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We report the existence of two new limiting turbulent regimes in horizontal convection
(HC) using direct numerical simulations at intermediate to low Prandtl numbers. In
our simulations, the flow is driven by a step-wise buoyancy profile imposed at the
surface, with free-slip, no-flux conditions along all other boundaries, except along the
spanwise direction, where periodicity is assumed. The flow is shown to transition to
turbulence in the plume and the core, modifying the rate of heat and momentum transport.
These transitions set a sequence of scaling laws that combine theoretical arguments
from Shishkina, Grossmann and Lohse (SGL) and Hughes, Griffiths, Mullarney and
Peterson (HGMP). The parameter range extends through Rayleigh numbers in the range
[6.4 × 105, 1.92 × 1015] and Prandtl numbers in the range [2 × 10−3, 2]. At low Prandtl
numbers and intermediate Rayleigh numbers, a core-driven regime is shown to follow
a Nusselt-number scaling with Ra1/6Pr7/24. For Rayleigh numbers larger than 1014, the
Nusselt number scales with Ra0.225Pr0.417. For these particular regimes, the Reynolds
number is found to scale as Ra2/5Pr−3/5 for the low-Prandtl-number regime and Ra1/3Pr1

for Rayleigh numbers larger than 1014. These results embed the HGMP model in the
SGL theory and extend the known regime diagram of HC at high Rayleigh numbers. In
particular, we show that HC and Rayleigh–Bénard share similar turbulent characteristics
at low Prandtl numbers, where HC is shown to be ruled by its core dynamics and
turbulent boundary layers. This new scenario confirms that fully turbulent HC enhances
the transport of heat and momentum with respect to previously reported regimes at high
Rayleigh numbers. This work provides new insights into the applicability of HC for
geophysical flows such as overturning circulations found in the atmosphere, the oceans,
and flows near the Earth’s inner core.
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1. Introduction

Since the early work of Sandström (1908) on marine glacial discharges in Norwegian fjords
and his pioneering work on ocean circulation through differential input of fresh/cold and
salty/warm water, attempts to link differential heating (Rossby 1965, 1998) and/or salt
and fresh water input to a deep meridional circulation capable of driving the world’s
ocean circulation led to series of results predicting that differential buoyancy forcing on
a horizontal surface alone could not explain the deep water cycle that, over a millennial
time scale, overturns the global ocean (Defant 1961). Paparella & Young (2002) (hereafter,
PY) derived for horizontal convection (HC) a bound on the amount of kinetic energy
dissipation ε and argued that in the limit of infinitely large Rayleigh numbers with constant
Prandtl number ε, properly normalised, vanishes. This is different from Rayleigh–Bénard
convection (RBC), where it is expected to reach a finite value in what is known as the
‘ultimate’ regime. Since the publication of PY’s anti-turbulence theorem, as is known,
HC has been shown to undergo turbulence (see e.g. Scotti & White 2011; Gayen, Griffiths
& Hughes 2014), although with a different landscape in the Prandtl number–Rayleigh
number phase space (Shishkina & Wagner 2016). This is in part due to the rate at which
energy is dissipated which, so far, has been shown to consistently follow laminar-type
scaling laws with respect to the magnitude of the forcing (Rossby 1998; Hughes et al. 2007;
Shishkina & Wagner 2016), as long as the buoyancy gradient is unidirectional (Griffiths
& Gayen 2015). This is despite the fact that the flow is unstable with respect to two- and
three-dimensional perturbations (Gayen et al. 2014; Passaggia, Scotti & White 2017). An
analogue of Rayleigh–Bénard theory was proposed and applied to HC to characterise the
regime diagram of laminar and turbulent regimes (Shishkina, Grossmann & Lohse 2016).
The Pr = O(0.1–10) regime has been investigated numerically (Shishkina & Wagner
2016; Reiter & Shishkina 2020; Tsai et al. 2020; Constantinou et al. 2023). In this work,
we investigate numerically the low-Prandtl-number region of this regime diagram. We
aim to investigate which limiting regimes are effectively observed and where turbulent
HC starts to appear. According to the recent work of Shishkina et al. (2016), the transition
to the limiting turbulent regime, appearing at sufficiently high Rayleigh numbers, should
be observed first at low Prandtl numbers, and we show here that this is indeed the case.

Griffiths & Gayen (2015) considered the problem of HC forced by spatially periodic
forcing. Their result showed that HC becomes turbulent in the core. Their forcing, localised
on a length scale smaller than the depth of the domain and with fluctuations in both
horizontal directions, shows turbulence throughout the domain, a regime transition to a
dominant domain-scale circulation and a region of logarithmic velocity in the boundary
layer (BL). The same geometry was further analysed by Rosevear, Gayen & Griffiths
(2017) where they observed that the non-dimensional heat flux, the Nusselt number, had
a steeper scaling with respect to the Rayleigh number than the (laminar) Rossby (1965)
scaling. Their scaling analysis suggests that for deep enough domains, the flow is fully
driven by the interior core of the flow, located under the surface BLs. One interesting fact
is that despite the existence of a log layer in their direct numerical simulation (DNS), they
did not observe log-type corrections in the scaling for the heat transfer. This is relatively
surprising since it is now well established in RBC that heat transfers are buffered through
the log layer (Grossmann & Lohse 2011; Ahlers et al. 2012; Ahlers, Bodenschatz & He
2014).
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HC in the low to mid Prandtl number

Shishkina & Wagner (2016) report a similar exponent in the case of large Prandtl
numbers and low Rayleigh numbers. Their study shows that when the BL extends to
the bottom of the domain, HC is highly effective in transporting heat. In addition,
they report the dependence on Prandtl numbers for both their newly identified regime,
denoted by I∗

l , and the Rossby regime, denoted by Il. In our analysis, we follow the same
nomenclature in an attempt to unify all known results. Note that these results are also
observed experimentally in the companion paper (Passaggia, Cohen & Scotti 2024).

Recently, Reiter & Shishkina (2020) analysed classical and symmetrical HC in Rayleigh
numbers up to 1012 and three Prandtl numbers. They found that for large Rayleigh numbers
at 1011 and large-aspect-ratio domains, the plume detaches and exhibits low-frequency
oscillations, whereas the Nusselt exhibits locally a steeper scaling. In this paper, we
confirm these results in a different set-up and extend the Rayleigh number range by three
orders of magnitude, up to 1015.

Although the ratio of viscosity to heat diffusion, taken here as the Prandtl number (Pr),
is O(1) or greater in atmospheric and oceanic applications, HC at low Prandtl numbers
has interesting geophysical applications, such as in the highly thermally conductive part
of Earth’s mantle. Although much attention has been devoted to RBC for the outer core
dynamics, it is only very recently that HC has attracted the attention of planetary scientists
(Alboussiere, Deguen & Melzani 2010). For example, Takehiro (2011) suggested that it
could be a potential mechanism to drive zonal heat and momentum near the inner core
through the Joule effect due to the Earth’s magnetic field. At the edge of the inner core
of Earth, horizontal regions of thermally stable (crystallising) and unstable (melting) may
explain the zonal asymmetry of the inner core (Alboussiere et al. 2010). However, very
little is known about the properties of the turbulent horizontal flows generated in these
regions, and HC appears to be an interesting candidate to model such flows.

In this study, we use DNS to investigate how the Reynolds number (Re) and the
Nusselt number (Nu) depend on the Rayleigh number (Ra) and the Prandtl number (Pr)
in turbulent HC at low to intermediate Pr for values characteristic of convection in gases
(0.1 < Pr < 1; Taylor, Bauer & McEligot 1988; Roche et al. 2002), and liquid metals
where Pr = O(10−2) (Takehiro 2011). The results agree with the scaling power laws
recently derived by Shishkina et al. (2016) (hereafter, SGL) based on the original work
of (Grossmann & Lohse 2000) (hereafter, GL) on RBC, and the numerical simulations of
Takehiro (2011). Furthermore, we provide evidence that the regime observed by Rosevear
et al. (2017) generalises to HC over a monotonic temperature profile with a turbulent log
layer which indeed acts as a buffer to heat transfer (i.e. when compared with homogeneous
turbulence) and slightly decreases the exponent reported previously. We also provide a
connection between the GL theory and the plume-driven dynamics derived by Hughes
et al. (2007).

Our simulations cover the laminar regime Il (Shishkina & Wagner 2016), the high-Pr
laminar regime I∗

l recently reported by Shishkina & Wagner (2016) and a new low-Pr
turbulent regime, named IIl, which is a new turbulent limiting regime for HC. We also
observe the plume-dominated flow regime of Hughes et al. (2007), which we call I+

u
according to the nomenclature introduced in SGL. We also report the existence of the
turbulent interior-dominated regime IVu at high Rayleigh numbers amended with the
appropriate log-type corrections. An important contribution of our work is that these
results agree and extend known HC regimes diagrams at low Ra (Hughes & Griffiths
2008) to fit within the theoretical prediction of SGL.

Finally, we further explore the relation between the Reynolds number characterising
the magnitude of the overturning flow and turbulent dissipation. This analysis allows for
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condensing this complex regime transitions diagram into a more traditional laminar to
transitional to and turbulent regime. In analogy with RBC (Lohse & Shishkina 2023), the
turbulent regime is further divided into a classical regime, characterised by a normalised
dissipation which still depends on the Reynolds number, and a ultimate regime where the
normalised dissipation leans towards a constant, thereby achieving complete similarity
with respect to the Reynolds number. We further confirm that a ultimate turbulent regime
cannot be observed for the Prandtl numbers considered in this work for the present values
of Ra which are too small to attain a such regime. This assumption is theoretically justified
by the fact that the Richardson number (the ratio of stratification to shear) in the stably
stratified layer remains asymptotically above the threshold for instability, suggesting that
for Pr = O(1) or less, the layer under the warming boundary remains laminar.

Similarly to Shishkina et al. (2016), we exploit the idea that in turbulent thermal
convection, the thermal and viscous dissipation rates spatially and temporally averaged
are determined to leading order by their bulk or BL contributions.

The rest of the paper is organised as follows. In § 2 we provide the mathematical
background for the problem, followed in § 3 by a review of the previously known laminar
and turbulent HC regimes. Section 4 describes the numerical simulations; § 5 presents the
results and the scaling analysis; § 6 considers the question of whether ultimate turbulence
is possible in HC; and, finally, in § 7 we present conclusions. The high-Prandtl-number
regime is considered in the companion paper (Passaggia et al. 2024).

2. Problem description

Here, we consider the problem of convection in the Boussinesq limit, where the buoyancy
difference (ρmax − ρmin)/ρmin imposed on the upper boundary, normalised by the bulk
density ρ0, is small. In this limit, the equations describing the motion of the flow are

Du
Dt

= −∇p + bez +
(

Pr
Ra

)1/2

∇2u, (2.1a)

∇ · u = 0, (2.1b)

Db
Dt

= (PrRa)−1/2∇2b, (2.1c)

where D/Dt denotes the material derivative, u = (u, v,w)T is the velocity vector, b =
−g(ρ − ρmin)/ρmin is the buoyancy, g is the acceleration of gravity along the vertical unit
vector ez and p is the hydrodynamic pressure.

The equations are non-dimensionalised using the length of the tank L and the free-fall
velocity

√
ΔL, where Δ is the buoyancy difference imposed along the upper surface (note

that, unlike RBC, it is the length of the tank, rather than its depth, that is dynamically
relevant). The Prandtl number is given by Pr = ν/κ where ν and κ are the viscosity
and diffusivity of the stratifying agent, respectively. The Rayleigh number is defined as
Ra = ΔL3/(νκ) The computational domain, shown in figure 1, is a parallelepiped with
aspect ratio Γ = L/H = 4 with dimensions [L,W,H] = [1, 1/8, 1/4] where W is the
width of the computational domain (Scotti & White 2011). The parameter landscape
of HC is wider than traditional RBC. In addition to selecting a geometry and velocity
boundary conditions along the boundary of the domain, an infinite number of possibilities
exist in principle to impose the buoyancy forcing at the surface. Regarding the latter,
previous numerical studies have used a linear profile, a sinusoidal profile or a step
function (see table 1). Here, we impose a buoyancy profile along the upper surface
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HC in the low to mid Prandtl number

Study
Boundary

forcing profile

Velocity
boundary

condition at
forcing

interface

Velocity
boundary

condition at
other surfaces

Rossby (1998) Linear Free-slip Free-slip
Chiu-Webster, Hinch & Lister

(2008)
Linear Free-slip No-slip

Beardsley & Festa (1972) Linear Free-slip Free-slip
Scotti & White (2011) Sinusoidal Free-slip Free-slip
Shishkina & Wagner (2016)

and Shishkina et al. (2016)
Step No-slip No-slip

Sheard & King (2011) Linear Unspecified Unspecified

Present study Smoothed step Free-slip Free-slip in x and z, periodic in y.

Table 1. Forcing and velocity boundary conditions of previous HC studies.

z = H, where H is the height of the domain, that b(x)|z=H = (1 + tanh(10x/L))/2, which
is a smoothed version of the sharp profile used in previous calculations (Shishkina &
Wagner 2016; Passaggia et al. 2017). This is necessary to keep the numerical simulations
stable. It does not appear that there is a consensus within the literature with regard to the
velocity boundary conditions, with numerical studies employing either no-slip or free-slip
boundary conditions or even a mixture of both (table 1). We use free-slip conditions
along top, bottom, left and right boundaries, and periodic conditions along the spanwise
direction. Previous studies suggest that the flow is not particularly sensitive to the lateral
and bottom boundary conditions (Beardsley & Festa 1972; Rossby 1998; Chiu-Webster
et al. 2008). Geophysically inspired studies tend to use free-slip along the surface where
the forcing is applied, which is arguably more appropriate as a boundary condition for
the ocean than a no-slip condition. Moreover, free-slip conditions sidestep the numerical
difficulties involved in resolving no-slip BLs and allow us to efficiently explore Rayleigh
numbers as high as 1.92 × 1015 for a wide range of Prandtl numbers. In what follows, we
define integral values to be linked with the control parameters Ra and Pr: the magnitude
of the large-scale flow is used to define the Reynolds number Re = (〈u · u〉)1/2L/ν where
〈·〉 denotes the spatiotemporal average over the computational domain; the Péclet number
Pe = RePr is defined similarly. We define the Nusselt number as the ratio of the buoyancy
flux averaged over the stabilising side of the domain over the same quantity obtained
for a purely conducting configuration, that is Nu = ∂b/∂z|z=H/Φc, where the over bar
indicates a horizontal average of the left half of the domain and Φc = ∂bc/∂z|z=H is the
average gradient in the purely conducting case (i.e. when Ra < 103; Siggers, Kerswell &
Balmforth 2004). Note that other definitions have been considered (Rocha et al. 2020a).
For the geometry considered here, its non-dimensional value was found numerically to be
Φc = 0.53.

3. Previously known regimes of laminar and turbulent HC

In this section, we review the existing scaling laws for heat and momentum exchanges
in HC. The areas of the Rayleigh–Prandtl landscape previously explored using DNSs
and experiments are reported, together with the sections investigated in this paper and
its companion.
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3.1. Rossby’s (1965) laminar scaling
Rossby (1965) explored HC induced by differential heating in a parallelepipedic container
with an aspect ratio L/H = 2.5 and derived a scaling law relating the Nusselt number
as a function of the Rayleigh number. Rossby collapsed temperature measurements from
his experiments with a scaling relationship between the thickness of the BL and the
streamfunction (see p. 13 in Rossby 1965). Taking the curl of (2.1a), neglecting the
nonlinear terms, and defining the streamfunction ψ such that ψx = −w and ψz = u, the
two-dimensional Navier–Stokes equations reduce to(

Pr
Ra

)1/2

∇4ψ = ∂xb, (3.1a)

−∂xψ∂zb = (PrRa)−1/2∇2b. (3.1b)

Near the conducting wall, the flow is governed by the laminar BL whose thickness is
defined by λ and (3.1a), (3.1b) reduce to leading order to(

Pr
Ra

)1/2
ψ

λ4 ∼ Δ

L
and

ψΔ

λL
∼ (PrRa)−1/2 Δ

λ2 . (3.2a,b)

Combining these equations, Rossby obtained the relation

λ ∼ LRa−1/5. (3.3)

What Rossby failed to recognise in his original work was that the thickness of the BL
λ could be defined using either the thermal BL thickness, denoted by the subscript b or
the momentum BL denoted by the subscript u, a point that becomes important when the
viscosity and diffusivity are not close. While this has no implication for the Ra-dependence
as shown in the next subsection, the Prandtl-number dependence may not be predicted
accurately for different values of the Rayleigh number Ra and varying Pr.

3.2. Paparella & Young (2002) inequality
HC and RBC are both closed systems driven by buoyancy fluxes imposed at the
boundaries. However, whereas in the latter the total dissipation in the flow is proportional
to the Nusselt number, in the former it is possible to exactly relate it to the Rayleigh number
via (Paparella & Young 2002)

εu = B(Γ/2)ν3L−4RaPr−2, (3.4)

where 0 < B ≤ 1, which, once combined with the original idea of Rossby, opens
possibilities for relating the dissipation in the BL or the core with the heat transfer
coefficient near the horizontal boundary.

One interesting consequence is that as Ra increases while keeping Pr and Γ constant,
the flow becomes progressively confined under the conducting boundary. This effect is
also known as the anti-turbulence theorem and implies that beyond a certain point, the
overturning depth scale becomes

h < H, (3.5)

and a zone of stratified fluid nearly at rest will form along the bottom of the tank.
Although such regimes were only observed in DNSs of laminar HC (Ilicak & Vallis

2012) at high Pr and were theoretically predicted by Chiu-Webster et al. (2008) for the
same range of parameters, experiments by Wang & Huang (2005) show the onset of such
behaviour at intermediate Pr and relatively low Ra.
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b = 0

Plume
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x L = 1
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 1
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Interior

b = 1

Boundary layer λu, λb
hU

x = 0, z = 0

∂b/∂n = 0, ∂u/∂n = 0

Figure 1. Schematic of the present showing the different length scales of the thermal BL λb and the kinetic
BL λu together with the full depth H and the large overturning scale h used for the theoretical prediction.

3.3. Shishkina & Wagner (2016) revisited laminar regime Il

Rossby’s laminar regime was recast in Shishkina & Wagner (2016) to obtain a more
accurate prediction for the Prandtl number dependence. The idea is to start with the steady
thermal BL equation, which is obtained from (2.1c) and write an advection–diffusion
balance in the BL

ubx + vbz = κbzz. (3.6)

The dominant terms in this expression reduce to UΔ/L = κΔ/λ2
b where λb is the

thickness of the thermal BL, which scales as λb/L ∼ Nu−1. Combining the above reduces
to the well-known thermal–laminar BL scaling

Nu = Re1/2Pr1/2, (3.7)

provides a relation tying Nu, Re and Pr. In laminar regimes, the buoyancy variance is
essentially concentrated in the BL and reads

εb,BL ∼ κ
Δ2

λ2
b

λb

H
= κ

Δ2

H2
λu

λb
Re1/2, (3.8)

where the dependence on the aspect ratio Γ was omitted. Since the thickness of the
laminar momentum BL scales as λu/H ∼ Re−1/2, the scaling of the mean dissipation in
the particular case of a laminar BL (Landau & Lifschitz 1987; Grossmann & Lohse 2000)
is

εu,BL ∼ ν
U2

λ2
u

λu

H
= ν3H−4Re5/2. (3.9)

Combining (3.7), (3.4) and (3.9), one recovers the laminar scaling (Rossby 1965, 1998;
Gayen et al. 2014; Shishkina et al. 2016)

Re ∼ Ra2/5Pr−4/5, (3.10a)

Nu ∼ Ra1/5Pr1/10. (3.10b)

By analogy to the notation in the GL theory for RBC, this scaling regime is denoted as Il,
where the subscript l stands for low-Pr fluids.
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1/4

1/16

0

1

z
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z

x

y

(a) (b)

b
0.996
0.994
0.992
0.990
0.988

b
0.985

0.980

0.975

Figure 2. Snapshot of iso-contours of Λ2 = −Pr−1/8 criteria (blue) and buoyancy b (background) at
(a) Ra = 6.4 × 1013, Pr = 0.01 showing the new regime (II∗

l ) and (b) Ra = 6.4 × 1013, Pr = 1 corresponding
to the Hughes regime I+

u .

3.4. Hughes et al.’s (2007) laminar BL/turbulent plume regime I+
u

Increasing Ra and for intermediate Pr, the momentum BL becomes progressively thinner,
whereas the thermal boundary remains relatively thick in comparison. In this case, it is
the thermal BL that drives the dynamics and leads to a turbulent plume, detached from the
bottom (see figure 2b). This particular case was theorised by Hughes et al. (2007) with a
plume model inside a filling box. Here, we recast their model according to the SGL theory
(i.e. see the plume model definition (2.15)–(2.20) in Hughes et al. 2007) and the dissipation
in the BL is balanced by the ratio between the thermal and the kinetic BL λb/λu which
reads

εuHGMP ∼ ν
U2

λ2
u

λu

H
λb

λu
= ν3H−4Re5/2Pr−1/2, (3.11)

where the dissipation now scales with the thickness of the thermal, rather than the
momentum layer. Now, combining (3.7), (3.4) and (3.11), the heat and momentum
exchanges are given by

Re ∼ Ra2/5Pr−3/5, (3.12a)

Nu ∼ Ra1/5Pr1/5, (3.12b)

which we denote as I+
u since it has a similar power laws for Ra to the Il regime but

different Pr dependence. Note that this scaling is partially supported in the experiments of
Mullarney, Griffiths & Hughes (2004) and Wang & Huang (2005), as well as in the DNSs
of Gayen et al. (2014).

3.5. Shishkina & Wagner (2016) laminar regime I∗
l

At low Ra and for large Pr and/or large aspect ratio Γ , the BL thickness λu saturates and
reaches the depth of the domain that gives λu ≈ h = H and (3.4) becomes equivalent to
the dissipation in a pressured-driven laminar flow in a channel which writes

εuSW ∼ ν
U2

H2 = ν3H−4Re2. (3.13)
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HC in the low to mid Prandtl number

Combining (3.7), (3.4) and (3.13), one obtains the laminar scaling derived Shishkina &
Wagner (2016)

Re ∼ Ra1/2Pr−1, (3.14a)

Nu ∼ Ra1/4Pr0, (3.14b)

denoted as I∗
l and first observed by Beardsley & Festa (1972) in their numerical

simulations. Note that Rossby also observed a steeper scaling than Nu ∼ Ra1/5 in his
numerical simulations for low Ra (see p. 245 in Rossby 1998). More recent numerical
simulations at infinite Prandtl numbers (Ramme & Hansen 2019) suggest a similar scaling.
However, it should be noted that the observation of this scaling is confined to less than a
decade of Rayleigh numbers. It is important to stress that in this regime, the circulation is
assumed to span the entire domain, and this particular aspect will be further explored in
the present and companion paper.

3.6. Turbulent regimes and associated bounds
Most of the existing work on HC highlighted laminar-type flows, dominated by the BL
behaviour, except for an analogue of HC Griffiths & Gayen (2015) and Rosevear et al.
(2017). They considered a spatially periodic forcing at the conducting boundary with
a short wavelength compared with the depth of the domain. In this particular set-up,
Rosevear et al. (2017) were able to show that Nu ∼ Ra1/4 with a turbulent core driven
by inertia. They were also the first to report turbulent BLs with a log-type layer developing
along the conducting wall. This feature is important because it is a necessary condition for
turbulent convection scaling to arise in RBC (Grossmann & Lohse 2000, 2011).

Siggers et al. (2004) theorised a fully turbulent regime based on the assumption that
the BLs and thus the Nusselt number scales as Nu ∼ Ra1/3. Recent work by Rocha et al.
refined their original results and showed that short oscillations with large amplitudes of
the forcing boundary were needed to observe such a regime when Ra → ∞. Indeed, if
we recast the PY bound on dissipation with (3.4) we obtain a bound on the Richardson
number in the thermal layer under the warm side

Ri ≡ ∂zb
(∂zU)2

∼ Δ

λb

(
λu

U

)2

∼ ΔL−1 L
H

H
λb

L2 λ
2
u

L2
ν2

L2U2 L2ν−2

∼ Γ RaPr−1NuRe−2 λ
2
u

L2 . (3.15)

For a fully turbulent regime, the BLs must scale as Ra−1/3, thus Nu ∼ Ra1/3 (see Siggers
et al. (2004) and Rocha et al. (2020b) for an improved estimate). Thus,

Ri ∼ Γ Pr−1Ra2/3Re−2. (3.16)

For Ri to become asymptotically small (at fixed Pr), we must have Re ∼ Raα , with α >
1/3. However, under these assumptions, the normalised dissipation εuL/U3 < Ra1−3α

(see (3.4)) would decay asymptotically, violating the hypothesis of fully turbulent flow.
This means that the stability of the shear layer is, to leading order, Rayleigh number
independent.

This behaviour was observed by Whitehead & Wang (2008) in their laboratory
experiments, where a forcing was added. In summary, the Richardson number cannot
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Figure 3. Sketch of the phase diagram in the (Ra,Pr) plane for the laminar regimes Il and I∗
l together with

the turbulent scaling IIl with the conducted DNS. The yellow stripes show the transition from I∗
l to Il, and Il

to IIl, with a slope Pr ≈ Ra1/2. The transition from II∗
l to I+

u with slope Pr ≈ Ra−1. The symbols reflect the
computational meshes in (x, y, z), used in the DNS: 512 × 256 × 256 (circle), 1024 × 384 × 128 (squares)
and 2048 × 256 × 256 (triangles). The values (α, β) in each region provide the exponents Nu ∼ RaαPrβ

measured in the DNS and derived theoretically, with the exception of the exponents in the region IVu, which
are empirically derived from the DNS. The transition between regimes is given as follows: from I∗

l to Il is given
by Pr ∼ 3.0 × 10−5Ra1/2, from Il to II∗

l by Pr ∼ 3.0 × 10−6Ra1/2, from I+
u to IVu by Pr ∼ 3.0 × 10−8Ra1/2

and from II∗
l to I+

u by Pr ∼ 3.0 × 1011Ra−1. The black dashed line shows when the BL becomes turbulent and
follows from II∗

l to IVu by Ra ≈ 3.0 × 1012. The red dashed line shows the transition from I+
u to IVu but the

scaling is Ra dependent and was approximated from the data obtained in this study.

decrease with increasing Ra, and therefore there are no reasons to believe that increasing
Ra will eventually lead to the development of an unstable layer.

Of course, this conclusion is only valid for non-rotating HC and would not hold in the
case where rotation is taken into account (Barkan, Winters & Smith 2013; Vreugdenhil,
Griffiths & Gayen 2017).

4. Numerical calculations

The Navier–Stokes equations are solved numerically on a Cartesian grid, stretched near
the upper boundary, using a standard second order in space and time projection method.

Snapshots of the flow are shown in figure 2(a,b) and by mean of the Λ2 criteria defined
by the second largest eigenvalue of the matrix S2 +Ω2 where S and Ω are the symmetric
and anti-symmetric parts of the velocity gradient tensor, respectively.

Simulations cover the range Ra = [6.4 × 105, 1.92 × 1015] and 0.002 ≤ Pr ≤ 2. For
Ra < 108 and 0.5 ≤ Pr ≤ 2, the computed flows are steady (Shishkina & Wagner 2016;
Passaggia et al. 2017). With increasing Ra and/or decreasing values of Pr, the flows
become increasingly unsteady, leading to turbulence (as shown in figure 2c) and the mesh
is refined in order to resolve the Kolmogorov length scale. In the case of homogeneous
turbulence, the Kolmogorov length scale is given by η ≈ (ν3/εu)

1/4. Using the PY
inequality, an approximation yields η/L ≈ Pr1/2/(Γ BRa)1/4 � 10−4 for the highest
value of Ra and the lowest Pr considered in this work. These estimates are valid for
homogeneous turbulence. In the present case, a substantial amount of dissipation is located
in the BL, where the mesh is refined up to Δz/L = 10−4 in the vertical direction and
Δy/L = 10−3 in the horizontal direction and should ensure numerical convergence. Mesh
sizes are reported in figure 3(b) in the (Ra,Pr) plane along with the different regimes
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Figure 4. (a,c) Ra dependencies and (b,d) Pr dependencies of (a,b) the Nusselt number and (c,d) the Reynolds
number, as obtained in the DNS for (a,c) Pr = 1 (squares), Pr = 0.1 (circles), Pr = 0.01 (triangles) and for
(b,d) Ra = 6.4 × 1010 (diamonds), Ra = 1.92 × 1012 (pentagons) and Ra = 1.92 × 1014 (triangles). The DNS
results support the scaling in the regime Il (solid lines) (3.10a) and (3.10b), transition to II∗

l (dotted lines) (5.2a),
(5.2b) and (5.12a), (5.12b) transition to I+

u (dotted lines) (3.12a) and (3.12b). The black squares in (a–d) are
from the numerical simulations of Shishkina & Wagner (2016), with Pr = 0.1 in (a,c) and Ra = 1010 in (b,d).

reported later in this paper. Note that the turbulence in HC for moderate values of Pr is
confined to a narrow region located below the cooling / heavy boundary consisting of the
plume and the BL where the fluid is statically unstable (cf. figure 2) (Scotti & White 2011;
Gayen et al. 2014). Decreasing the value of Pr increases the volume of fluid subject to
turbulence (see figure 2) and decreases the depth of the circulation.

5. Results and scaling analysis

The regimes observed in our numerical simulations are summarised in figure 3 together
with the exponents computed fitting power laws to the data (figure 4a–d)). The colours
shown in figure 3 correspond to the colours shown in figure 4(a–d) and the two new
regimes, labelled II∗

l in purple and cyan whereas IVu is shown in brown in figure 3 for
turbulent scaling laws. Table 2 summarizes the scaling exponents and numerical prefactors
for each regime.

The dependence of Nu and Re with respect to Ra and Pr is summarised in figure 4(a–d).
The Nusselt number obeys a scaling law Nu ∼ Raα (see figure 4a) with the exponent α
depending on Ra and Pr as follows:

(i) α = 1/4, the enhanced laminar scaling, for low Ra and higher Pr;
(ii) α = 1/5, the classical laminar scaling, for small Ra;
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Regime type I∗
l Il I+

u II∗
l IVu

Nu 
 aRaαPrβ

a 0.29 0.74 0.825 1.21 0.385
α 1/4 1/5 1/5 1/6 0.225∗
β 0 1/10 1/5 7/24 0.417∗

Re 
 bRaγPrδ

b 0.11 0.18 0.075 0.75 0.35
γ 1/2 2/5 1/3 2/5 1/3
δ −2/3 −1 −4/5 −3/5 −1

Table 2. List of scaling laws with prefactors measured for the Nusselt and Reynolds number dependencies
across different regimes. The scaling exponents decorated with an asterisk are estimated from the numerical
simulations. All other exponents are derived from theoretical considerations.

(iii) α = 1/6, for small Pr;
(iv) α = 1/5, the entrainment-type regime, at high Ra and not too small Pr;
(v) α ≈ 0.225 for large Ra and small Pr.

We observe the laminar scaling Re ∼ Raγ with γ = 1/2 (Shishkina & Wagner 2016)
and γ = 2/5 (Rossby 1965). At higher Ra, the new scaling γ = 1/3 is also observed,
reverting back to γ = 2/5 (Hughes et al. 2007) (figure 4c). Similarly, when Pr < 1 and
Ra is fixed, we observe a scaling relationship Nu ∼ Prβ with:

(i) β = 0 for higher Pr and low Ra (see Shishkina & Wagner 2016);
(ii) β = 1/10 for Ra < 1011 (see Shishkina & Wagner 2016);

(iii) β = 7/24 at low Pr;
(iv) β = 1/5 for Ra > 5 × 1011 (see Hughes et al. 2007);
(v) β ≈ 0.417 at large Ra and low Pr.

The Reynolds number dependence Re ∼ Prδ with δ = −2/3 for the smaller value of Pr,
then δ = −1 for 10−2 � Pr � 0.2 changes to δ = −4/5 with increasing Ra regardless of
Pr, and increases at high Ra to the HGMP scaling δ = −3/5 for the larger values of Ra
(figure 4d) considered.

Despite the difference in boundary conditions, our simulations recover the I∗
l and Il

regions in the phase diagram as found by Shishkina et al. (2016) and the I+
u regime

described by Hughes & Griffiths (2008), albeit with different boundaries (figures 4(a,b)
and 5(b)). For example, at Pr = 0.1 and Ra > 108, our simulations have already entered
the II∗

l regime, whereas in Shishkina & Wagner (2016) they are still in the Il regime
(figure 4a). This suggests that the scaling exponents are robust with respect to the boundary
conditions. The scaling regimes that occur in the lower regions of the parameter space,
with α = 1/6, β = 7/24, and α ≈ 0.225, β ≈ 0.417, are new to this study and are the
focus of the following section.

5.1. The low-Prandtl-number core-driven flow IIl

5.1.1. The Shishkina et al. (2016) regime
In the low-Prandtl-number regime, the flow transitions from Rossby’s Il regime to the IIl
regime as Ra increases. A snapshot of the flow (figure 2a) shows that, unlike the Rossby
regime, the flow here is turbulent in the core. In this low-Prandtl-number regime, the
buoyancy flux provided through the boundary is large but the thermal and momentum BLs
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remain thick, hence laminar, and (3.7) still holds. With decreasing Pr and/or increasing Ra,
the bulk dynamics dominates dissipation with a large-scale overturning flow occupying
the entire domain and whose horizontal length scale is L. In this case, it is the large-scale
velocity U which drives the dissipation of kinetic energy and the latter is given by

εu ∼ ν3L−4Re3. (5.1)

From (3.7), (3.4) and (5.1), it follows that low-Pr HC exhibits dependencies of the form

Re ∼ Ra1/3Pr−2/3, (5.2a)

Nu ∼ Ra1/6Pr1/6, (5.2b)

where this scaling regime is denoted as IIl (see figure 3(b) and Shishkina et al. 2016). Note
that these scalings are only observed for the Rayleigh number dependence, but the Prandtl
number dependence is clearly underestimated for both Nu and Re.

The BL scaling observed so far was are consistent with

Nu ∼ Pe1/2. (5.3)

In the following, we show that the balance in the boundary has to be modified to take into
account either core-size modifications or turbulent BL effects.

5.1.2. Modification induced by the variable turbulent depth h for the IIl regime
In the low-Prandtl-number regime (Pr < 10−1), turbulence is confined between the plume
and the left part of the domain, under the statically unstable BL whose depth is indicated
by h < H. The PY constraint on dissipation can be used to relate the depth h occupied by
the turbulent core to the Reynolds number Re. The inbalance between the dissipation in
the bulk and the BL is the first occurrence of a turbulent regime subject to two regions
with different dissipation rates at low Prandtl numbers. At low values of Pr, the thermal
BL providing the available energy drives the dynamics near the forcing boundary, and
its dissipation rate is given in (3.9). Dissipation in the core provides a higher dissipation
rate, as given by (5.1) which therefore dissipates energy at a rate that grows faster than
the supply by the forcing boundary. As a consequence, the bulk size h must decrease with
respect to the full depth of the domain H, to account for this effect.

Chiu-Webster et al. (2008) made similar observations in the case of an infinite Prandtl
number. In their case, the core dissipates less than the BL, leaving the Nusselt number
scaling independent of the core dynamics.

Here, we demonstrate that the turbulent core modifies the Prandtl number dependence
by relating the dissipation and buoyancy variance in both the BL and the bulk. The idea is
to introduce the ratio h/H in the equations and to provide the Rayleigh and Prandtl number
dependencies and correct for the above estimate.

We first provide a measure for h/H. It should first be stated that the variable turbulent
depth h is not uniform across the entire domain. The depth h is somewhat more
representative of the region where mixing occurs which is clearly defined by the area
A where the turbulent dissipation εu > (Re/2)3. In other words, the area where mixing
takes place is defined as

A =
∫

S
1|
ε

1/3
u >Re/2 dS = h2, (5.4)

and is related to the turbulent depth h, whereas 1 is the indicator function. It is also
important to highlight that depending on the type regime, mixing occurs at different
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Figure 5. (a,c) Ra dependencies and (b,d) Pr dependencies of (a,b) NuRe−1/2 and (c,d) L4ν−3εuRa−1, as
obtained in the DNS for (a,c) Pr = 1 (squares), Pr = 0.1 (circles), Pr = 0.01 (triangles) and for (b,d) Ra =
109 (diamonds), Ra = 2 × 1010 (pentagons) and Ra = 1.92 × 1014 (triangles). The upper figures support the
estimates in (3.7) and (5.12b), whereas the lower figures confirm (3.4). The black squares in (a,b) are from the
simulations of Shishkina & Wagner (2016) at Ra = 1010.

locations. For instance, in the low-Prandtl-number core-driven flow IIl, the region where
mixing occurs is essentially located in the plume and the core. On the other hand, for the
turbulent BL regime at large Rayleigh numbers IVu, mixing is dominant in both the plume
and the BL. Measurements of h for the three cases varying the Prandtl number at constant
Rayleigh numbers are shown in figure 6 where all measurements scale as h/H ∼ Pr1/4

when appropriately rescaled with the Reynolds number.
From a theoretical point of view, the bulk size can be determined assuming that the

mixing efficiency in the bulk and the mixing efficiency in the BL follow similar scaling
laws. This is justified since both bulk and BLs are driven by an excess of available potential
energy (Scotti & White 2014) from which it follows that

(
εb,bulk

εb,BL

)
∼

(
εu,bulk

εu,BL

)
. (5.5)

We now substitute the expressions for dissipation and the buoyancy variance in the
different regions. For εu,bulk, εu,BL and εb,BL, the values are expressed in terms of the
Reynolds and Prandtl numbers in (5.1), (3.9) and (3.8), respectively. The buoyancy
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Figure 6. Evolution of the mean depth h as a function of the Prandtl number at constant Ra. At high Rayleigh
number the plot is compensated with the Reynolds number as expected from (5.8) and (5.32). The black dashed
lines denote the Pr1/4 slope.

variance in the bulk is

εb,bulk ∼ UΔ2

h
h − λb

h
∼ UΔ2

h
∼ κΔ2

h2 Pe. (5.6)

Recalling that λb/L ∼ Nu−1 ∼ Pe1/2 and that λu/H ∼ Re−1/2, the balance in (5.5)
therefore reduces to

L−4Re3

H−4Re5/2 ∼ H2Pe
h2Pe1/2 . (5.7)

Rearranging the terms in the above balance leads to provides the following scaling

h
H

∼ (Γ −4Re1/2Pe−1/2)−1/2 ∼ Γ 2Pr1/4. (5.8)

This scaling is shown in figure 6 (squares). This decrease in bulk size is depicted in
figure 7(a–c) where the plume depth behaves according to the above scaling. The reduction
in h also implies that in this transition regime between Il and IIl or I+

u and IIl, (5.1) has to
take into account the fact that now Re is not based on H but on h, the overturning depth.
With respect to this, the overturning may be rescaled so that

εu ∼ ν3

H4 Re3
(

h
H

)3

, (5.9)

to take into account the reduction of the bulk size h as Pr decreases. The above argument
can also be expressed through the heat transport in the laminar BL where the bulk
modification, similarly to (5.9) is now tied to the amount of heat transport such that

U
Δ

L
∼ κΔ

λ2
b

(
H
h

)
. (5.10)
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Figure 7. Time-averaged iso-contours of the streamfunction ψ = [−0.1,−0.075,−0.05,−0.025, 0,
2, 4, 6, 8, 10, 12, 14, 16]/8 × 10−4 for Ra = 1.92 × 1015: (a) Pr = 1, (b) Pr = 0.1 and (c) Pr = 0.01 showing
the narrowing of the circulation as Pr decreases and the circulation within the core narrowing beneath the
differentially heated surface at zΓ = 1.

Substituting (5.8) into (5.9), the modified dissipation leads to a new dependence on the
Prandtl number for the regime IIl such that

Re ∼ Ra1/3Pr−2/3
(

h
H

)−1

∼ Ra1/3Pr−11/12, (5.11a)

Nu ∼ Re1/2Pr1/2
(

h
H

)
∼ Re1/2Pr3/4, (5.11b)

which is confirmed by our DNS (see figures 4(d) and 5(b)). Combining (5.11a) and (5.11b)
provides a correction for this Pr transition in the IIl regime

Re ∼ Ra1/3Pr−11/12, (5.12a)

Nu ∼ Ra1/6Pr7/24, (5.12b)

found for Pr � 0.2 (see figure 4b,d). Therefore, the advection–diffusion balance in the BL
(3.7) is modified according to

Nu ∼ Pe1/2Pr1/4 ∼ Re1/2Pr3/4, (5.13)
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which now takes into account variable depth effects h, decoupled from the domain’s depth
H. This particular scaling is the last controlled by the laminar BL as Ra increases. As
Shishkina et al. (2017) noted, further increasing the Rayleigh number may eventually
lead to core-driven dynamics, as was previously observed by Griffiths & Gayen (2015)
for a somewhat different boundary condition. In the following subsection, we report the
transition to a similar regime, which marks the shift to the limiting regime of horizontal
turbulent convection for large Ra. In particular, we take advantage of the same scaling
analysis for the variable size of the turbulent core with depth h to recover the Prandtl
number dependencies.

5.2. The limiting turbulent BL regime at large Rayleigh numbers IVu

The modification of the depth of the circulation at high Rayleigh numbers was first
investigated by Griffiths & Gayen (2015) and Rosevear et al. (2017) who considered
a periodic forcing at the surface and very small aspect ratios Γ . They showed that a
laminar-type scaling for the dissipation in the bulk was responsible for the transition to
a core-dominated turbulence regime. The scaling obtained from the vorticity equation
is related to the previous analysis and considers a balance between the dissipation in
the core (the interior) scaling as Re ∼ Ra1/2Pr−1/2 and balances the dissipation in the
BL, obtained from (3.7) BL. This is in contrast to the scaling observed in the previous
regime (IIl). This is shown in figures 4 and 5 where the dependencies of Ra and Pr do not
support the above scaling. There is a clear departure from the laminar scaling obtained
in (3.7) suggesting that turbulent BLs, characterised by a log-type profile and modified
heat transfer coefficients (Grossmann & Lohse 2011), may be expected. Note that such
BL profiles were already observed in Rosevear et al. (2017) but the latter did not affect
the heat- or the momentum-transfer scaling obtained in their analysis. Here, we report
different results and show that log-type profiles do influence heat and momentum transfers,
in a similar way to results obtained in RBC (Grossmann & Lohse 2011; van der Poel et al.
2015).

5.2.1. Incompatibility with a laminar BL scaling
Low-Prandtl-number flows are particularly interesting with respect to the study of the
transition to the limiting regime in HC since the transition to a turbulent-dominated flow is
first observed in the IIl regime where the dissipation of kinetic energy driving the dynamics
scales as εu ∼ ν3L−4Re3.

Therefore, increasing Ra may eventually lead to turbulent BLs as well. However,
increasing Ra leads to thinner BLs and a thinner bulk. Following this logic, once
turbulence is triggered in the BL, the thermal BL becomes embedded into the momentum
one and the BL profiles exhibit log-type profiles. As recently observed in Reiter &
Shishkina (2020), the velocity of the flow, which carries the temperature in the bulk,
reduces from U to U(λb/λu) and the buoyancy variance dissipation rate (Shishkina et al.
2016) becomes

εb,bulk ∼ (Γ/2)κΔ2h−2PrRe3/2Nu−1, (5.14)

whereas the total volume V has a buoyancy variance of

εb,V = (Γ/2)κΔ2L−2Nu. (5.15)
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Equating (5.14) and (5.15) gives the following expression for the Nusselt number

Nu ∼ Γ Re3/4Pr1/2
(

h
H

)
. (5.16)

With increasing Ra, the bulk dynamics are driven by the large-scale overturning flow
whose length scale is h as confirmed by our simulations in the previous subsection. In
this case, the dissipation of kinetic energy in the bulk is essentially dependent on the
large-scale velocity U and the Reynolds number is again modified from Re based on H to
Re based on h such that

εu,bulk ∼ ν3

H4 Re3
(

h
H

)3

, (5.17)

whereas the Rayleigh and Prandtl number dependencies of the bulk now yield(
εb,bulk

εb,BL

)
∼

(
εu,bulk

εu,BL

)
≡ h

H
∼ Re−1/8Pr1/4. (5.18)

In the above, the buoyancy variance in the bulk still follows εb,bulk ∼ κΔ2h−2Pe, but in
the BL, the buoyancy variance follows (5.16) and εb,BL ∼ κΔ2h−2Re3/4Pr1/2 (see Reiter
& Shishkina 2020). The turbulent kinetic energy dissipation is given by (5.17) and reads
εu,bulk ∼ ν3L−4Re3 whereas in the BL, dissipation is bounded by the stably stratified layer
εu,BL ∼ ν3L−4Re5/2. Combining (5.14) and (5.17), together with the bulk reduction effect
(h/H) for the Nusselt number as in (5.11b), the relation for the Nusselt number now reads

Nu ∼ Re3/4Pr1/2
(

h
H

)
∼ Re5/8Pr3/4, (5.19)

which agrees with the results shown in figure 5(a,b). Combining (5.14), (3.4), (5.17a) and
(5.17b), one obtains

Re ∼ Ra8/21Pr−22/21, (5.20a)

Nu ∼ Ra5/21Pr17/96, (5.20b)

which slightly overestimates the Ra number dependence for the Nusselt number with
respect to Ra (i.e. ≈0.225 from the DNS vs ≈0.238 from the theory) but clearly
underestimates the Prandtl number dependence (≈0.41 for the DNS vs ≈0.17 for the
theory) in that particular region of the (Ra,Pr) plane and is denoted as IVu in figures 3(a,b)
and 5(a,b).

This scaling analysis shows that the effect of turbulence must play a role. In particular,
the dissipation scaling has to take into account the turbulent BL characteristics and
log-type corrections have to be eventually reintroduced to accurately predict both the
Prandtl and Reynolds number dependencies observed from the simulations.

5.2.2. A fully turbulent BL scaling
The above scaling overestimates the heat flux, since the observed exponent Nu ∼ Ra0.225

is close to the exponent Nu ∼ Ra5/21 ∼ Ra0.238 but smaller and the turbulent Nu ∼ Ra1/4

scaling (figure 4a) and suggests a new correction for the dissipation in what may appear
as turbulent thermal and momentum BLs. In addition, both Prandtl number dependencies
found in the numerical simulations are not predicted by (5.20a) and (5.20b) which suggests
that turbulence plays a non-trivial role in the above scaling. For small Pr and large Ra, the
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statically unstable BLs become turbulent and, for decreasing Pr, the Reynolds number
increases (figure 4c) which causes the BL to transition to turbulence. The dissipation of
kinetic energy may be split between a viscous sublayer εvs and a logarithmic layer εll such
that εu,BL = εvs + εll (Grossmann & Lohse 2011). In the log layer, the dissipation reads

εu,ll(z) = u3∗
Cκ,uz

, (5.21)

where Cκ,u ≈ 0.4 is the Von Kármán constant. The last equation may also be rearranged
as

εu,ll(z) = ν3L−3 Re3

Cκ,uz

(u∗
U

)3
. (5.22)

The mean kinetic energy dissipation in the log layer can therefore be obtained by
integrating the above equation so that

εu,ll = 1
h/2

∫ h/2

z∗
εu,ll(z) dz, (5.23)

where z∗ = ν/u∗ and h/2 corresponds to the outer edge of the logarithmic zone. The
dissipation in the log layer thus acts as a buffer to heat exchanges and induces a log-type
correction denoted as L(·), which depends on the Reynolds number

εu,ll := ν3L−4Re3
(u∗

U

)3
(

h
H

)3 2
Cκ,u

log
(

Re
u∗
U

1
2

h
H

)
, (5.24)

where the length scale is now L (i.e. the length of the domain), and u2∗ = u′w′ is the
typical velocity fluctuation scale (Grossmann & Lohse 2011). In fact, in the present
simulations, the friction directly on the wall is zero because of the free-slip boundary
condition. Therefore, the friction velocity u∗ does not refer to the wall shear stress but
to the turbulent shear stresses, induced by the turbulent fluctuations of the buoyancy flux
w′b′ originating from the statically unstable buoyancy profile in this region near the wall.
The logarithmic profiles for both velocity and buoyancy are shown in figure 8(a,b). For all
turbulent profiles, a logarithmic region can be observed for the velocity profile. In addition,
the profile seems to be self-similar, at least for the three profiles reported in the figure. The
source of turbulent stresses here is suggested by the large logarithmic profile, measured for
two decades in figure 8(b) for the buoyancy profile at Ra = 1.92 × 1015 and Pr = 10−2.
The buoyancy variance in the BL can also be expressed using a similar analogy. As shown
in figure 8(b), the thermal layer shows a log-type layer, which is a common feature of
turbulent statically stable and unstable BLs

εb,ll(z) = Prt
κb2∗

Cκ,bz2 , (5.25)

where b∗ = w′b′/u∗. The fluctuating velocity u∗ can be connected to the outer velocity U
or Re, and similarly for the buoyancy variance via

u∗
U

= Cκ,u

log
(

Re
u∗
U

1
θ

) and
b∗
Δ

= 1
Prt

Cκ,b

log
(

Re
u∗
U

1
θ

) . (5.26a,b)
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Figure 8. (a) Mean turbulent BL profiles and (b) mean turbulent buoyancy profiles measured at x = −0.325,
rescaled using the slip velocity at the wall u0 = u(x = −0.75, z = H) and the maximum velocity at this
particular x location. Note that we are not in the presence of a free-slip-type turbulent BL but we recover a
log-type layer as shown by the dashed line for the highest (lowest) values of Ra (Pr) and, thus, the highest Re.
See the main text for a discussion of the origin of the log layer.

In the above, we assumed that the flux Richardson number Rf = w′b′/(u′w′∂u/∂z)
is constant, which should hold provided that the structure of the turbulent BL remains
self-similar with Ra and Pr (see figure 9a,b). In addition, we assume that the thermal
Kolmogorov constant Cκ,b ≈ Cκ,u ≈ 0.4 which is consistent with the Monin–Obukhov
BL theory (Landau & Lifschitz 1987). Further, the turbulent Prandtl number Prt ≈ O(1)
which is consistent with finite values of the flux Richardson number and the value of the
mixing efficiency reported in HC at large Rayleigh numbers (Scotti & White 2011; Gayen
et al. 2014). The empirical constant θ depends on the geometry of the system, along a plate
θ is empirically found to be equal to 0.13 (see Grossmann & Lohse 2011). Again, the mean
buoyancy variance can be integrated so that

εb,ll = 1
h/2

∫ h/2

z∗
εb,ll(z) dz, (5.27)

which reduces to

εb,ll = Prt
2κb2∗

Cκ,bL2 Re
u∗
U

h
H
, (5.28)

and using (5.26a,b), the expression becomes

εb,ll = κΔ2L−2Re
(u∗

U

) (
h
H

)
2Prt

Cκ,b
log

(
Re

u∗
U

1
θ

h
H

)−2

. (5.29)

In the above expressions, the unknown ratio u∗/U can be computed using Lambert’s
W-function where u∗/U = Cκ/W(ReCκ/θ) (Grossmann & Lohse 2011). The dissipation
in the turbulent regime is thus modified from (5.17a) and becomes

εu,ll ∼ ν3L−4Re3
(

h
H

)3

L(Re), (5.30)

where L(Re) is given by

L(Re) ≡ Cκ,u
(u∗

U

)3
log

(
Re

u∗
U

1
θ

h
H

)
. (5.31)
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Figure 9. Dependencies of Nu (red) and Re (blue) with respect to Ra (a) and Pr (b) showing the modification
and weak variations of both Nu and Re in the regime considered here. The continuous lines show the predictions
from (5.34a,b) whereas the dashed line shows the measurements from figure 4(a,d).

However, the bulk still dissipates at a rate expressed in (5.20a) above (see figure 4c,d).
We can think of this correction as a decrease in heat transfer through the BL, which is
responsible for an even faster modification of the relative depth of the recirculation region
(h/H). The latter is estimated using (5.18) which writes(

εb,bulk

εb,BL

)
∼

(
εu,bulk

εu,BL

)
≡ h

H
∼ Re−1/8Pr1/4. (5.32)

Thus, the scaling for the Nusselt number becomes

Nu = Re3/4Pr1/2
(

h
H

)
∼ Re5/8Pr3/4L(Re)1/2, (5.33)

and from (5.17b), (5.14), (3.4) and (5.30) it follows that

Re ∼ Ra8/21Pr−22/21L(Re)−8/21, (5.34a)

Nu ∼ Ra5/21Pr17/96L(Re)−5/27. (5.34b)

These scalings are verified in figure 9(a,b) for both the Nusselt number and the Reynolds
number with respect to both Ra. The Prandtl number dependence prediction is also
improved compared with (5.17a,b). The Prandtl number exponent for the Reynolds number
is found at Re ∼ Pr−1 for the DNS whereas the log-corrected exponent is Re ∼ Pr−1.075.
The Nusselt number dependence is Nu ∼ Pr0.41 in the DNS while the log-corrected scaling
provides Nu ∼ Pr0.2 which hints at a possible Prandtl number dependence due to plume
dynamics, as observed in RBC (Grossmann & Lohse 2011; Ni, Huang & Xia 2011).

To the best of the authors’ knowledge, this is the first time such log-type corrections have
been applied and verified for the Prandtl number dependence. The logarithmic region of
the time-averaged turbulent BLs is shown in figure 8 for two different Prandtl numbers and
two different Rayleigh numbers in the turbulent regime, supporting our assumption and
analysis. Thus, these scaling laws provide evidence for a new regime in HC, which can be
considered as the limiting regime in HC. It is worth noting that as Ra further increases,
the α exponent progressively reaches the value of 5/21 where log corrections become less
significant. Note that this exponent also agrees very well with the recent study (Reiter

997 A5-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.702


P.-Y. Passaggia and A. Scotti

& Shishkina 2020). The transition from the IIl regime to the IVu regime in figure 3 is
marked by the vertical black dotted line and is obtained by matching the Reynolds number
between each region. After equating (5.34a) with (5.12), the transition is found very close
to a constant at Ra ≈ 3 × 1012.

The next subsection investigates whether this last transition can be thought of in terms of
turbulent regimes. As one expects to see a transition to the limiting regime of convection,
the question therefore arises whether turbulence in the present flow is dependent or not on
viscosity and if we are reaching the ultimate regime where dissipation is not dependent on
viscosity. Note that a viscous-independent turbulent regime would make the present result
relevant for large-scale geophysical applications.

6. ‘Ultimate’ or ‘classical’ turbulence?

The picture drawn in the previous section provides an understanding of the heat and
momentum transition leading to the ultimate regime of HC. Although the above picture
is convincing, with successive scaling transitions in agreement with what was observed
previously in RBC, it remains complex, with two control parameters and at least five
different regimes spanning ten orders of magnitude in Ra.

We propose to re-analyse our data in the framework of Kolmogorov’s zeroth law of
turbulence (Frisch 1995), and provide a valuable tool to diagnose the state of turbulence
observed and how these regimes and their transitions may be further analysed.

We introduce the Kolmogorov number, obtained by rescaling the PY constraint on
dissipation using U and L, giving

εL
U3 ≡ Ko = Re−3RaPr−2. (6.1)

The scaling law relating Ko with respect to Re (or Pe) provides a new way to analyse
whether the flow is laminar, transitional or in a state of ‘classical’ or ‘ultimate’ turbulence.
In the laminar case, the Kolmogorov number and, hence, the dissipation is solely
controlled by the vertical gradient of the velocity where Ko ∼ Re−1. In contrast, ultimate
turbulence achieves complete similarity for parameters that contain viscosity (Vassilicos
2015), that is, we should expect Ko = Const. An intermediate regime Ko ∼ Re−1/2 can
also be expected if the BLs dominate dissipation, as the latter may not achieve complete
similarity.

The evolution of Ko with respect to both Re and Pe is shown in figure 10, where
for laminar flows we obtain, for all Pr, Ko ∼ Re−1. Across the Il and I∗

l regimes, the
dependence of Ko exhibits a Re1 transition, where dissipation is enhanced throughout
this core-driven mixing regime. A Ko ∼ Re−1/2 type regime is then recovered for all the
values of Pr in the IVu regime (see figure 10a). The same observation can be made for
the scaling concerning Pe where the same conclusions arise (see figure 10b). Variations
with respect to the Prandtl number follow the same rationale. Transitions between regimes
varying the Prandtl number are found at constant Ko (see figure 10c), whereas in the IIl

and II∗
l regimes, variations with respect to Pr occur for Ko ∼ Re−1. At higher Ra and in

the IVu regime, conclusions are difficult to draw, but we may expect Ko ∼ Re−1/2. The
transition to the ‘ultimate’ regime of turbulent convection in natural HC does not seem to
be attainable even at extremely high Ra. Ultimately, the bound on the Richardson number
under the stable (warming) boundary proves to be what prevents HC in the Pr = O(1)
or lower regimes from achieving the ultimate regime. Adding active forcing in this same
region or, for instance, through radiative heat transfer (Lepot, Aumaître & Gallet 2018)
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Figure 10. (a) Re dependencies and (b) Pe dependencies of the Kolmogorov number Ko for variations with

respect to Ra. Same for (c,d) but for variations with respect to Pr (refer to figure 3 for colour code).

may allow an early transition to the ultimate regime to be observed. Such strategies may
allow the realisation of the IVl regime predicted by Siggers et al. (2004) and Rocha et al.
(2020b).

7. Conclusions

We have reported evidence of two new turbulent regimes in HC based on scaling
arguments at low Prandtl numbers. More precisely, we first highlighted the regimes that are
known as limiting regimes. For asymptotically small Prandtl numbers, we have a regime
where the core is driven by turbulence but where the BL remains laminar and we name
this regime IIl following the nomenclature of Shishkina et al. (2016). The second regime
is characterised by both a turbulent core and a transition within the BL to a state which has
characteristics proper of turbulence even though lacking a clearly discernible log layer. It
is possible that this embryonic logarithmic layer will, at higher Rayleigh numbers, expand
to form a canonical layer, but at present we cannot state this with confidence. Following
SGL’s nomenclature, we call this the IVu regime.

Our results support and integrate previous evidence from Shishkina & Wagner (2016)
and the model of Hughes et al. (2007) in the SGL theory of HC.

In the IIl regime, we have observed a new scaling, where the modification of the
turbulent bulk size modifies the dependence of the Prandtl number for both the Reynolds
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and Nusselt numbers scaling. This reduction in the size of the bulk has been found to be
essentially Prandtl number dependent where the bulk decreases in size when Pr decreases.

The transition to the turbulent limiting regime, denoted as IVu, has also been observed.
In this particular regime, the flow in the core becomes turbulent, whereas the statistics
of the geometric invariants in the BL assume turbulent characteristics, although a fully
developed logarithmic is not observed. Similar to the work Rosevear et al. (2017), the
turbulent region is essentially located below the horizontal forcing and progressively
clusters beneath as both Ra increases and Pr decreases. According to Shishkina et al.
(2016), this last regime marks the final transition at large Ra. Log corrections allow
recovery of the correct dependencies Nu and Re with respect to Ra and improved estimates
for Pr. However, more work is needed to understand the exact dependence of the Nusselt
number on the Prandtl number, which may be attributed to plume dynamics (Grossmann
& Lohse 2011; Ni et al. 2011).

It is important to stress that our calculations were performed with free-slip conditions.
We confirm that the previously observed scaling laws in the region I∗

l , Il and I+
u , which

were reported under no-slip conditions, are observed even with free-slip conditions, albeit
with shifted boundaries. Whether the newly reported regimes are robust with respect to
the boundary conditions on velocity remains an open question. We also propose a new
analysis, based on the Kolmogorov number Ko, a rescaled dissipation rate. The analysis
confirms that the flow transitions from laminar to classical turbulence, but also shows that
the flow never transitions to ultimate turbulence, which would be akin to the IVl regime of
Siggers et al. (2004), Shishkina et al. (2016) and Rocha et al. (2020b).

The ultimate regime IVl, if it exists, has thus yet to be observed. It is therefore of
particular interest to study new types of HC where the turbulence can be strong enough to
get rid of the effect of BLs and trigger purely inertial, core-driven, turbulent HC regimes.
A such regime would be of particular importance for geophysical applications such as the
overturning circulation. In particular, the present study further points to the idea that a
deep circulation cannot be sustained in the limit of large Rayleigh numbers and that other
effects must be taken into account to provide the necessary physics to model the meridional
overturning circulation.

The companion paper gathers the results from this study together with an experimental
study at a large Prandtl number. In particular, a regime diagram is provided that highlights
all known limiting regimes of HC.
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Appendix. Turbulent BL analysis

Although the scaling analysis in § 5.2.2 shows good agreement with the simulations, we
provide further information regarding the velocity profiles and the local scaling laws of
the BL in the large-Rayleigh-number regime.
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Figure 11. (a) Streamwise evolution of the turbulent BL profile for Ra = 1.92 × 1015 and Pr = 10−2.
(b) Compensated displacement and momentum thickness of the turbulent BL measurements are shown in (a).
(c) BL shape factor H1,2 along the streamwise direction at Pr = 10−1 for different values of Ra. (d) PDF of
the cosine of the angle between vorticity ω and the vorticity stretching vector W.

We first depict near-wall BL profiles in the unstable region. These mean-velocity profiles
were calculated for the largest Rayleigh number at Ra = 1.92 × 1015 and a Prandtl number
Pr = 10−2 which is the most turbulent cases from this study. Horizontal velocity profiles
are shown as U+(z) = (U(z+)− U(z = 0))/u∗ where u∗ = √

ν(∂U/∂z) is obtained from
the maximum shear stress obtained from the maximum shear in the laminar region near the
wall and where z+ = ν/u∗. The profiles are compared with the laminar viscous sublayer
solution U+ = y+ and the turbulent profile U+ = C−1

κ log( y+)+ 5. The results show that
the resolution of the grid in the BL region for the first mesh size is below y+ = 1. This was
verified for all cases with large Rayleigh numbers. At y+ > 100, the flow starts to follow
the logarithmic flow region but at y+ > 300, the BL is modified by the return flow and no
longer follows the profile of turbulent BLs with zero pressure gradient. There also exists a
peak at y+ ≈ 25 25 % greater than the beginning of the log profile that begins at y+ ≈ 100.
This feature is reminiscent of turbulent BLs (Monkewitz, Chauhan & Nagib 2007) which
might be associated with the onset of small-scale mixing caused by the statically unstable
buoyancy profile.

In addition, we report the evolution of the displacement thickness δ∗(x) and the
momentum thickness Θ∗(x) compensated with x−4/5, which is also a common feature
of the turbulent BL scaling laws (see Schlichting & Gersten (2016), for a detailed review).
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Figure 11(b) shows a compensated plot of both compensated quantities for the velocity
profiles in figure 11(b) where the scaling laws vary by approximately 10 % around the mean
value. The shape factor H1,2 = δ∗/Θ∗ is shown in figure 11(c) for increasing Rayleigh
numbers at Pr = 10−1. It is shown that when the BL profiles become turbulent, the shape
factor decreases to a value of H1,2 ≈ 1.3, also in agreement with zero-pressure gradient
and homogeneous turbulent BL theory (Schlichting & Gersten 2016).

Further confirmation that the BL is indeed fully turbulent comes from the analysis of
the statistics of geometric invariants of the velocity gradient tensor (Meneveau 2011). One
such invariant is (ω · W)/‖ω‖‖W‖, where Wi ≡ ωjSji is the vortex stretching vector. The
PDF calculated from our experiments agrees very well with the PDF of grid turbulence at
Reλ = 70 reported by Tsinober (1998). Interestingly, this PDF remains essentially Rayleigh
and the Prandtl number independent for sufficiently large values of the Rayleigh number.
All of the above results point to the fact that, despite the free-slip boundary condition used
for the simulations, the flow displays turbulent BL features. The turbulent scaling analysis
essentially allows for correcting the transition from laminar to this weakly turbulent
regime. This conclusion is also in line with the classical turbulence scaling derived
in § 6.
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