
Canad. Math. Bull. Vol. 46 (1), 2003 pp. 149–156

The Ramification Polygon for Curves
over a Finite Field

John Scherk

Abstract. A Newton polygon is introduced for a ramified point of a Galois covering of curves over a

finite field. It is shown to be determined by the sequence of higher ramification groups of the point. It

gives a blowing up of the wildly ramified part which separates the branches of the curve. There is also

a connection with local reciprocity.

1 Introduction

Let k be a finite field of characteristic p with q elements and let L/K be a totally
ramified Galois extension of local fields over k with Galois group G. Denote by νL

(respectively νK ) their valuations. Let z (respectively y) be a local parameter for L

(respectively K). Then z satisfies an Eisenstein equation

(1) f (z) = ze + · · · + a1z + a0 = 0

where ai ∈ OK = k[[y]], νK (ai) ≥ 1 for all i, νK (a0) = 1, ae = 1, and e = e0 pr with

(e0, p) = 1. G has a filtration

G = G0 ⊃ G1 ⊃ · · · ⊃ Gi ⊃ · · ·

given as follows: for i ≥ −1,

γ ∈ Gi ⇐⇒ γz − z ≡ 0 (mod zi+1).

This note studies “Puiseux expansions” for γz, where γ ∈ G1, i.e., for the wildly
ramified part of the extension. A neat way to do this is to use a Newton polygon, the
ramification polygon. While writing this paper, the author discovered that a similar

Newton polygon was introduced by Krasner in [2] for local extensions of number
fields. He obtained results analogous to those in Section 2 in this case.

In Section 2 the ramification polygon is introduced and its basic properties de-
rived. The polygon determines a blowing-up of A2. This is discussed in Section 3.
In Section 4 a connection with local reciprocity is explained. This result holds in the
number field case as well and seems to be unknown there.
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2 The Ramification Polygon

For i ≥ 1, let
U i

L = 1 + (zi) ⊂ O
∗
L , U i

K = 1 + (yi) ⊂ O
∗
K .

For γ ∈ Gi , i ≥ 1, write
γz = z + sγz, sγ ∈ (zi).

Then we can define a homomorphism

ti : Gi/Gi+1 −→ U i
L/U i+1

L
∼= (zi)/(zi+1) ∼= k

by
ti(γ̄) = 1 + sγ ,

which is injective. Under the identification with k, 1 + sγ corresponds to s̄γ , the lead-
ing coefficient of sγ as a power series in z.

Now the local parameter y can be written as a power series in z. Regarding f then
as a polynomial with coefficients in OL, set

g(x) = g(x, z) := f (zx + z) ∈ OL[x].

Notice that
g(0) = f (z) = 0.

If γ ∈ G1, then sγ is a root of g, and if s ∈ L is a root of g, then sz + z is a root of f .
The ramification polygon ∆ of L/K is defined to be the Newton polygon of g: write

g(x) =

e
∑

i=1

bix
i , bi ∈ OL,

and let

Pi =
(

i, νL(bi)
)

, i = 1, . . . , e.

Then ∆ is the boundary of the convex hull of

e
⋃

i=1

(Pi + R
2
+).

Corollary 1 shows that ∆ does not in fact depend on the choice of f .

Now

bi =

e
∑

j=i

(

j

i

)

a jz
j .

Since e|νL(a j), we have that

νL(a jz
j) ≡ j (mod e), j = i, . . . , e

and thus they are all distinct. So

(2) νL(bi) = min
i≤ j≤e

νL

((

j

i

)

a jz
j

)

.
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Lemma 1

(i) For all i, νL(bi) ≥ e;

(ii) νL(be) = νL(bpr ) = e;

(iii) νL(b1) = νL(D) + 1, where D is the different of L/K;

(iv) for ps < i < ps+1, s < r, νL(bi) ≥ νL(bps ).

Proof We have that

νL

((

j

i

)

a jz
j

)

≥ eνK (a j) + j

for all j. Since νK (a j) ≥ 1 for all j < e, (i) follows. Notice that

(zx + z)e
= ze(xpr

+ 1)e0 = ze(xe + · · · + e0xpr

+ 1).

So (2) implies that
νL(bpr ) = e.

According to [3, III, §6, Cor. 2,],

D =
(

f ′(z)
)

.

As
b1 = z f ′(z),

this proves (iii). Lastly, suppose that s < r, ps < i < ps+1. Let νp denote the p-adic
valuation. Then, as is well known,

νp

(

j

i

)

≥ νp

(

j

ps

)

for all j ≥ i. In particular, if
(

j
ps

)

≡ 0 (mod p), then
(

j
i

)

≡ 0 (mod p). Therefore

by (2)
νL(bi) ≥ νL(bps ).

Thus Pi lies on ∆ only if i = ps for some s. So let Qi = Ppsi , i = 1, . . . ,m be the

vertices of ∆, where 0 = s1 < · · · < sm = pr. Set νi = νL(bpsi ). Let Li = Qi−1Qi ,
1 < i ≤ m be the edges, and let −µi ∈ Q be the slope of Li .

Theorem 1 The slopes −µ j of the edges L j = Q j−1Q j , 1 < j ≤ m, are integral. The

jumps in the sequence of higher ramification groups G0 ⊇ G1 ⊇ · · · are µm < · · · < µ2.

The orders of the groups are |Gµ j
| = ps j , 1 < j ≤ m.

Proof We show that g has ps j − ps j−1 roots of order µ j . Let b̄i ∈ k be the coefficient
of the lowest order term of bi ∈ OL = k[[z]]. Now

g(zµ j x) =

∑

i

bi(zµ j x)i

=

∑

i

b̄iz
νL(bi )+iµ j xi + higher order terms.
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νL(D) + 1 Q1

−µ2

Q j−1

Q j−µ j

Qm−1 Qm

−µm
e

The equation of L j is

η + µ jξ − (ν j + µ j ps j ) = 0.

Since ∆ is convex,
νL(bi) + µ j i − (ν j + µ j ps j ) > 0

for all Pi not on L j . Therefore

(3) g(zµ j x) ≡ zν j +µ j p
s j

∑

Pps on L j

b̄ps xps

(mod zν j +µ j p
s j +1).

So let
h j(x) =

∑

Pps on L j

b̄ps xps

∈ k[x].

This is an additive polynomial. Its degree is ps j and the lowest order term has degree

ps j−1 . Therefore the number of non-zero roots of h j in k̄ is ps j − ps j−1 . A non-zero
root s̄ of h j in k determines a root s of g in OL of order µ j and vice versa. Since g has
e roots in OL, all the roots of h j must lie in k and µ j must be an integer. This also tells
us that the sequence

(4) 0 −→ Gµ j
/Gµ j +1

tµ j

−→ U
µ j

L /U
µ j +1
L

∼= k
h j

−→ k

is exact. Therefore
|Gµ j

/Gµ j +1| = ps j − ps j−1 ,

and

|Gµ j
| =

j
∑

i=2

(psi − psi−1 ) + 1 = ps j .

To see that µ2, . . . , µm are precisely the jumps in the sequence of ramification
groups, let s be a root of g of order µ. Suppose µ is not one of µ2, . . . , µm. Since ∆ is
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(0,1) (µm,1) (µ2,1)

(1,0)

convex there will be a line with slope −µ which meets it at a single vertex, say Q j , for
some j, 1 ≤ j ≤ m. And the rest of ∆ will lie on one side of this line. Now expand
g(zµx) as in (3):

g(zµx) ≡ zν j +µp
s j

b̄p
s j xp

s j

(mod zν j +µp
s j +1).

But writing s = zµ s̃, with s̃ ∈ OL, s̃(0) 6= 0, we have

0 = g(s) = g(zµ s̃) ≡ zν j +µp
s j

b̄p
s j s̃p

s j

,

which is impossible since b̄p
s j 6= 0. Therefore µ2, . . . , µm are the jumps.

Corollary 1 The ramification polygon is independent of the choice of Eisenstein poly-

nomial f .

Proof The sequence of jumps and the orders of the ramification groups determine
the numbers µ2, . . . , µm, ps1 , . . . , psm which in turn determine ∆.

3 Blowing Up

Equation (3) can be interpreted as a “blowing up” of the curve g(x, z) = 0, which
separates the branches γz, γ ∈ G1. The fan Σ associated with ∆ [1, Section 8.2]

consists of the cones generated by {(0, 1), (µm, 1)}, {(µ j+1, 1), (µ j , 1)} for 1 < j < m

and {(µ2, 1), (1, 0)}.

This fan defines a variety X(Σ) over k and a proper map φ : X(Σ) → A2. Let Σ
′

be the fan consisting of the cones generated by {(µ, 1), (µ + 1, 1)} for 0 ≤ µ < µ2

and {(µ2, 1), (1, 0)}. Then Σ
′ is a simple fan subordinate to Σ, and X ′ := X(Σ ′) is

smooth.

For each j, 1 < j ≤ m, let Π j be the cone spanned by {(µ j , 1), (1, 0)}. We have

the canonical map

φ j : X(Π j) ∼= A
2 −→ A

2

defined by φ j(x, y) = (xyµ j , y). Then φ∗j g is given by (3). Let D j denote the ex-
ceptional curve {y = 0} in X(Π j). Equation (3) can be interpreted geometrically as
follows. Under the blow-up φ j precisely the components of g−1(0) of order µ j meet
D j . Their points of intersection are given by the roots of h j .
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Dm Dm−1Dm−2 D j D2

Let Σ j be the fan consisting of the cones generated by {(µi+1, 1), (µi , 1)} for 1 <
i < j and {(µ2, 1), (1, 0)}. Then X(Σ j) is an open subvariety of X(Σ), and also a

blow-up of X(Π j):
X(Σ ′)





y

X(Σ j) −−−−→ X(Σ)




y

X(Π j)

In X(Σ j), the proper pre-image of D j (also denoted by D j) lies in the chart cor-
responding to the cone generated by {(µ j , 1), (µ j−1, 1)}. The components of the
exceptional divisor of φ : X(Σ) → A2 are then the curves D2, . . . ,Dm. In the excep-
tional divisor of X(Σ ′) there are µ j − µ j+1 − 1 rational curves interpolated between

D j+1 and D j .

4 Local Reciprocity

In this section we point out how the polynomials h j are connected with local reci-
procity. Assume that G is abelian. The local reciprocity map

w : K∗/NL∗ −→ G

respects the natural filtrations on both sides and induces maps wi on the quotients.
We first recall the description of these maps given in [3].

Let ϕ denote the Herbrand function, and ψ its inverse. Then if N : L∗ → K∗ is the
norm, we have

N(U
ψ(i)
L ) ⊂ U i

K , N(U
ψ(i)+1
L ) ⊂ U i+1

K

[3, V, Prop. 8]. Furthermore, the induced map

(5) k ∼= U
ψ(i)
L /U

ψ(i)+1
L

Ni−→ U i
K/U i+1

K
∼= k

is an additive polynomial of degree |Gψ(i)|, and the sequence

0 −→ Gψ(i)/Gψ(i)+1
tψ(i)
−→ Uψ(i)

L /Uψ(i)+1
L

Ni−→ U i
K/U i+1

K
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is exact [3, V, Prop. 9].
Now there belongs to this sequence a “coboundary map”

δi : coker Ni
∼= U i

K/U i+1
K NU

ψ(i)
L −→ Gψ(i)/Gψ(i)+1.

It is constructed as follows, keeping in mind the identifications in (5) (cf. [3, XV,
Section 1]): take a ∈ k ∼= U i

K/U i+1
K and let b ∈ k̄ be a solution of

Ni(b) = a.

Set
c = Fb − b,

where F is the Frobenius homomorphism. Then c ∈ ker Ni ⊂ k and c does not
depend on the choice of b. This determines a well-defined homomorphism

U i
K/U i+1

K NU
ψ(i)
L −→ ker Ni .

So define
δi(a) := tψ(i)(c−1) ∈ Gψ(i)/Gψ(i)+1.

On the other hand, the local reciprocity map w also respects the filtrations:

w(U i
K/NU

ψ(i)
L ) ⊂ Gψ(i),

and induces isomorphisms

wi : U i
K/U i+1

K NU
ψ(i)
L −→ Gψ(i)/Gψ(i)+1.

Serre [3, XV, Prop. 4] proves that

wi(a) = δi(a−1), a ∈ U i
K/U i+1

K NUψ(i)
L .

Since δi is determined by Ni , it is therefore of interest to know more about these
additive polynomials. The quotients Gψ(i)/Gψ(i)+1 are trivial unless ψ(i) = µ j for

some j, or equivalently, i = ϕ(µ j).

Theorem 2 For j ≥ 2, Nϕ(µ j ) and h j coincide up to a constant.

Proof The polynomial h j is an additive polynomial of degree |Gµ j
|. Its kernel is

im tµ j
(cf. (4)). Set i = ϕ(µ j) so that µ j = ψ(i). Then the degree of Ni is also |Gµ j

|
and its kernel is im tµ j

too. Therefore Ni and h j coincide up to a constant (cf. [3, V,
Section 5]).

Remark 1 The isomorphisms

U i
L/U i+1

L
∼= k, U i

K/U i+1
K

∼= k

depend on the choice of z, respectively y. Choosing an Eisenstein polynomial f is
equivalent to fixing z. The norm map Ni regarded as an additive polynomial then
still depends on the choice of y. Varying y multiplies Ni by a constant.
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