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Abstract

Let X be a completely regular Hausdorff space, let V' be a system of weights on X and let
T be a locally convex Hausdorff topological vector space. Then CV, (X, T) is a locally convex
space of vector-valued continuous functions with a topology generated by seminorms which are
weighted analogues of the supremum norm. In the present paper we characterize multiplication
operators on the space CV,(X, T) induced by operator-valued mappings and then obtain a
(linear) dynamical system on this weighted function space.
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Introduction

Let X be a non-empty set, let T be a topological algebra and let L(X, T) be
the linear space of all functions from X to 7. Let F(X, T) be a topological
vector subspace of L(X, T). Let ¥ be a mapping on X such that yf €
L(X, T) whenever f € F(X, T). This gives rise to a linear transformation
M, F(X,T) - L(X, T) defined as wa = [, where the product of
functions is defined pointwise. In case M, takes F(X,T) into itself and
is continuous, it is called a multiplication operator on F(X, T) induced by
the mapping ¥ .

This paper is a continuation of our earlier paper [8] in which we have
studied multiplication operators on weighted spaces of vector-valued con-
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tinuous functions induced by scalar-valued and vector-valued mappings. In
the present paper we concentrate on the study of multiplication operators
on weighted spaces of vector-valued mappings induced by operator-valued
mappings and then we endeavor to study a (linear) dynamical system on
these function spaces.

Preliminaries

Let X be a completely regular Hausdorff space, let T be a Hausdorff
locally convex topological vector space over C and let C(X, T) be the vector
space of all continuous functions from X into 7. By cs(7)) we mean the
set of all continuous seminorms on 7, and B(T) denotes the set of all
continuous linear operators on 7. By a system of weights we mean a set
V of non-negative upper-semicontinuous functions on X such that, given
any x € X, there is some v € V for which v(x) > 0 and for every pair
u,v €V and a > 0, there exists w € V so that au < w and av < w
(point wise on X).

Now we consider the following vector space of vector-valued continuous
functions:

CV (X, T)={feC(X,T):vf(X)is bounded in T forall veV}.

Now, let v € V, g € cs(T) and f € C(X,T). If we put |f], , =
Sup{v(x)g(f(x)): x € X}, then || - l, , is a seminorm on CV, (X, T) and
the family {|| - ||, i VEV g€ cs(T)} defines a locally convex topology on

CV(X,T).

In case T = C, we shall omit 7 from our notation and write CV,(X)
in place of CV, (X, C). We also write |||, in place of || - ||, , for each
v eV, where q(z) = |z|, z € C. We shall denote by B, _ the closed unit

v 3 q
ball corresponding to the seminorm |[|-||, .. Incase T = (T, g), any normed

linear space, we simply write B, . We refer to the papers of Bierstedt [1, 2]
and Prolla [7] for more details and examples of these function spaces.

Let ¥ be the family of all bounded subsets of 7 and let M € ¥ and
p € cs(T). If we define the function

Sy.p' B(T) > R" as S, () = Sup{p(4(y)): y € M}

P
then §,, , is a seminorm on B(T) and the family {S,, ;M € ¥ ,p €
cs(T)} defines a locally convex topology on B(T) which we call the topology
of uniform convergence on bounded sets and denote by % . Thus (B(T), %)
is a locally convex topological vector space of continuous linear operators on
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T . For more details of these topologies on the spaces of linear operators we
refer to Grothendieck {4] and Kothe [5].

2. Functions inducing multiplication operators

Throughout this section we will work under the following modest require-
ments, while developing our characterisation of an operator-valued mapping
w: X — B(T) which induces a multiplication operator on CV, (X, T):

(2.a) X is a completely regular Hausdorff space;

(2.b) T is a Hausdorff locally convex topological vector space;

(2.c) V is a system of weights on X .

In the following theorem we characterise operator-valued mappings which
induce multiplication operators on CV,(X, T).

2.1. THEOREM. Let y: X — B(T) be an operator-valued continuous func-
tion. Then Mw: CV,(X,T)— CV,(X, T) is a multiplication operator if and
only if for every v € V and p € cs(T), there exist u € V and q € cs(T)
such that v(x)p(w(x)y) < u(x)q(y), forevery x€ X and yeT.

Proor. First, let us suppose that for every v € V' and p € cs(T), there
exist u € V and g € cs(T) such that

v(x)p(w(x)y) <u(x)q(y), foreveryxe XandyeT.

Then we shall show that M v is a continuous linear operatoron CV, (X, T).
First of all, we show that M, isan into map. Let {x :a €A} beanetin X
such that x, — x. To show that w(x_)f(x, ) — w(x)f(x) in T, it suffices
to show that for every p € cs(T) and € > 0, there exists a, € A such that

p(w(x)f(x,) — w(x)f(x) <e, foreverya>ay.
Now,

(1) p(y(x,)f(x,) — w(x)f(x)) < pl(w(x,) — (X)) (f(x,))]
+ply(x)(f(x,) - f(x))].

Since the set {f(x,): a € A} is bounded in T, for every p € cs(T) and
¢ > 0, there exists a, € A such that

(i) Plwix,) - WS ) <2/2, foreverya>a,.

Again, since ¥(x) is a continuous linear operator on T , for every p € cs(T)
and ¢ > 0, there exists a neighbourhood W of the origin in 7 such that
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p(w(x)y) < e/2 forevery y € W . Since f is continuous, there exists a, € A
such that f(x_ ) — f(x) € W, for a > a, and consequently

(iii) ply(x)f(x,) — f(x))]1<e/2, forevery a> a,.
Let oy € A be such that @, < o, and a, < o. Then from (ii) and (iii) it
follows that

p(y(x,)f(x,) —w(x)f(x))<e,  foreverya>aq.
This proves the continuity of ywf. Further, let v € V', p € cs(T) and
feCV,(X,T). The
v fll,,, = Sup{v(x)p(w(x)f(x)) x € X} < Sup{u(x)q(f(x)): x € X} <oo.

This implies that v f € CV (X, T). Clearly M, is linear on CV, (X, T).
In order to prove the continuity of M, on CV,(X, T), it is enough to show
that MW is continuous at the origin. For this, suppose {f } is a net in
CV,(X, T) such that ||f ||, ,— O, forevery v eV and p€cs(T).

1M, £l , = Sup{v(x)p(w(x)f, (x)): x € X} < Sup{u(x)q(f,(x)): x € X}
=|1£ll, 4 0.
This proves the continuity of M , at the origin and hence M, v is continuous
on CV,(X,T).
Conversely, suppose Mw is a continuous linear operator on C Vb(X , T).

We shall show that for every v € V and p € cs(T'), there exist u € V' and
q € ¢s(T) such that

v(x)p(w(x)y) <u(x)q(y), foreveryxe XandyeT.

Let ve V and p € ¢s(7T). Since Mw is continuous at the origin, there exist
ueV and g € cs(T) such that M, (B, ,)C B, ,. Weclaim that

v(x)p(w(x)y) < 2u(x)q(y), foreveryxeXandyeT.

Take x, € X, y, € T and set u(x;)q(y,) = €. In case ¢ > 0, the set

= {x € X:u(x)q(y,) < 2¢} is an open neighbourhood of x,. Thus,
according to [6, Lemma 2], there exists f € CV,(X) suchthat 0 < f <1,
f(xy) =1 and f(X — G) = 0. Define g(x) = f(x)y,, for every x € X.
Then clearly g € CV,(X, T) and for every pecs(T), 0< (po g) £ p(yy),
(Pog)(¥p) = P(yp) and (pog)(X—G) = 0. Let h = (2u(x))q(y,))”' g - Then
clearly h € B, , and this yields that yh € B, ,. Hence v(x)p(y(x)h(x) <
1, for every x € X . From this, it follows that

v(x)p(w(x)g(x)) < 2u(xy)qg(y,), foreveryxe X.
This implies that
'U(xo)p('//(xo)yO) < 2u(xo)q(yo) .
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On the other hand, suppose u(x,)q(y,) = 0. Then the following three cases
arise:

(i) u(xo) =0, q(y()) #0;

(i1) u(xo) #0, Q(yo) =0;

(1ii) u(xy) =0, q(¥)=0
Let us suppose that (i) holds and let v(x,)p(w(x,)y,) > 0. Put & =
V(Jxg)p(w(x4)yy)/2. Then G = {x € X: u(x)q(y,) < €} is an open neigh-
bourhood of x, and hence again by [6, Lemma 2], there exists f eV, (X)
such that 0 < f < 1, f(x)) = 1 and f(X — G) = 0. Again, define
g(x) = f(x)y,,forevery x € X . Thenclearly g € CV, (X, T) and for every
pecs(T), 0< (pog) <p(yy), (Pog)xy) =p(yy) and (pog)(X —G) =
Consider 2 = ¢~ g Then 4 € B, .o and therefore yh € B, ,. Hence
v(x)p(w(x)h{x)) <1 forevery x € X This implies that

v(x)p(y(x)g(x)) < (xo)p(2 v (X)) , for every x € X .

From this, it follows that

v(xp)P (¥ (X)) < V)P (’2” ()%6)
which is impossible and hence in this case our claim is established.

CasE (ii). Suppose u(x,) # 0, g(y,) = 0 and v(xy)p(w(xy)y,) > 0.
Put ¢ = v(x))P(W(xy)¥y)/2. Then G = {x € X: u(x) < &+ u(x,)} is
an open neighbourhood of x, and therefore by (6, Lemma 2], there exists
f € CV(X) suchthat 0 < f <1, f(x;) =1 and f(X — G) = 0. Define
g(x) = f(x)y,,forevery x € X. Thenclearly g € CV, (X, T) and for every
pecs(T), 0< (pog) <p(y), (Pog)x) =p(yy) and (pog)(X —G) =
Consider h =¢ 'g. Then h € B, , and this yields that yh € B, . This
implies that v(x)p(w(x)h(x)) < 1 for every x € X . From this, it follows

that
v(x)p(w(x)g(x)) < v(xo)p(;/(xo)yo) , for every x € X .
Further, it implies that
Dxp( (xg)y,) < LR )

which is impossible and hence in this case too our claim is established.
Cask (iii). Finally, suppose u(x;) =0 and ¢(y,) =0. Let v(xy)p(¥w(xy)¥,)
> 0 and put ¢ = v(x,)P(¥(xy)yy)/2. Then G = {x € X: u(x) < ¢} isan
open neighbourhood of x, and again by [6, Lemma 2], there exists f €
CV,(X) such that 0 < f <1, f(xy) = 1 and f(X - G) = 0. Define
g(x) = f(x)y,,forevery x € X. Thenclearly g € CV, (X, T) and for every
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pecs(T), 0< (pog) <p(y), (Pog)(xy) =p(y,) and (pog)(X ~G) =
Consider & = ¢ g Then h € B, q and this implies that wh € B,
Hence v(x)p(yw(x)h(x)) <1, for every x € X . From this, it follows that

v(x,)P (W (x4)¥,)

v(x)p(yw(x)g(x)) < 7 , for every x € X .
Further, it implies that
v(xo)P (¥ (xq)y
DOy (xpyy) < L)

which is a contradiction and with this our claim is established. This completes
the proof of the theorem.

2.2 REMARK (i). Every constant map ¥: X — B(T) induces a multi-
plication operator on CV,(X, T). For, if we define y: X — B(T) as
w(x) = A4, for every x € X where A4 is any continuous linear operator
on T.Let veV,and pecs(T). Since A4 is a continuous linear operator,
there exist m > 0 and g € cs(7T') such that

p(4y) < mq(y), forevery ye T.

This implies that p(w(x)y) < mq(y), forevery x € X and y € T. Further,
it follows that

v(x)p(w(x)y) < mu(x)q(y) (foreveryx€ X andyeT)
<u(x)q(y) ((foreveryxe€ X andy € T).
Hence by Theorem 2.1, Mv/ is a multiplication operator on CV, (X, T).
(ii) Let X be a completely regular Hausdorff space and let 7 =Y be any
Banach space. Then every continuous bounded operator-valued mapping
induces a multiplication operator on CV, (X, Y). For, let y: X — B(Y)

be a bounded operator-valued mapping. Then there exists m > 0 such that
lw(x)|| <m,forevery xe X,Let veV, x€ X and y € Y. Then

vy (Xl < vy )l IL < mu(x)|yll
<u(x)|lyll (foreveryxe X andyeY).

Hence by Theorem 2.1, Mw is a multiplication operator on CV (X, Y).

If T =Y is any Banach space and V' is the system of weights generated
by the characteristic functions of all compact subsets, then it turns out that
every continuous operator-valued mapping induces a multiplication operator
on CV,(X, Y). This we shall establish in the following proposition.

2.3 PROPOSITION. Let X be a completely regular Hausdorff space and let
V={Axx: 420, KC X and K is a compact set} .
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Then every continuous mapping y: X — B(Y), induces a multiplication op-
erator M, on CV,(X,7Y).

ProOOF. In order to show that M  is a continuous linear operator on
CV,(X, Y), in the light of Theorem 2.1 it is enough to show that for every
v € V, there exists u € V' such that

v(x)|ly(x)yll < u(x)llyll,  forevery xe X and yeY .

If v € V, then v = Ax,, for some compact subset K of X. Since
v: X — B(Y) is continuous, ¥(K) is a compact subset in B(Y). Let
m = Sup{|ly(x)||: x € K}. Put u(x) =Amy,(x). Then ue V. Let x €K
and y € Y. Then

N Oyl < Nlw (Ol Iyl < mlyll.
From this, it follows that
Ay ()l < Ay (x)milyl.
This implies that
vy )yl < u(x)llyll, forevery xe K and yeY .
On the other hand, if x € X\K, then obviously
() (xX)pll < u@)lyll.-

Thus v(x)|w(x)y| < u(x)|lyll, forevery x € X, y € Y and hence M, is
a multiplication operator on CV,(X, Y). This completes the proof of the
theorem.

2.4 REeMARK (i). From the above proposition, we note that if y: X —
B(T) where T is any Banach space, is an unbounded continuous operator-
valued mapping, even then y gives rise to a multiplication operator Mw on
CV,(X, T), where V isthe system of weights generated by the characteristic
functions of all compact subsets of X .

(ii) In the above proposition, if we replace the system of weights

V={Axx:4A>0, KC X and K is a compact set}

by C:(X ), the set of all positive continuous functions having compact sup-
ports, even then the conclusion holds.

2.5 CoroOLLARY. Let X have the discrete topology and

V={Axx:A>0, KCX and K is a compact set}.
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Then every map w: X — B(T), where T is a Banach space, induces a
multiplication operator M, on CVy(X,T).

Now, we shall give certain examples of operator-valued mappings which
induce and do not induce multiplication operators on CV, (X, T).

2.6 ExAMPLE. Let X = N with discrete topology and let 7 = 5 , the
Hilbert space of all square summable sequences of complex numbers. If we
define y: N — B(lz) by w(n) = U", where U is the unilateral shift operator
on [ , then

Iyl =1U" I <1ul" <1, for every n € N.

This shows that y is a bounded operator-valued mapping and hence by
Remark 2.2 (ii), M, isa multiplication operator on CV, (X, T).

2.7 ExAaMPLE. Let X = N, with discrete topology and 7T = R?, the real
Banach space. Define y: N — B(RZ) by w(n) = P", where P isa projection
operator on R>. Then lw(m| = IP"| < ||P]|” < 1. This implies that y is
a bounded operator-valued mapping and hence by Remark 2.2(it), MW isa
multiplication operator on CV, (X, T).

2.8 ExAMPLE. Let X = N be the set of natural numbers with discrete
topology and let ¥ = K*(N), the system of all positive constant weights.
Let T = C,(N) = [ be the Banach space of all bounded sequences of
complex numbers and B(/>), the Banach algebra of bounded operators on
I”. Define y:N — B(I™) as y(n) = C,, where C;: 1% — I is the
composition operator induced by a map ¢: N — N. Then it can be seen that
for every v € V', there exists u € V' such that

v(n)lly(m)fl S un)llfll,  forevery neN and fel™

and hence by Theorem 2.1, M, is a multiplication operatoron CV, (X, T).

2.9 ExXAMPLE. Let X = N, the set of natural numbers with discrete topol-
ogy, T = I? and let B(lz) be the Banach space of bounded linear operators
on [*. Let v(n) =n, forevery n € N. Then V = {Av: 1 > 0} is a system
of weights on N. Let us define w: N — B(lz) as y(n) = A", where A is
the multiplication operator on I? induced by the constant function 2, that
is, A: 1% — [? is defined as

A(xy, Xy, o00) = 2(Xy, Xy...).
Then clearly one can check that
v(mw(mx|| £ u(n)llx|.

Thus y does not induce a multiplication operator Mw on CV, (N, ? ). In
fact M, is not even an into map. For, take f:N-*as f(n)= l/n2 . Then
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obviously f € CV,(N, I*) but wf(n) = y(n)f(n) = A"(1/n*) =2"/n* - oo
as n — oo and therefore ywf ¢ CV/ (N, 12). In this example, if we take
V as the system of positive constant weights on N, even then y does not
induce a multiplication operator M, on CV,(N, & ). If fact, if f(n)=1/n,
then f e CV,(N,’) but yf ¢ CV,(N, ).

3. Dynamical systems induced by multiplication operators

Throughout this section we shall take X to be the real line R (with the
usual topology) and T to be a Banach space. We shall denote by B(T'), the
Banach algebra of all bounded linear operators on T and by F,(R), the set
of all continuous bounded functions on R. Let ¥ be a system of weights on
R. Then clearly CV, (R, T) is a locally convex Hausdorff topological vector
space with the weighted topology defined in the last section. Now let U be
a countable set of non-negative upper semicontinuous functions on R such
that W = {Au: 4 >0, u € U} is a system of weights on R with W = V.
Then one can easily prove that the weighted space CV, (R, T) is metrizable.
In case T = C, the metrizable weighted space CV,(R) is a special case of
the result proved by Summers [10, Theorem 2.10].

Now, fix g € F,(R) and 4 € B(T). For each ¢ € R, we define y,: R —
B(T) as y,(w) = e for every w € R. We can easily see that y, is
a bounded operator-valued mapping from R — B(7T) and hence by Remark
2.2(i1), y, induces a multiplication operator Mv/ on the weighted metrizable
locally convex Hausdorff space CV, (R, T). '

3.1 THEOREM. Let g € Fy(R), A€ B(T) andlet 11, ,:RxCV,(R, T)
— C(R, T) be the function defined by l'IA,g(t, fH)= wa for t € R and
fe€CV,(R, T). Then I'IA’g is a dynamical system on CV,(R, T).

PRrROOF. Since M is a multiplication operator on CV, (R, T) for every
t € R, we can conclude that II, (¢, f) belongs to CV,(R, T) whenever
teR and feCV(R, T). Thus H ¢ 18 a function from R x CV, (R, T)
to CV,(R, T). It can be easily seen that n, ., f)Y=f,and

HA’g(t‘{‘S,f): A’g(tanA,g(s’f))

forall t,s€R and feCV (R, T).

In order to show that II, Az is a dynamical system on C V;J(R, T), it
is enough to show that II, g is a separately continuous map since joint
continuity follows from [3, Theorem 1]. Let us first prove the continuity of
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18 in the first argument. Let ¢, — ¢ in R. Then [¢, — ¢/ — 0 as n — co.
We shall show that IT, (z, f)—»H,g(,f) in CV,(R,T). Let ve V.
Then

WL, (6, £)=TL, (2, Ol N = llw, = w1,
= Sup{v(w) (¥, (W) - ¥,W))(f(W))|: w € R}
= Sup{v(w)|(e" ™47 _ N fw)))|: w € R}
< Sup{v(w)||(e" ™M EDL _ 1)) e ¥ (f(w))l|: w € RY
< Sup{Ji(e"*™ M _ 1)||: w € R} Sup{v(w)[le* ™ (f(w))||: w € R}
< (MMM sy, - 0as |, -1 — 0.

This proves the continuity of IT, in the first argument. Now, we shall
prove the continuity of II, , in the second argument. Let {/f } be a net in
CV,(R, T) such that f — f in CV,(R, T). Then | f, - f||, — O for every
v € V. We shall show that

n, (@, £) -1, (, f) in CV,(R,T).
For this, let v € V. Then
I, (@, £)—1, @& Ol, =S, -vfl,
Sup{v(w)|ly,(w)(f,(w) — f(w))||: w € R}
Sup{u(w)||f,(w) - f(w)||: w € R}
=\f-/,—0.

This proves the continuity of II, 2 in the second argument and hence H
is a (linear) dynamical system on the weighted space CV, (R, T).

IA
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