section 5.2.

5.2 Quasi-maximum likelihood estimation and order selection

Campbell & Diebold (2005) estimate a similar time series model for daily average temperature
using the quasi-maximum likelihood (QML) estimation proposed by Bollerslev & Wooldridge
(1992). The QML estimation assumes normal distribution and thus maximizes normal log-
likelihood. Bollerslev & Wooldridge (1992) motivate the use of the QML estimation by showing
that the estimators are not significantly biased when the true data follow a student’s ¢ distribution.
Order selection and parameter estimation can be performed simultaneously. We use QML to esti-
mate s-AR-s-GARCH models with different values of P, R, S, U, and V, and we then select the
model with the lowest AIC. The AIC is determined as follows:

AIC=—21n (L) 4 2N,,

where L is the maximized likelihood of the estimated model and Ny, is the number of parameters.
Based on the maximized quasi-likelihood, the model with P=2and R=S=U =V =1 is found
to yield the lowest AIC.

The estimated parameters and corresponding standard errors for the selected model are pre-
sented in Table 2. All the estimated parameters are significant at 5% significance level, thereby
verifying the presence of the identified wind speed features.

5.3 The generalized hyperbolic distribution

Bollerslev & Wooldridge (1992) suggest that the bias and variability of the QML estimator tend
to increase with the degree of heteroskedasticity and leptokurtosis. Wind speed also exhibits
skewness, the impact of which on the bias of the QML estimator is unclear. Therefore, it is
necessary to consider both QML estimation and maximum likelihood (ML) estimation with
other distributional assumptions and to investigate how the choice of distribution assumption
affects parameter estimates. In addition, several researchers (Benth & Benth, 2009; Alexandridis &
Zapranis, 2013) assume normally distributed wind speed when pricing wind derivatives. The alter-
native distributional assumptions will aid us in assessing pricing errors that may arise from model
misspecification.

To capture the skewness and leptokurtosis present in wind speed, we consider the generalized
hyperbolic (GHYP) distribution and its two special cases — hyperbolic (HYP) distribution and
normal inverse Gaussian (NIG) distribution for z;. The GHYP distribution is capable of modeling
the leptokurtosis exhibited in daily stock returns as shown by Bibby & Serensen (2003) and Chen
et al. (2008). It is a flexible distribution class that nests HYP, NIG, Student’s t, variance-gamma,
and normal distributions.
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The probability density function (PDF) of a GHYP distribution can be expressed as follows:

y KA_%(a\/Sz +(x—pn)?) S
fouyp(x; A, a, B,8, 1) = . P forxeR,  (10)
VTS (8Y) (/82 + (x— p) /)

where «, 8, 6, and u are the shape, skewness, scale, and location parameters, respectively, y2 =
a? — B2, and K; () is a modified Bessel function. The domain of the parameters are i € R and

§>0,|8] <a, ify > 0;
§>0,|8|l<a, ify =0;
§>0,|8]<a,ify <O.

The moment-generating function of the GHYP distribution can be written as follows:

2 @2 5 Ky (8y/a? — (B +u)?
il )A< ) B+ul<a. (1)

a? — (B +u)? Ky, (8y)

The expectation and variance of the GHYP distribution are shown below:

Mguyp(u) =" - (

)
E(X) = p+ fm(aw,

b 282
Var(X) = “R0y) + "’;—zsxay),

where R, (.) and S, (.) are functions defined as follows:

Kiy1(u Ko 2K (u) — K}, ()
Ry = 2 g 5 = D2 = B
K () K2(u)
Since z; follows a distribution with zero mean and unit variance, we impose the following
constraints on «, 8, 8, and u to standardize the GHYP distribution:

, forueRT.

1)
e ?ﬂRA(sw:o,
8 282
Ry y)+ P25, 5y)=1.
Y Y

Therefore, only three parameters need to be estimated for the GHYP distribution.

The NIG distribution is a special case of the GHYP distribution with A = —%. Setting X to —%
in (10) yields the PDF of the NIG distribution:

y=1/2 K,l(a\/m) Blx—p)
50, 8,8, 1) = ' e
ficls @, B, 8, 1) V28 V2K 5(8y) (VO + (x — w)2/a) ‘

The HYP distribution is a special case of the GHYP distribution with A = 1. The PDF of the
HYP distribution is given by

forx € R.

S \ y K%(Ol\/fsz-i-(x—lt)z) po)
‘myp(x; a, B,8, u) = . -ePYH ] forx e R.
NV2m K1 (8y)  ( 82+(x—u)2/oz)_%

5.4 Maximum likelihood estimation

We employ the maximum likelihood (ML) method to estimate s-AR-s-GARCH models with the
NIG, HYP, and GHYP distributions, considering various values of P, R, S, U, and V. Subsequently,
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Table 3. Parameter estimates for the s-AR-s-GARCH model assuming various distributions

Normal NIG HYP GHYP
co 1.6090 (0.0307) 1.6068 (0.0265) 1.6075 (0.0265) 16091 (0.0263)
e 0 3985 o
@  _00350(0.0248)  —0.0604(0.0225) —0.0608(0.0225) —0.0626 (0.0226)
a3 . 0.0550 (0.0197) 0.0554 (0.0196) 0.0561 (0.0196)
e 1506 (o 0406) e ) B = e
e S S .02224 0 ER e
- © 0.2827(0.0655) 0.1582(0.0463)  0.1570 (0.0466) 10,1523 (0.0457)
o 0.1314 (0.0301) 0.0874 (0.0239) 0.0855 (0.0234) 0.0828 (0.0221)
L - R .05662(0 1113)... BT
0 e 0 s RO
Yer 0.1600 (0.0401) 0.0872 (0.0272) 0.0866 (0.0274) 0.0843 (0.0269)
p=8 /a 0.8109 (0.0508) 0.7201 (0.0598) 0.5917 (6.0828)
¢ = ,32 4.1203 (0.9453) 2.8848 (0.7809) 0.5156 (2.4339)
.A. 705() T ..........24703(05510).
e 7 e

we select the model yielding the lowest AIC under each distribution assumption. The parameters
a and B in the NIG, HYP, and GHYP distributions are not estimated directly. We estimate their

transformations, p = B/« and ¢ = § /a2 — B2, instead. We note that there is a potential identifi-
cation problem in fitting the model with the GHYP distribution since a different combination of
parameters A, ¢, and p may lead to the same or close likelihood.

For all three distributions, the model with P=3 and R=S=U =V =1 leads to the lowest
AIC. It is important to note that, under the assumption of a normal distribution, the optimal
AR order P is 2. This deviation in optimal AR order emphasizes how distribution assumptions
can impact the model selection, which in turn affects future wind speed predictions, exemplifying
model risk.

Table 3 presents the parameter estimates and their standard errors under four different distri-
bution assumptions. The QML estimates are listed under the column “Normal” for comparative
purposes. The models with the NIG, HYP, and GHYP distributions have very close parameter esti-
mates since the NIG and HYP distributions are special cases of the GHYP distribution. All three
distributions allow for skewness and excess kurtosis. Due to the different values of A used for the
three distributions, the estimates for p and &£ change with the assumed distribution.

Let us compare the parameter estimates obtained under the normal and HYP assumptions.
Despite differing AR orders under normal and HYP assumptions, parameter estimates remain
comparable due to the utilization of the same model structure. Among the five common param-
eters — ¢, d1, a2, 5,1, and ¢, — used for the conditional mean, only the AR coefficients a; and
a; exhibit a significant difference under the two assumptions. In our model, the AR coefficients
quantify how past shocks influence the current value, while the constant ¢y and the Fourier series
coefficients ¢ and ¢.,; determine the long-term mean of wind speed. Since the estimated values
for co, ¢s,1, and ¢ do not display a significant difference under the two assumptions, we antici-
pate that the mean forecast of wind speed over the long term will not vary considerably. However,
short-term forecasts may show significant differences.

The estimates for all five parameters - w, a1, B1, ¥s51, and Y1 - in the conditional volatil-
ity display substantial differences under the two assumptions. Furthermore, the estimates for the
shape and skewness parameters under the HYP distribution are significant, suggesting a consider-
able deviation from a normal distribution. Taking these observations into account, it is expected
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Table 4. AIC values of the four models with different distribution
assumptions

Normal NIG HYP GHYP

AIC 3,604.989 3,295.69 3,294.878 3,296.073

02 03 04

Density

0.0 0.1

Figure 2. Kernel densities of the standardized residuals under various distribution assumptions.

that the shapes of the distribution of future wind speeds under the two assumptions will differ
significantly.

Therefore, the choice of distribution assumption impacts both the selected model and the
estimates of model parameters, particularly those for volatility, indicating potentially significant
model risk. We should be cautious about using the QML estimates in any study where volatility is
an important consideration.

5.5 Model comparison

To compare the goodness of fit of the four estimated models, we compute their AIC values. A
lower AIC indicates better goodness of fit. Table 4 summarizes the AIC values for the four esti-
mated models. The normal distribution results in a much higher AIC than any other considered
distribution, indicating that it is inadequate for the wind speed data. The HYP distribution leads
to the lowest AIC, but it only outperforms the NIG and GHYP distributions marginally.

To further examine the suitability of the four distributions, we compare the kernel densities
of the standardized residuals obtained from the four models in Fig. 2. All four density curves
present a significant positive skewness. The kernel density curves obtained under the NIG, HYP,
and GHYP distributions overlap with each other. Also, they are slightly more skewed than the
density curve obtained under the normal distribution. The overall difference between the four
density curves is small. Therefore, the choice of distribution assumption has little influence on the
standardized residuals.

Under each distribution assumption, we also compare the theoretical or estimated density with
the kernel density of the standardized residuals in Fig. 3. The solid line in the top left panel
represents the theoretical density of the assumed standard normal distribution. In contrast, the
dashed line represents the kernel density of the standardized residuals obtained under the normal
assumption. The theoretical density is symmetric, while the kernel density is positively skewed.
The kernel density also appears to have a heavier right tail and a lighter left tail than a normal
distribution. The large discrepancy between the theoretical and empirical distributions of the stan-
dardized residuals indicates that the normal assumption is inappropriate. Under the NIG, HYP,
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Figure 3. Theoretical/estimated densities and kernel densities of the standardized residuals under various distribution
assumptions.

and GHYP distributions, the estimated densities are calculated using the estimated distribution
parameters: A (only estimated for the GHYP distribution), «, 8, i, and §. The differences between
the estimated and kernel densities of the standardized residuals are relatively small, suggesting
that the NIG, HYP, and GHYP distributions are appropriate for the wind speed data.

5.6 Simulating wind speed from the parametric models

Let us represent the last day in the historical wind speed data by ¢ = 0. Given the choice of distri-
bution and the corresponding estimated s-AR-s-GARCH model, we can simulate a path of future
wind speed using the following procedures for t =1, 2, . . ., f; sequentially:

i. Calculate the conditional volatility oy using (9).
ii. Simulate random values for z; from a standard normal distribution if normality is assumed
or from the estimated distribution if one of NIG, HYP, and GHYP distributions is chosen.
ili. Determine the simulated wind speed value W; using (4)-(8).
iv. Convert the wind speed to turbine height using Equation (3).

5.7 Simulating wind speed from a semi-parametric model

The main reasons for using QML estimation are that the true distribution of the data is not
required and that the normal assumption leads to an easy and efficient estimation. However, the
normality assumption does not allow us to incorporate skewness and excess kurtosis in the sim-
ulation of future wind speed. Such features, which have been observed in Fig. 2, can potentially
impact derivative prices significantly. To overcome this problem, we consider the semi-parametric
model for wind speed proposed by Gracianti et al. (2021). A non-parametric distribution is used
for z; in the semi-parametric approach, such that the skewness and leptokurtosis can be retained
in the simulated wind speed.
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Figure 4. Kernel densities of simulated wind speed at turbine height on 03/31/2022 under various distribution assumptions.

The standardized residuals are first obtained from the QML estimation. Sequential procedures
similar to those described in section 5.6 are used for simulating future wind speed, but with the
simulated normal random values replaced by the bootstrapped samples from the standardized
residuals. The simulated values for volatility and wind speed are then calculated using the QML
estimates. More specifically, the simulation procedures are summarized as follows:

i. Obtain the standardized residuals from the QML estimation of the s-AR-s-GARCH model.
ii. Draw a random sample from the standardized residuals and use it as the simulated values
for z;.
iii. Calculate the volatility oy using Equation (9) and the QML estimates.
iv. Determine the simulated wind speed value W; using Equations (4)-(8) and the QML
estimates.
v. Convert the wind speed to turbine height using Equation (3).

A similar semi-parametric approach is adopted by Badescu & Kulperger (2008), who approx-
imate the true distribution of stock returns with a non-parametric density estimator. They find
that their proposed semi-parametric approach yields relatively accurate option prices. Although
the semi-parametric approach retains the non-normality in the simulation of future wind speed, it
still suffers from biased estimates due to the use of the QML estimator. We investigate the extent
to which the semi-parametric model can alleviate the impact of model risk on wind derivative
pricing.

5.8 Simulated future wind speed

Fig. 4 plots the kernel densities of the simulated wind speed on 03/31/2022 at the turbine height
using models with different distribution assumptions. The vertical lines represent correspond-
ing mean values. The density curves and mean values obtained under the NIG, HYP, and GHYP
assumptions almost overlap in the right panel. This observation is not surprising since the three
assumptions yield very similar parameter estimates. In the left panel, the density curves under the
bootstrap, normal, and HYP assumptions have notably different spreads, with the largest spread
under the normal assumption and the lowest spread under the HYP assumption. While similar
tail shapes are observed under the bootstrap and HYP assumptions, the normal assumption leads
to a lighter right tail and a heavier left tail than the other assumptions. The mean values under the
normal and HYP assumptions are very close, while the mean value under the bootstrap method
is slightly higher. These observations align with the findings from the comparison of estimated
model parameters. The simulated wind speed for 03/31/2022 represents a 90-day-ahead predic-
tion, thereby indicating a long-term projection. Based on the analysis of model estimates, it is
anticipated that the mean forecasts for the long-term will be similar under the two distribution
assumptions, while the shapes of the distributions exhibit substantial differences.
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The observations from Fig. 4 suggest that if the wind derivative prices are largely determined by
the mean values of future wind speed, the pricing error due to the normal assumption can be small
and the semi-parametric approach may not provide much benefit. However, if the derivative prices
are related to a specific portion of the density curve, such as the tails, the pricing error arising from
an inappropriate distribution assumption can be large, and simulating from the semi-parametric
model may reduce the error to some extent.

Since the NIG, HYP, and GHYP distributions result in very similar parameter estimates and
simulated future wind speed, we only consider the HYP distribution, which leads to the lowest
AIC in model fitting, in the following analysis.

6. Risk-Neutral Pricing with the Conditional Esscher Transform
6.1 Risk-neutral pricing and the Esscher transform

The wind speed dynamics described in section 5 are specified under the real-world measure. The
derivative price can be calculated as the expected discounted derivative payoff under the real-
world measure. Since investors demand risk premiums for bearing the uncertainty, the discount
rate needs to be adjusted for individual risk preferences; these are difficult to quantify. Risk-neutral
pricing adjusts the probabilities of future outcomes such that all assets have the same expected
rate of return, the risk-free rate, under the new probability measure. Such a probability measure is
called the risk-neutral measure. The price of a derivative is its expected discounted payoff in the
risk-neutral world, with the discount rate set to the risk-free rate.

In a complete market where derivative payoffs can be replicated by a portfolio of existing assets,
the risk-neutral measure is unique. However, the wind derivative market is incomplete partly
because the wind speed is not directly tradable and partly because the sophisticated dynamics
of wind speed imply market incompleteness. The incompleteness of the wind derivative market
leads to infinite risk-neutral measures, each of which produces a risk-neutral price.

The Esscher transform is a technique used to obtain a risk-neutral measure. The use of the
Esscher transform has been justified by several researchers. Gerber & Shiu (1994) show that
Esscher transform maximizes the expected power utility function of a representative economic
agent. Chan (1999) demonstrates that the minimum relative entropy measure can be constructed
from the Esscher transform. Wang (2003) derives the Esscher transform from the Bithlmann’s
equilibrium pricing model under some assumptions on the aggregate risk. Kijima (2006) proves
that multivariate Esscher and Wang transforms coincide when the underlying risks are normally
distributed. Since the introduction of the Esscher transform by the seminal work of Gerber & Shiu
(1994), the Esscher transform has been extensively applied in derivative pricing.

6.2 Conditional Esscher transform

There have been several applications of Esscher transform in pricing weather derivatives, includ-
ing temperature derivatives (Ahcan, 2012), rainfall futures (Cabrera et al., 2013), and wind power
futures (Benth & Pircalabu, 2018). The Esscher transform is well-suited for applications that
assume deterministic volatility in weather variables. However, our wind speed model incorporates
a GARCH volatility structure, necessitating the use of the more versatile conditional Esscher trans-
form. This was proposed by Biithlmann et al. (1996) as a generalization of the Esscher transform
to accommodate a broader range of stochastic processes.

Consider a discrete-time economy with the time index t=0,1,..., T. Let (2, F, F;, P) be a
filtered probability space, where P is the real-world probability measure and the filtration F; is
a sequence of increasing o -fields of F representing all the market information up to time t. We
assume that 7y = {0, Q} and Fr = F.

Let (x:)o<¢<T be a process adapted to the filtration F;. The conditional moment-generating
function of x; w.r.t. 71— is expressed as follows:
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We assume that the Mf:t | ]_-H(u) exists for 0 <t < T and |u| <k, where k is some positive real

number.
Let the process Z; be defined by

¢ eekxk
Zi=|| ———
IQ Mfku—_k—l(ek)
where Zy = 1 and 6; is a F;_;-measurable process. 6, is also called the conditional Esscher param-
eter. It is easy to verify that the sequence {Z;} is a martingale. The conditional Esscher transform
Q w.r.t. P of the process x; is defined as follows:

dQ
5‘5 ~7. (12)

The conditional Esscher transform is very versatile and can be applied in the GARCH framework
with any type of distribution as long as the moment-generating function exists.

The conditional moment-generating function of x; under Q can be written as follows:
(Siu et al., 2004):

P
Q _ Mxt|]:t71 (u+6)
Mxt|~7:r—1(u) - MP @)
| Fir Mt

Xt

(13)

Equation (13) will be used to derive the wind speed dynamics under the risk-neutral measure.

6.3 The conditional Esscher parameter

In the option pricing literature (Siu et al., 2004; Badescu & Kulperger, 2008) where x; is the log
stock return, 6 is the unique solution to the following equation:

P P
M t|Fe—1 (1+6:)=e'M ¢l Fr-1 (@),

X X

where r is the risk-free interest rate. This equation is equivalent to EQ[e*t| F;_1] =€, which
ensures that the expected return of the stock under Q is equal to the risk-free rate. However,
we cannot impose this condition when x; represents wind speed since wind speed is not a tradable
asset.

In this paper, we assume that the conditional Esscher parameters are time-invariant and 6; = 6.
We examine the prices of wind speed derivatives assuming various values of 6. In future research,
we plan to calibrate the conditional Esscher parameters using the observed wind power future
prices and study how the parameters evolve over time.

The absolute value of 6; can also be viewed as the market price of risk. The higher the abso-
lute value, the more compensation investors demand for bearing the risk. The sign of 6; is not
necessarily positive. Let us consider a wind energy producer who trades wind speed derivatives
to hedge the uncertainty in wind power production. To achieve an effective hedge, the producer
should take a short position on the underlying wind speed index. Therefore, the producer should
short the future or long the put option. Since the investors who are in long positions on the under-
lying index demand risk premiums, the conditional Esscher parameters should be negative such
that the distribution of the wind speed index is shifted to the left with the change of measure from
Pto Q.

6.4 Wind speed dynamics under the risk-neutral measure

Under the real-world measure P, the wind speed is assumed to follow the dynamics expressed
in Equations (4)-(9). The mean and variance of the conditional variable W¢|F;_; are u;+
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Zp apyi—p and o respectively. Assuming that z; follows a parametric distribution, Normal, NIG,
HYP, or GHYP, we derive the distribution of W;|F;_; under Q and the corresponding risk-neutral
wind speed dynamics.

Normal distribution

Assume that z; follows a standard normal distribution under P. We have W¢|F;—; ~ N(A¢, atz),
where A; = s + ZP apYt—p- The moment-generating function of W;|F;_; under P can be written

as follows:
P _ u+lazu2
My, 5, () = et

Using Equation (13), the moment-generating function of W;|F;_; under Q can be derived as
follows:

P
Q B th\ft (e +0)
MWt\]:t 1(u) - 0;)
Wt\]:t 1( ¢

eAt(u+9t)+%at2(u+9t)2

Ao+ 50760}
— Atu+%nt2u2+at20tu

(At+U[ 20)u+Lo2u?

Therefore, the distribution of W;|F;_1 under Q is normal with mean A; + 0,20t and variance atz.

Let S; = Zle Yer COS ( gléts)) + Zr_l Ys,r SIN (271 c3l((5t5)) The volatility dynamics under P can

be rewritten as follows:
O'tz =w+ S+ otletz_l + ,310,2_1.

It is important to note that the distribution of €;|F;_; under Q is normal with mean af@t and vari-
ance of. We define a new random variable & = ¢; — af@t. The distribution of &|F;_; is normal
with mean 0 and variance o7 under Q. Replacing ¢; with & + o26;, the dynamics of wind speed
under Q can be written as follows:

Wi=A + 020+ &, (14)
ol =w+ S+ a1 +00) + prof . (15)
where &|F;—1 ~ N(0, atz).
GHYP distribution

Assume that z; follows GHYP(A, «, B, 8, i) under P. The conditional variable Wy|F;_; also
follows a GHYP distribution as shown below:

o
Wil it ~ GHYPGL 2, 2 s, 4 + o).
Ot Op

Using Equation (11), the moment-generating function of W;|F;_; under P can be written as
follows:

, 1B+ uot| <.

o? - B )3 Ki(3y/a = (B +u0)?)

MP (1) = Aoy
Wil Fr-1 al — (IB + ua;)z K)L((S al — /32)
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Using Equation (13), the conditional moment-generating function under Q can be derived as
follows:

M€V¢\-7:t—1 (u+6;)

Q
M u)=
W:\]:t—l( ) M{’)Vt\ft—l(at)

_ o [ @ =B H00)* \* K@V — (B + t6)0)?)
a — (B + (u+61)oy)? K8y —(B+6i01)?)

Therefore, under Q, the conditional variable follows a GHYP distribution as shown below:

+6
Wil Fiq1 ~ GHYP()L, g, u, 8o, Ar + M@) )
Ot Ot

We define a new random variable &;, which takes the following conditional distribution:

o + 6,0,
&|F,—1 ~ GYHP <,\, =, u, Sot, ,ucrt)
Ot Ot
under Q. It is easy to see that €;|F;_; follows the same distribution with &|F;_; under Q. The
dynamics of the wind speed under Q can be written as follows:

Wt =At +%‘t> (16)
ol =w+ S+ a1l + ol . (17)
NIG and HYP distributions

NIG and HYP are special cases of GHYP distribution. The dynamics of the wind speed under
Q are the same as those shown in Equations (16) and (17) with the GHYP parameter X set to —1/2
for the NIG distribution and 1 for the HYP distribution.

6.5 Pricing approaches

Under the risk-neutral measure, the price of a wind speed derivative is calculated as the expecta-
tion of derivative payoffs discounted at the risk-free rate. Therefore, the derivative price at time 0
can be written as EQ[¢~"11 g(CWSI [y, 1,1)]. We consider two approaches for the expectation calcu-
lation, with one approach simulating future wind speed paths under the risk-neutral measure and
the other approach under the real-world measure.

In the first approach, we simulate N paths of future wind speed directly from the risk-neutral
dynamics, which are defined in Equations (14) and (15) under the normal assumption and in
Equations (16) and (17) under the NIG/HYP/GHYP assumption. The simulation procedures are
the same as those described in section 5.6, but they use the risk-neutral wind speed dynamics.

Let CWSIS0 tl](i) denote the cumulative wind speed index determined under the ith simulated

risk-neutral path. The derivative price can be calculated as follows:

N

1 - .

Ly e (cwsig ). (18)
i=1

This approach is efficient and convenient to use when the risk-neutral dynamics can be easily
simulated. It is commonly used in stock option pricing (Siu et al., 2004).

In the second approach, we simulate N paths of future wind speeds from the real-world dynam-
ics as defined in Equations (4)—(7). Let CWSIﬁO’tl](i) denote the cumulative wind speed index
corresponding to the ith simulated real-world path. The derivative price at time ¢ can be calculated
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as follows:

1

N /0
N ; e—rtlg (CWSIﬁo,tl](i)) E(i), (19)

where ';—g(i) is the Radon-Nikodym derivative defined in Equation (12) with # = f; and evaluated
under the ith real-world path. This approach does not require the risk-neutral dynamics of Wy. It
is particularly useful when the risk-neutral dynamics follow a complex structure and thus cannot
be simulated easily.

In section 5.7, we describe the simulation of future wind speed from a semi-parametric model,
which aims to mitigate potential pricing errors arising from model misspecification. Due to the
use of the bootstrap procedure, we cannot express the corresponding risk-neutral dynamics easily.
Therefore, only the second pricing approach can be used with the semi-parametric model. After
simulating each wind speed path under the real-world measure, we calculate the Radon-Nikodym
derivative under this path. Equation (19) is used to calculate the derivative price after simulating
all N paths.

7. Pricing Results and Model Risk Assessment
7.1 Simulated wind speed index values under Q

Benth & Pircalabu (2018) calibrate the Esscher parameter 6 by utilizing observed prices of wind
power futures based on the NAREX WIDE index from 2016. Their findings reveal that the
magnitude of the calibrated Esscher parameters ranges between 0 and 0.1 and decreases as the
delivery period lengthens. For a three-month contract, the calibrated 6 is approximately 0.6.
Furthermore, Benth & Pircalabu (2018) note that the closing price falls below the theoretical price
when 0 equals 0, signifying that the energy producer, who holds the short position, pays a posi-
tive risk premium. To account for this observation, the condition 6 < 0 is imposed in our pricing
applications.

We select the three values for 6: 0, —0.05, and —0.1, to illustrate the pricing of wind speed
derivatives. We simulate 10,000 wind speed paths for the period of 01/01/2022-03/31/2022 under
the risk-neutral measure with 6 set to 0, —0.05, and —0.1, respectively. We view 12/31/2021 as day
0 and assume that the derivatives are traded at t = 0. The wind speed index is accumulated over
the period of [fo, f;] with {y = 1 and #; = 90.

Fig. 5 presents the density curves of the simulated CWSI|;, ;) under various distribution

(1)
I[tO:tl]

while the bottom panels compare those of simulated CWSI(f)) +1- When 6 =0, simulating under
Q is the same as simulating under P. In the top left and bottom left panels where 6 = 0, we com-
pare the density curves of three sets of index values simulated under P using the normal, HYP,
and non-parametric (bootstrap) distributions, respectively. The vertical lines represent the mean
values corresponding to the densities. As 6 becomes more negative, the density curves and their
mean values shift further to the left, thereby resulting in lower future prices and higher put option
prices.

The spread of the density curve under the HYP distribution also changes with 6, while the
spread under the normal distribution does not experience visible change. The change of measure
in risk-neutral pricing shifts the skewness parameter of the HYP distribution by 6 and subse-
quently changes the variance of the wind speed. As 6 becomes more negative, the variance of
wind speed under the HYP distribution is further decreased. On the other hand, the change of
measure only shifts the mean but not the variance of the normal distribution.

assumptions and values of 6. The top panels compare the kernel densities of simulated CWS
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Figure 5. The kernel densities of simulated CWSlI[s, ¢, under various distribution assumptions and 6 values, with the vertical
lines representing corresponding mean values.

The top panels show that the mean values of simulated CWSIE:O) ;1 under the normal and HYP
distributions are very close, although the variance under the HYP distribution is smaller. As shown

in Fig. 4, we observed similar mean values of simulated wind speed under the normal and HYP

distributions in the real world. Since CWSI&) fl

period of [to, t1], the mean values of simulated CWSIEO)) f1 under the two distribution assumptions
are expected to be close too. The density curve using the bootstrap approach has a similar shape to
that using the normal distribution but a higher mean value. Based on these observations from the
top panels, we expect the price of a future written on CWSIE:O)’ ,1 Dot to differ significantly when
the distribution is switched from normal to HYP. However, the price of an option with a certain
strike price may experience a larger price difference since the tails of the density curves under

the two distributions are significantly different. The semi-parametric model is not likely to reduce
)
I

is simply the sum of wind speed values over the

pricing errors arising from misspecified distribution for futures written on CWSI, ' ;.
@)

The bottom panels demonstrate that the mean values of simulated CWSIj; ', | under the nor-
mal assumption are much higher than those under the HYP assumption. In Fig. 4, we observe
that the normal distribution leads to higher densities for wind speed between 3 and 4.88 and
slightly lower densities for wind speed above 4.88 in comparison to the HYP distribution. Since

CWSIE?) ;) only cumulates wind speed between 3 and 25 and the probability of wind speed above
0,%1

4.88 is very low, the normal assumption results in significantly higher mean values for CWSIEfo),tl]'

The density curve using the bootstrap approach has a shape similar to that using the normal
distribution but a slightly lower mean value. Based on the observations made on the bottom pan-
els, we expect large price differences for derivatives written on CWSI&)’ ;) under the normal and
hyperbolic assumptions. The price difference between using the bootstrap and HYP assumption
is expected to be smaller. Therefore, the semi-parametric model may reduce pricing errors arising

from misspecified distribution by a small amount.
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Table 5. Prices of futures and options written on CWS'%,&] under various choices of distributions and 6 values
Price - Simulation Price - Simulation
under Q under P
Derivative [% Normal HYP Normal HYP Bootstrap
Future 0.00 221.12 219.41 221.12 219.41 226.73
e
PutK =236.11 0.00 17.35 17.89 17.35 17.89 13.35
—0.05 23.63 23.03 23.63 22.88 18.66
—01 3055 2829 30.40 2780 2442
Put K =229.62 0.00 12.71 12.74 12.71 12.74 9.30
e
Put K =201.40 0.00 1.62 0.94 1.62 0.94 0.78
—0.05 3.23 1.87 3.20 1.80 1.62
-010 58 331 569 312 300

Table 6. Prices of futures and options written on CWSI([fO)m under various choices of distributions and 6 values
Price - Simulation Price - Simulation
under Q under P

Derivative [% Normal HYP Normal HYP Bootstrap
Future 0.00 112.28 91.22 112.28 91.22 106.85
—0.05 103.31 83.68 103.47 83.47 97.30

................. R
Put K =127.95 0.00 20.19 37.16 20.19 37.16 24.62

e S Saee g aey oss sosa
Put K =115.97 0.00 12.46 26.49 12.46 26.49 16.11
—0.05 17.76 32.91 17.73 32.93 22.24

Ceae Saag o Saay soos Saar
PutK =76.98 0.00 0.86 3.64 0.86 3.64 1.62
................... e e

e Ceqe Sop e Sop e e

7.2 Pricing results

The tick size D is set to 1 without loss of generality. The 25th, 50th, and 75th percentiles of the
historical wind speed index values in 2012-2021 are used as the strike prices for put options. The
risk-free interest rate r is set at 4% per annum. Tables 5 and 6 present the prices of derivatives writ-
ten on CWSIE:O)’ ;) and CWSIE?O)’ ] Yespectively. In both tables, we show the prices obtained with the
two proposed pricing approaches and under various choices of distributions and 6 values. When
6 = 0, the two probability measures P and Q are the same, and thus the two pricing approaches
yield exactly the same prices. When 6 < 0, the two pricing approaches result in fairly small differ-
ences under the same distribution assumption, thereby validating the use of both approaches. As
0 becomes more negative, the higher risk premiums demanded by investors lead to lower future
prices and higher put option prices.
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In Table 5, the differences of prices obtained under the normal and HYP assumptions are very
small for the future contract and put options with K = 236.11 and K = 229.62. The differences in

prices obtained using the bootstrap approach and the HYP distribution are larger for these deriva-
(1)

tives. This finding is consistent with the observation that the mean values of simulated CWSI;, ', |

are very close under the two parametric distributions but higher using bootstrap from Fig. 5.

For the put options with K =201.40, the HYP assumption and the bootstrap yield similar
prices, with both being lower than the prices obtained under the normal assumption. In Fig. 5,
we observe that the densities of simulated CWSIE;O)) i, for CWSIEO)’ 4] < 201.40 are generally higher
under the normal assumption than they are under the HYP assumption. Therefore, the probabil-
ity of non-zero option payofts is also higher under the normal assumption, resulting in a higher
option price. On the other hand, the left tails of the density curves under the HYP assumption and
the bootstrap approach are close to each other, thereby explaining the close prices under the two
assumptions. Therefore, the left tails of the density curves in Fig. 5 play a key role in the price of
this option.

Table 5 indicates that the pricing error arising from misspecified distribution (normal) is small

(1)

. The semi-parametri
o] e semi-parametric

for futures and put options with relatively high strikes written on CWSI
model can only reduce the pricing error for options with low strikes.
In Table 6, the normal and HYP assumptions lead to very large price differences for all the
Iﬁo) ,1- Fig. 5 shows that the mean values of simulated CWSIE?O)’ .
the normal assumption are much higher than those under the HYP distribution. As a result, the
normal assumption leads to higher prices for futures and lower prices for put options. The differ-
ences in prices obtained under the HYP assumption and the bootstrap approach are smaller than

those obtained under the normal and HYP distributions. Therefore, the pricing error arising from
@

I .
[tot1]

derivatives written on CWS under

misspecified distribution is very high for derivatives written on CWS The semi-parametric

model can partially reduce the pricing error.

8. Conclusion

In this paper, we investigate how model risk, in particular misspecification of model distribution,
affects wind derivative prices. We first estimate s-AR-s-GARCH models with four different para-
metric distributions — normal, NIG, HYP, and GHYP. The NIG, HYP, and GHYP distributions
are found to yield a much better fit and significantly different parameter estimates than the nor-
mal distribution. Therefore, the bias of the QML estimator, which maximizes normal likelihood,
is high when fitting wind speed data.

We develop two simulation approaches based on the conditional Esscher transform to deter-
mine the risk-neutral prices of wind speed derivatives. Assuming normal, hyperbolic, and
non-parametric distributions for wind speed, the prices of wind speed futures and put options
written on two different wind speed indices are calculated. The price difference between using the
normal and hyperbolic distributions can be used as a measure of model risk. Our pricing results
show that the extent of model risk depends on the choice of wind speed index and the derivative
payoff structure.

Significant price differences are observed when the derivative is written on the wind speed
index that approximates wind power production, regardless of the derivative payoft structure.
The semi-parametric wind speed model, which uses the bootstrap procedure to incorporate non-
normality, can only help reduce pricing error by a small amount. Since the semi-parametric wind
speed model also uses the QML estimates, we can conclude that the pricing errors predominantly
arise from the bias in the QML estimates. Minor pricing differences have resulted when the wind
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speed index is a simple sum of the daily average wind speed. However, the differences are more
notable for put options with low strike prices.

Without considering other weather conditions that may affect wind power production, the
NAREX WIDE index can be viewed as a function of wind speed. The pricing approaches devel-
oped in this paper can be easily adapted to price wind power futures written on the NAREX WIDE.
Since the NAREX WIDE index is determined by wind conditions and power curve, it is similar
to the wind speed index CWSI&), ] considered in this paper. Since we have observed high model
risk in the pricing of derivatives written on CWSIE?O)) 1> the model risk is expected to be high in
the pricing of wind power futures as well. Therefore, choosing a suitable distribution is essential
for accurately pricing wind power futures.

It is important to note that the wind derivatives constructed in this paper are hypothetical and
intended for illustrative purposes; thus, no actual traded prices can be observed. In future research,
we plan to apply the proposed pricing approaches to the traded wind power futures written on the
NAREX WIDE index and evaluate the performance of the proposed pricing method and the risk
of model misspecification.

Actuarial expertise holds significant value in the quantification and management of risks inher-
ent in renewable energy markets, such as wind power. In this paper, we demonstrate how actuaries
can employ their statistical modeling skills to refine wind speed models, as well as leverage their
financial analysis expertise to devise pricing methodologies for related financial instruments.
Furthermore, actuaries possess the necessary skills to assess and manage risks associated with these
financial instruments. There are several potential avenues for future research in the renewable
energy market that can greatly benefit from actuarial expertise.

Firstly, future research should focus on assessing the hedge effectiveness of wind power
futures. The NAREX WIDE index reflects the overall power output in Germany, while smaller
energy producers operate wind turbines in specific geographical locations. Basis risk arises from
the mismatch between national wind power output and output from individual energy pro-
ducers, potentially reducing the effectiveness of wind power futures. It is crucial to quantify
the extent to which existing wind power futures can protect against variability in wind power
production.

Secondly, future research should aim to develop optimal hedging strategies for energy produc-
ers utilizing wind derivatives. This will enable them to better manage revenue uncertainties and
safeguard against the financial impacts of unfavorable wind conditions.

Lastly, actuaries should collaborate with professionals from diverse fields, including climate
scientists, economists, and energy experts, to foster a comprehensive understanding of the chal-
lenges and opportunities linked to renewable energy and its associated financial risks. This
interdisciplinary approach can lead to the creation of innovative financial instruments and risk
management strategies tailored to the specific needs of the renewable energy sector.

Integrating actuarial expertise into risk quantification and management within the renewable
energy sector will lead to a more resilient and efficient market for clean energy. This, in turn, will
bolster the global transition towards sustainable energy production.
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