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Abstract

Let (X, d) be a compact metric space and let M(X) denote the space of all finite signed Borel measures
on X . Define I : M(X)→ R by

I (µ)=
∫

X

∫
X

d(x, y) dµ(x) dµ(y),

and set M(X)= sup I (µ), where µ ranges over the collection of signed measures in M(X) of total
mass 1. The metric space (X, d) is quasihypermetric if for all n ∈ N, all α1, . . . , αn ∈ R satisfying∑n

i=1 αi = 0 and all x1, . . . , xn ∈ X , the inequality
∑n

i, j=1 αiα j d(xi , x j )≤ 0 holds. Without the
quasihypermetric property M(X) is infinite, while with the property a natural semi-inner product structure
becomes available on M0(X), the subspace of M(X) of all measures of total mass 0. This paper explores:
operators and functionals which provide natural links between the metric structure of (X, d), the semi-
inner product space structure of M0(X) and the Banach space C(X) of continuous real-valued functions
on X ; conditions equivalent to the quasihypermetric property; the topological properties of M0(X) with
the topology induced by the semi-inner product, and especially the relation of this topology to the weak-∗
topology and the measure-norm topology on M0(X); and the functional-analytic properties of M0(X)
as a semi-inner product space, including the question of its completeness. A later paper [P. Nickolas and
R. Wolf, Distance geometry in quasihypermetric spaces. II, Math. Nachr., accepted] will apply the work
of this paper to a detailed analysis of the constant M(X).
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1. Introduction

Let (X, d) be a compact metric space and let M(X) denote the space of all finite
signed Borel measures on X . Define I : M(X)→ R by

I (µ)=
∫

X

∫
X

d(x, y) dµ(x) dµ(y),
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2 P. Nickolas and R. Wolf [2]

and set
M(X)= sup I (µ),

where µ ranges over M1(X), the collection of signed measures in M(X) of total
mass 1. Our main aim in this paper and its sequels [27] and [28] is to investigate the
properties of the geometric constant M(X).

The so-called quasihypermetric property (for the definition, see below) turns out
to play an essential role in our analysis. Indeed, we show that if (X, d) does not
have the quasihypermetric property, then M(X) is infinite, and, with the exception of
some general results, our attention is therefore mostly confined to quasihypermetric
spaces. When (X, d) is a quasihypermetric space, we introduce a semi-inner product
on M0(X), the subspace of all measures in M(X) of total mass 0. The resulting semi-
inner product space has interesting properties in its own right, and is our fundamental
tool for studying the properties of M(X).

In this paper, we focus largely on the analysis of this semi-inner product space, and
then in [27] and [28] we use the framework that this provides for a comprehensive
discussion of the properties of M . Specifically, we explore in this paper:

(1) the properties of several operators and functionals which provide natural links
between the metric structure of (X, d), the semi-inner product space structure of
M0(X) and the Banach space C(X) of continuous real-valued functions on X ;

(2) conditions equivalent to the quasihypermetric property;
(3) the topological properties of M0(X) with the topology induced by the semi-

inner product, and especially the relation of this topology to the weak-∗ topology
and the measure-norm topology on M0(X);

(4) the functional-analytic properties of M0(X) as a semi-inner product space,
especially under the condition that M(X) is finite; and

(5) the question of the completeness of M0(X) as a semi-inner product space.

These items describe respectively the contents of the five main sections of this paper.
As remarked above, the sequels [27] and [28] to this paper pursue in detail the

applications of our work here to the study of the constant M(X). Further papers are
also planned, in which we will study a number of questions related to the issues raised
in the first two papers. These include the behaviour of M in several specific classes of
metric spaces and the relation of M to other constants appearing in distance geometry.

1.1. Definitions and notation Let (X, d) (abbreviated when possible to X ) be a
compact metric space. The diameter of X is denoted by D(X).

We denote by C(X) the Banach space of all real-valued continuous functions on X
equipped with the usual supremum norm. Further,
• M(X) denotes the space of all finite signed Borel measures on X ,
• M0(X) denotes the subspace of M(X) consisting of all measures of total

mass 0,
• M1(X) denotes the affine subspace of M(X) consisting of all measures of total

mass 1,
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[3] Distance geometry in quasihypermetric spaces. I 3

• M+(X) denotes the set of all positive measures in M(X), and
• M+

1 (X) denotes the intersection of M+(X) and M1(X), the set of all
probability measures on X .

The support of µ ∈M(X) is denoted by supp(µ). For x ∈ X , we denote by
δx ∈M+

1 (X) the point measure at x .
Recall that the weak-∗ topology on M(X) is characterized by the fact that a net

{µα} in M(X) converges to µ ∈M(X) if and only if
∫

X f dµα→
∫

X f dµ for all
f ∈ C(X).

Each µ ∈M(X) has a Hahn–Jordan decomposition, allowing us to write either
µ= µ+ − µ−, where µ+, µ− ∈M+(X) and supp(µ+) ∩ supp(µ−)= ∅, or,
equivalently, µ= αµ1 − βµ2, where µ1, µ2 ∈M+

1 (X), α, β ≥ 0 and supp(µ1) ∩

supp(µ2)= ∅. We denote by ‖ · ‖M the measure norm on M(X). Since our standing
assumption will be that X is compact, we have

‖µ‖M = µ
+(X)+ µ−(X)= α + β,

for µ as above.
The Riesz representation theorem tells us that M(X), equipped with the measure

norm, is a Banach space isometrically isomorphic to the space C(X)′, the dual space of
C(X). In the following, we will freely identify signed Borel measures with continuous
linear functionals, writing as convenient either µ( f ) or

∫
X f dµ when f ∈ C(X) and

µ ∈M(X).
Two functionals on measures will play a central role in this paper. If (X, d) is a

compact metric space, then for µ, ν ∈M(X), we set

I (µ, ν)=
∫

X

∫
X

d(x, y) dµ(x) dν(y),

and then
I (µ)= I (µ, µ).

We also make use of the linear functionals J (µ) on M(X), defined for each
µ ∈M(X) by J (µ)(ν)= I (µ, ν) for all ν ∈M(X). The functional I (·, ·) is
obviously bilinear on M(X)×M(X), and this immediately gives identities such as

I (µ± ν)= I (µ)+ I (ν)± 2I (µ, ν),

which we will use frequently. It is useful to note that I (δx )= 0.
For µ ∈M(X), we define the function dµ by

dµ(x)=
∫

X
d(x, y) dµ(y)

for x ∈ X . Of course, dµ ∈ C(X) for all µ, and we define a linear map

T : M(X)→ C(X)
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by setting T (µ)= dµ for µ ∈M(X). Note that we may express the functional I (·, ·)
in terms of the functions dµ:

I (µ, ν)=
∫

X
dµ dν =

∫
X

dν dµ= I (ν, µ).

We also make use of the linear map T0, which is the restriction of T to the subspace
M0(X).

For the compact metric space (X, d), we define

M+(X)= sup{I (µ) : µ ∈M+

1 (X)}

and
M(X)= sup{I (µ) : µ ∈M1(X)}.

The geometric constant M(X) is our main focus in this paper, but from time to time
use will be made of M+(X).

A metric space (X, d) is called quasihypermetric if for all n ∈ N, all α1, . . . ,

αn ∈ R satisfying
∑n

i=1 αi = 0 and all x1, . . . , xn ∈ X , we have

n∑
i, j=1

αiα j d(xi , x j )≤ 0.

1.2. Connections with other work The geometric constant M(X) appeared for
the first time in the work of Alexander and Stolarsky [5], who dealt with the case
when X is a compact subset of Euclidean space and d is the usual Euclidean
metric. They showed that in this case M(X) is always finite, and that when the
subset X itself is finite, the supremum M(X) is achieved for some signed measure
µ ∈M1(X), allowing the explicit computation of M(X). Further papers by
Alexander, especially [1] and [2], carried the analysis of the Euclidean case further.
Because Euclidean space is quasihypermetric, the references just cited do not explicitly
emphasize the role of the quasihypermetric property and have little need for the
development of a general framework for the analysis.

Our interest is in the analysis of M(X) in a general compact metric space X , and
our primary aim in the present paper is to develop the framework mentioned and
in particular to make explicit the role of the quasihypermetric property. Indeed, the
constant M(X), which is ultimately our main interest, is discussed in this paper only
as far as is needed to do this, and a detailed analysis of M(X) itself will be taken up
in [27, 28] and later papers.

Some of the ideas developed here have obvious parallels with the ideas of potential
theory. In modern accounts of classical potential theory (see Landkof [22], for
example), one deals with a space X which is a suitable region in a Euclidean space and
a kernel k(x, y) on X × X which is typically of the form ‖x − y‖α for certain values of
α < 0 which depend on the dimension of the Euclidean space (here, ‖ · ‖ denotes the
Euclidean norm). Energy integrals Ik(µ)=

∫∫
k(x, y) dµ(x) dµ(y) and potentials
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dk,µ(x)=
∫

k(x, y) dµ(y) are then defined for signed measures µ, paralleling our
definitions above, and one seeks, for example, measures µ which minimize Ik(µ) or
which yield a constant potential dk,µ.

The classical framework may be generalized in several ways (see Fuglede [16]):
the space X may be replaced by a (locally) compact Hausdorff topological space
and quite general classes of kernels k can be considered. As discovered already by
Björck [6], the theory takes on a significantly different character even in the Euclidean
case if the kernel has the nonclassical form ‖x − y‖α for α > 0, since one then
naturally seeks to maximize rather than to minimize the corresponding generalized
energy integral. Moreover, if X is not a Euclidean domain, then standard analytical
techniques, especially that of the Fourier transform, are no longer available.

For these reasons and others (relating, for example, to the quasihypermetric
constraint), one cannot expect to find precise parallels between our results and
arguments and those of either classical or generalized potential theory, even though
the theories have global features in common at many points.

Some of the ideas in this paper can be generalized straightforwardly along the
lines suggested by Fuglede’s work. The reader can easily verify, for example, that
analogues of a number of our results hold in the case of a continuous, symmetric
kernel k on a compact Hausdorff space X . Using Fuglede’s work, Farkas and
Revész [14, 15] recently carried out a generalized potential-theoretic analysis of the so-
called rendezvous number, another constant appearing in distance geometry (see, for
example, [32, 17, 26, 11, 37, 35, 36, 34, 19]).

Despite the possibility of such generalization, however, our discussion here takes
place exclusively in the setting of a compact metric space X and its metric d , because
our motivation is essentially geometric: the analysis of the geometric properties of X
and related structures, and especially the geometric constant M(X).

2. Properties of the mappings T and I

Recall from Section 1.1 that when (X, d) is a compact metric space, T : M(X)→
C(X) is the linear map defined by T (µ)= dµ for µ ∈M(X). We denote the image
of T by im T .

THEOREM 2.1. Let (X, d) be a compact metric space. Then dim(im T ) is finite if and
only if X is finite.

For the proof of the theorem, we need the following lemma. If S is any subset of a
linear space, we write [S] (omitting set braces if appropriate) to denote the linear hull
of S.

LEMMA 2.2. Let (X, d) be a compact metric space. Then

(1) if i : X→ C(X) is the function defined by i(x)= dδx for x ∈ X, then
‖i(x)− i(y)‖∞ = d(x, y) for all x, y ∈ X, and

(2) im T = [i(x) : x ∈ X ].
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PROOF. Since dδx (y)= d(x, y) for all x, y ∈ X , the first statement is an easy
consequence of the triangle inequality.

To prove the second statement, assume that µ ∈M(X) is such that dµ /∈
[i(x) : x ∈ X ]. Then by the Hahn–Banach theorem, there exists ν ∈M(X) such that
ν(dµ)= 1 and ν(i(x))= 0 for all x ∈ X . But then dν(x)= 0 for all x ∈ X , while
µ(dν)= ν(dµ)= 1, a contradiction. Therefore, im T ⊆ [i(x) : x ∈ X ], and since the
reverse inclusion clearly holds, the proof is complete. 2

PROOF OF THEOREM 2.1. If X is finite, then of course dim(im T ) is finite.
Let us assume that dim(im T )= n for some integer n ≥ 0. It is easy to see

that if n = 0, then X is a one-point space, so we can assume that n ≥ 1. By
Lemma 2.2, there are x1, . . . , xn ∈ X such that im T = [i(x1), . . . , i(xn)], and so
for every x ∈ X , there exists a unique λ(x)= (λ1(x), . . . , λn(x)) ∈ Rn such that
i(x)= λ1(x)i(x1)+ · · · + λn(x)i(xn). It follows that d(x, y)=

∑n
i=1 λi (x)d(xi , y)

for all x, y ∈ X , and so

d(x, y)= d(y, x)=
n∑

j=1

λ j (y)d(x, x j )=

n∑
i, j=1

λi (x)λ j (y)d(xi , x j ).

Define an n × n matrix A = (ai, j ) by setting ai, j =−(1/2)d(xi , x j ) for all i and j ,
and view A as a bounded linear operator on the Euclidean space Rn . It follows that

d(x, y)=
(

A(λ(x)− λ(y)) | λ(x)− λ(y)
)
.

Now by the Cauchy–Schwarz inequality,

d(x, y)≤ ‖A(λ(x)− λ(y))‖ · ‖λ(x)− λ(y)‖ ≤ ‖A‖ · ‖λ(x)− λ(y)‖2.

To estimate ‖λ(x)− λ(y)‖, define φ j : im T → R by setting

φ j

( n∑
i=1

βi i(xi )

)
:= β j

for j = 1, . . . , n. Since φ j is linear and dim(im T )= n <∞, we know that φ j is
bounded. Hence, for all x, y ∈ X ,

|λ j (x)− λ j (y)| = |φ j (i(x))− φ j (i(y))|

= |φ j (i(x)− i(y))|

≤ ‖φ j‖ · ‖i(x)− i(y)‖∞
= ‖φ j‖ · d(x, y),

by Lemma 2.2. Hence for K :=max j ‖φ j‖, the inequality |λ j (x)− λ j (y)| ≤ K ·
d(x, y) holds for all x, y ∈ X and for all j = 1, . . . , n, and therefore ‖λ(x)−
λ(y)‖2 ≤ nK 2d(x, y)2 for all x, y ∈ X . Combining our inequalities, we obtain
d(x, y)≤ ‖A‖nK 2d(x, y)2 for all x, y ∈ X , and hence d(x, y)≥ 1/(n‖A‖K 2) for
all distinct x, y ∈ X . Since X is compact, we conclude that X is finite. 2
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REMARK 2.3. We note that Theorem 2.1 does not in general hold if the metric
property of d is weakened. For n ≥ 2, let Sn−1 denote the Euclidean unit sphere
in Rn , let X be a compact subset of Sn−1 and let d(x, y)= ‖x − y‖2 for all x, y ∈ X ,
where ‖ · ‖ is the Euclidean norm. Also, for k = 1, . . . , n, define fk ∈ C(X) by
fk(x) := ‖x − ek‖

2, where ek denotes the kth canonical unit vector in Rn . Then
defining T and i formally as earlier (though d now may not be a metric), we see
easily that for each x = (x1, . . . , xn) ∈ Sn−1,

i(x)= 2
(

1−
n∑

k=1

xk

)
· 1+

n∑
k=1

xk fk,

where 1 denotes the constant function 1(y) := 1 for all y ∈ X . But it is clear that
Lemma 2.2 part (2) still holds, and so im T ⊆ [1, f1, . . . , fn], and it follows that
dim(im T )≤ n + 1<∞. While the function d is nonnegative and symmetric, and
d(x, y)= 0 if and only if x = y, however, it follows from a theorem of Danzer and
Grünbaum [12] that d cannot satisfy the triangle inequality if X has more than 2n

elements. Thus the forward implication of Theorem 2.1 fails for every infinite choice
of X .

THEOREM 2.4. Let (X, d) be a compact metric space. Then T is injective if and only
if im T is dense in C(X).

PROOF. Assume that im T is not dense in C(X). Then by the Hahn–Banach theorem,
there exists µ 6= 0 in M(X) such that µ(dν)= 0 for all ν ∈M(X). Therefore
0= µ(dν)= ν(dµ) for all ν ∈M(X), and so dµ = 0. Hence T is not injective.
On the other hand, assume that im T is dense in C(X) and that dµ = 0 for some
µ ∈M(X). Now dµ = 0 implies that ν(dµ)= 0 for all ν ∈M(X), and therefore
0= ν(dµ)= µ(dν) for all ν ∈M(X). Then, since im T is dense in C(X), we obtain
µ= 0, and T is injective. 2

We now discuss the continuity of the functionals I (·) and I (·, ·) on M(X) and
M(X)×M(X), and on various subsets. We omit the straightforward proofs of the
first two results, the second of which generalizes parts of the statement and proof
of [35, Lemma 1].

THEOREM 2.5. If (X, d) is a compact metric space and M(X) is given the weak-∗
topology, then the functional I (·, ·) on M(X)×M(X) is separately continuous in
each variable.

THEOREM 2.6. Let (X, d) be a compact metric space and let M(X) be given the
weak-∗ topology. Then the functional I (·) is continuous on any subset of M(X) which
is ‖ · ‖M-bounded.

COROLLARY 2.7. The functional I (·) is weak-∗ sequentially continuous on M(X).

PROOF. Suppose that µn→ µ is a weak-∗ convergent sequence in M(X). Then
since µn( f )→ µ( f ) for each f ∈ C(X), the set {|µn( f )| : n ∈ N} is bounded for
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8 P. Nickolas and R. Wolf [8]

each f ∈ C(X), and it follows from the Banach–Steinhaus (or uniform boundedness)
theorem that the set {‖µn‖M : n ∈ N} is also bounded. It now follows from
Theorem 2.6 that I (µn)→ I (µ), and so I (·) is sequentially continuous. 2

COROLLARY 2.8. (1) The functional I (·) is weak-∗ continuous on M+(X) (and
hence in particular on M+

1 (X)).
(2) When X is finite, the functional I (·) is weak-∗ continuous on M(X).

PROOF. Both parts follow from Corollary 2.7, using for part (1) the fact that the
subset M+(X) of positive measures in M(X) is metrizable (see [10, Theorem 12.10])
and for part (2) the obvious fact that when X is finite M(X) is metrizable (see also [10,
Theorem 16.9]). 2

Part (1) in the case of M+

1 (X) was observed earlier in [35].

REMARK 2.9. It is useful to note that the identity

I (µ, ν)= 1
2 (I (µ+ ν)− I (µ)− I (ν))

allows information about the continuity of I (·, ·) to be deduced from information
about the continuity of I (·) (this was pointed out to the first author by Ben Chad).
Hence Theorem 2.6 and Corollaries 2.7 and 2.8 extend in an obvious way to the
functional I (·, ·).

We now establish a negative result about the continuity of the functionals I , which
shows in particular that significantly stronger positive results than those above are
impossible.

THEOREM 2.10. Let (X, d) be an infinite compact metric space. Then the functionals
I (·) and I (·, ·) are weak-∗ discontinuous everywhere.

PROOF. We use here some ideas from exercise 2 of [8, Ch. 3, Section 4]. We define
a net of pairs of measures in M(X)×M(X). We take as our index set the set A
of all finite subsets of C(X), directed by set inclusion. Consider a fixed collection
{ f1, . . . , fn} ∈ A, where f1, . . . , fn are distinct. Then by Theorem 2.1, there exists
µ ∈M(X) such that dµ is not in the linear span of { f1, . . . , fn}. We may clearly
assume that ‖µ‖M = 1. By the Hahn–Banach theorem, there exists ν ∈M(X)
such that ν( fi )= 0 for i = 1, . . . , n but ν(dµ) 6= 0; that is, in our usual notation,
I (µ, ν) 6= 0. We may clearly rescale ν so that I (µ, ν) has any desired nonzero value,
and it is convenient here to assume that I (µ, ν)= n. Writing α = { f1, . . . , fn}, let us
denote the measures µ and ν just found by µα and να , respectively.

We claim that the net {να} converges weak-∗ to 0 in M(X). Indeed, given
f ∈ C(X), it follows that { f } ∈ A, and our choice of ν{ f } means that ν{ f }( f )= 0.
Also, if α ∈ A is such that { f } ⊆ α, then να( f )= 0, so να( f )→ 0 in R, as required
for weak-∗ convergence.

We chose the measures {µα} so that ‖µα‖M = 1 for all α, so theµα all lie in the unit
ball of M(X), which by the Banach–Alaoglu theorem (see also [10, Corollary 12.7])
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is weak-∗ compact. Hence there exists a weak-∗ convergent subnet, say µα(β)→ µ,
of the µα . Thus (µα(β), να(β))→ (µ, 0), where the convergence is weak-∗ in each
coordinate. But µα and να were chosen in such a way that I (µα, να)= |α| (the
cardinality of α), so it follows that the net I (µα(β), να(β)) diverges in R. That is,
the functional I (·, ·) is discontinuous at (µ, 0) ∈M(X)×M(X).

A straightforward argument now shows that I (·, ·) is discontinuous at all points
in M(X)×M(X), and the observation in Remark 2.9 then implies that I (·) is
discontinuous everywhere. 2

We note the following result for later application.

COROLLARY 2.11. Let (X, d) be an infinite compact metric space. Then the
functional I (·), when restricted to the domain M0(X), is weak-∗ discontinuous at
all points.

PROOF. It is easy to show that I (·) is continuous at all points of M0(X) if and only if
it is continuous at one, so it suffices to show that I (·) is discontinuous at 0 ∈M0(X).

Assume that I (·) is continuous at 0 ∈M0(X), and suppose that µα→ 0 for
some net {µα} in M(X). Let δ be any fixed atomic probability measure, and let
mα = µα(X). Then µα(X)=

∫
X dµα→ 0, so mα→ 0. Put να = µα − mαδ, so that

να ∈M0(X). Now να→ 0 weak-∗, since for any f ∈ C(X),∫
X

f dνα =
∫

X
f dµα − mα

∫
X

f dδ→ 0.

Hence, by assumption, I (να)→ 0. But

I (να)= I (µα − mαδ)= I (µα)− 2mα I (µα, δ),

and I (µα, δ)→ 0 by separate continuity of I (·, ·), so |mα I (µα, δ)| = |mα| ·

|I (µα, δ)| → 0, and hence I (µα)→ 0. Therefore, I (·) is continuous at 0 ∈M(X),
contradicting Theorem 2.10, and this completes the proof. 2

3. The quasihypermetric property

The quasihypermetric property is the most important metric property considered in
this paper and in [27] and [28]. In view of the fact that our ultimate interest is the
study of the geometric constant M , the following simple result explains why our focus
is almost exclusively on these spaces.

THEOREM 3.1. If (X, d) is a compact nonquasihypermetric space, then M(X)=∞.

PROOF. If X is nonquasihypermetric, then there exist n ∈ N, α1, . . . , αn ∈ R with∑n
i=1 αi = 0 and x1, . . . , xn ∈ X such that

∑n
i, j=1 αiα j d(xi , x j ) > 0. Writing

µ=
∑n

i=1 αiδxi , we therefore have µ ∈M0(X) and I (µ) > 0 (see also condition (3)
in Theorem 3.2 below). Now choose any x ∈ X , and define µn ∈M1(X) by setting
µn = nµ+ δx for each n ∈ N. Then I (µn)= n2 I (µ)+ 2ndµ(x)→∞ as n→∞,
giving the result. 2
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We record a list of conditions which are equivalent to the quasihypermetric
condition.

THEOREM 3.2. Let (X, d) be a compact metric space. Then the following conditions
are equivalent.

(1) (X, d) is quasihypermetric.
(2)

∑n
i, j=1 d(xi , x j )+

∑n
i, j=1 d(yi , y j )≤ 2

∑n
i, j=1 d(xi , y j ) for all n ∈ N and for

all x1, . . . , xn, y1, . . . , yn ∈ X.
(3) I (µ)≤ 0 for all µ ∈M0(X).
(4) I (µ, ν)2 ≤ I (µ)I (ν) for all µ, ν ∈M0(X).
(5) I (µ)+ I (ν)≤ 2I (µ, ν) for all µ, ν ∈M1(X).
(6) I (µ)+ I (ν)≤ 2I (µ, ν) for all µ, ν ∈M+

1 (X).
(7) (I (µ)+ I (ν))/2≤ I ((µ+ ν)/2) for all µ, ν ∈M1(X).
(8) (I (µ)+ I (ν))/2≤ I ((µ+ ν)/2) for all µ, ν ∈M+

1 (X).

To these, for completeness, we add the following variants of the last two conditions.

(7′) α I (µ)+ β I (ν)≤ I (αµ+ βν) for all µ, ν ∈M1(X) and all α, β ∈ R such that
α, β ≥ 0 and α + β = 1.

(8′) α I (µ)+ β I (ν)≤ I (αµ+ βν) for allµ, ν ∈M+

1 (X) and all α, β ∈ R such that
α, β ≥ 0 and α + β = 1.

PROOF. The proofs are for the most part straightforward, and we show only the
equivalence of (3) and (4) (and note also that the equivalence of (1) and (2) is outlined
in [25, p. 2049]).

Assuming (3), we define a semi-inner product (· | ·) on the space M0(X) by the
formula (µ | ν)=−I (µ, ν) for µ, ν ∈M0(X); that the semi-inner product axioms
are satisfied is clear (we will study and use this semi-inner product extensively below).
It is clear that the Cauchy–Schwarz inequality for the semi-inner product gives (4).
Conversely, assume (4). If X is singleton, then (3) is immediate. Otherwise, let ν
be any element of M0(X) such that I (ν) < 0; we may take ν = δx − δy for any pair
of distinct elements x, y ∈ X , for example. Then (4) implies that I (µ)≤ 0 for all
µ ∈M0(X), giving (3). 2

An important and much less elementary equivalence is given by Schoenberg [31]:
a separable metric space (X, d) is quasihypermetric if and only if the metric space
(X, d1/2) is isometrically embeddable in the Hilbert space `2.

The quasihypermetric property has been discovered several times; it appears
independently, for example, in Lévy [24], Schoenberg [31], Björck [6] and Kelly [20],
in each case as part of a study involving more general geometric inequalities. The term
‘quasihypermetric’ was introduced by Kelly [20]; elsewhere, quasihypermetric spaces,
or their metrics, have been referred to as of negative type (see [9], for example).
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There are several important classes of quasihypermetric spaces.

(1) The Euclidean spaces Rn for all n ≥ 1.
(2) More generally, the space Rn for all n, equipped with the usual p-norm for

1≤ p ≤ 2.
(3) All two-dimensional real normed spaces.
(4) All metric spaces with four or fewer points.
(5) The n-dimensional sphere Sn in Rn+1 for n ≥ 1, equipped with the great-circle

metric.

When n ≥ 3, the space Rn equipped with the p-norm for 2< p ≤∞ is not
quasihypermetric.

The first three classes of examples above are essentially given by classical results
from the theory of L1-embeddability (see [24, 13, 18]), as is the negative statement;
the case of a metric space with four points is part of Blumenthal’s ‘four-point theorem’
(see [7, Theorem 52.1]); and the case of the sphere with the great-circle metric is given
in [21]. The cases of Rn with the p-norm for 1≤ p ≤ 2 and of Sn with the great-circle
metric are also given by a general construction of Alexander [1] using the methods of
integral geometry.

DEFINITION 3.3. A compact quasihypermetric space (X, d) is said to be strictly
quasihypermetric if I (µ)= 0 only when µ= 0, for µ ∈M0(X).

Then, in this terminology, [6, Lemma 1] yields the following statement.

THEOREM 3.4. Every compact subset of Rn is strictly quasihypermetric.

This fact has also been discovered independently more than once; it is noted in [4]
that it is equivalent to the uniqueness theorem for the Radon transform. A theorem
implying the weaker statement that finite subsets of Rn are strictly quasihypermetric
was proved in [30].

EXAMPLE 3.5. Let X be the circle S1 of radius 1, given the arc-length metric d.
Since d is the one-dimensional form of the great-circle metric, X is quasihypermetric,
as noted above. We claim that X is not strictly quasihypermetric. Indeed, let x1
and y1 be diametrically opposite points in X . Then, if we set µ1 = δx1 + δy1 , it
is easy to see that the integral

∫
X d(x, y) dµ1(x) has the constant value π = D(X)

for all y. Hence, if a second measure µ2 is similarly defined for a different pair of
points x2, y2, and if we write µ= µ1 − µ2, then we have 0 6= µ ∈M0(X), while
I (µ)= I (µ1)+ I (µ2)− 2I (µ1, µ2)= π + π − 2π = 0.

The same argument shows that the sphere Sn−1 with the great-circle metric
fails to be strictly quasihypermetric for all n > 1. The argument shows, moreover,
that the subspace {x1, y1, x2, y2} of S1 is a four-element metric space which is
quasihypermetric but not strictly quasihypermetric.
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THEOREM 3.6. Let (X, d) be a nontrivial compact strictly quasihypermetric space.
Then

(1) T is injective, and
(2) im T is dense in C(X).

PROOF. By Theorem 2.4, it suffices to show that T is injective. Suppose that dµ = 0
for some µ ∈M(X). If µ(X) 6= 0, define µ ∈M1(X) by setting µ= µ/µ(X),
and choose ν ∈M+

1 (X) with I (ν) > 0 (we may take ν = (δx + δy)/2 for any pair
of distinct elements x, y ∈ X , for example). Then since dµ = 0 and 2I (µ, ν)≥
I (µ)+ I (ν) (Theorem 3.2), we have I (ν)≤ 0, a contradiction. Therefore, µ(X)= 0.
But since dµ = 0 implies I (µ)= 0, the strictly quasihypermetric assumption now
implies that µ= 0, as required. 2

We note that the assumption that X is nontrivial is necessary: if X is singleton, it is
easy to see that im T is not dense in C(X).

EXAMPLE 3.7. Consider again the quasihypermetric, nonstrictly quasihypermetric
space (X, d), where X is the circle of radius 1 and d is the arc-length metric.
It is obvious that whenever x and x ′ are diametrically opposite points in X , then
d(x, y)+ d(x ′, y)= π for all y ∈ X , and integration with respect to an arbitrary
measure µ ∈M(X) then yields dµ(x)+ dµ(x ′)= πµ(X). But the collection of
functions f ∈ C(X) such that f (x)+ f (x ′) is constant for all diametrically opposite
pairs of points x and x ′ is clearly a proper closed subspace of C(X), and since it
contains im T , the latter is not dense in C(X).

REMARK 3.8. We note that Theorem 3.6 gives a very simple proof of Theorem 2.1
in the case of a strictly quasihypermetric space X . Indeed, if im T were finite-
dimensional for such a space, then im T would be both closed and dense in C(X),
and hence equal to C(X), and the finite-dimensionality of C(X) would then imply that
X was finite.

4. Topologies on M(X) and its subspaces

Let (X, d) be a compact quasihypermetric space. In the proof of Theorem 3.2,
we noted in passing that a semi-inner product (· | ·) can be defined on the subspace
M0(X) of M(X) of measures of total mass 0 by the formula

(µ | ν)=−I (µ, ν)

for µ, ν ∈M0(X). When M0(X) is equipped with this semi-inner product, we will
denote the resulting semi-inner product space by E0(X). We note that the associated
seminorm ‖ · ‖ on E0(X) is given by

‖µ‖ = [−I (µ)]1/2

for µ ∈M0(X). In referring to the topology of E0(X), we will from here on
always mean the topology induced by this seminorm; other topologies on M0(X)
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– specifically, the topologies induced on M0(X) by the weak-∗ topology and the
measure-norm topology on M(X) – will be named explicitly.

It is clear that the above semi-inner product becomes an inner product, and E0(X)
an inner product space, precisely when (X, d) is strictly quasihypermetric.

The use of functionals such as I (·, ·) to define a (semi-)inner product structure
is a standard procedure in potential theory (see [22] and [16], for example) and has
also been explored in somewhat different settings such as the study of irregularity of
distribution ([3] and [4]) and distance geometry (see [23]).

Recall the definition of the constant M(X):

M(X)= sup I (µ),

where µ ranges over M1(X). In the case where M(X) is finite, there is a natural
extension of the semi-inner product on E0(X)=M0(X) to a semi-inner product on
the collection M(X) of all signed Borel measures on X . Specifically, we define

(µ | ν)= (M(X)+ 1)µ(X)ν(X)− I (µ, ν)

for µ, ν ∈M(X), and note that the semi-inner product space axioms are
straightforward to check. Further, the new semi-inner product is once again an inner
product precisely when X is a strictly quasihypermetric space. It is easy to see that
the new semi-inner product is indeed an extension of the earlier one. When M(X)
is equipped with the extended semi-inner product, we will denote the resulting semi-
inner product space by E(X).

REMARK 4.1. We note that if the term M(X)+ 1 in the definition is replaced by
M(X)+ ε, for any ε > 0, then the expression still defines an extension of the earlier
semi-inner product, though working with the initially given form will suffice for our
purposes here.

It is straightforward to show that the induced norms are equivalent for all ε, so
that in particular the metric and topological properties of E(X) are independent of ε.
Further, the identity mapping on M0(X) can be extended to an isomorphism between
the corresponding semi-inner product spaces if and only if there exists a measure
µ0 ∈M1(X) such that dµ0 is a constant function. (The existence of measures of this
type will play an important role in [27] and [28] in our analysis of M(X).)

We will later make extensive use of the semi-inner product space E0(X). We
begin this in the next section of this paper, and continue it in [27] and [28], where
we will relate the structure of E0(X) in a detailed way to the properties of the constant
M(X). In this section, however, we wish to study some of the properties of E0(X)
as a topological space, especially the question of the relation between the topology of
E0(X) and other topologies induced on M0(X) as a subspace of M(X). The other
topologies that we discuss are the topology induced on M(X) and its subspaces by the
measure norm ‖ · ‖M, and the weak-∗ topology. The question of the completeness of
E0(X) will be discussed later, in Section 6.
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THEOREM 4.2. Let (X, d) be a compact quasihypermetric space. Then for µ ∈
M0(X), we have ‖µ‖ ≤ (D(X)/2)1/2‖µ‖M.

PROOF. Suppose that µ ∈M0(X) has Hahn–Jordan decomposition µ= µ+ − µ−.
Then, since µ+ and µ− are positive measures,

‖µ‖2 = −I (µ)

= −I (µ+ − µ−)

= −I (µ+)− I (µ−)+ 2I (µ+, µ−)

≤ 2I (µ+, µ−)

= 2
∫

X

∫
X

d(x, y) dµ+(x) dµ−(x)

≤ 2D(X)µ+(X)µ−(X)

≤ (D(X)/2) (µ+(X)+ µ−(X))2

= (D(X)/2) ‖µ‖2M,

giving the result. 2

COROLLARY 4.3. The topology of E0(X) is contained in the topology induced on
M0(X) by the measure norm on M(X).

REMARK 4.4. We note that no better constant than (D(X)/2)1/2 is in general possible
in the inequality above. In any space (X, d), let x and y be two points in X such
that d(x, y)= D(X), and set µ= δx − δy ∈M0(X). Then it is easy to see that
‖µ‖2 = 2d(x, y)= 2D(X) and ‖µ‖M = 2, so that equality holds.

The argument above also shows, with minimal changes, that if the support of µ lies
in a closed sphere of radius r , then ‖µ‖ ≤ r1/2

‖µ‖M.

We will prove that if (X, d) is a compact quasihypermetric space, then the norm
topology on E0(X) is incomparable with the topology induced on M0(X) by the
weak-∗ topology on M(X) unless X is finite. One half of what we require is given by
the following result.

THEOREM 4.5. Let (X, d) be an infinite compact quasihypermetric space. Then there
exists a sequence in M0(X) which converges to 0 in E0(X) but does not converge in
the weak-∗ topology or in the measure-norm topology.

PROOF. Since X is infinite and compact, it contains a nontrivial convergent sequence.
Fix such a sequence, say xn→ x , in which the points xn are all distinct from x . Write
cn = d(x, xn) for all n ∈ N.

Define µn ∈M0(X) by setting µn = c−1/3
n (δx − δxn ). Then µn→ 0 in E0(X),

since

‖µn‖
2
=−I (µn)= 2c−2/3

n I (δx , δxn )= 2c−2/3
n d(x, xn)= 2c1/3

n → 0.
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But the argument in the proof of Corollary 2.7 shows that if {µn} converges weak-∗
then the sequence of measure norms ‖µn‖M must be bounded, and since clearly
‖µn‖M = 2c−1/3

n →∞, we conclude as required that {µn} converges neither weak-∗
nor in norm. 2

COROLLARY 4.6. The topology of E0(X) does not contain the weak-∗ topology on
M0(X), and is strictly weaker than the measure norm topology on M0(X).

By Corollary 2.11, there exists a weak-∗ convergent net µα→ 0 in M0(X) such
that I (µα) 6→ 0 in R; but ‖µα‖ = [−I (µα)]1/2 by definition, so we have µα 6→ 0 in
E0(X). Thus, we have the following result.

COROLLARY 4.7. The topology of E0(X) is not contained in the weak-∗ topology on
M0(X).

We now have the result claimed earlier.

THEOREM 4.8. If (X, d) is an infinite compact quasihypermetric space, then the
topology of E0(X) and the weak-∗ topology on M0(X) are incomparable.

REMARK 4.9. As the discussion above shows, the convergence of a net weak-∗ in
M0(X) does not imply the convergence of the net with respect to the semi-inner
product space topology of E0(X). It is therefore worth noting that if µn→ µ is a
weak-∗ convergent sequence in M0(X), then we also haveµn→ µ in E0(X). Further,
if M(X) <∞, then weak-∗ convergence of an arbitrary sequence in M(X) implies its
convergence with respect to the topology of the semi-inner product space E(X). These
statements can be proved straightforwardly using Corollary 2.7 and Theorem 2.5.

5. M(X) and the properties of E0(X)

Let (X, d) be a compact quasihypermetric space. As noted in Section 4, we can
define the following semi-inner product and seminorm on M0(X):

(µ | ν) := −I (µ, ν), ‖µ‖ := (µ | µ)1/2

for µ, ν ∈M0(X). Recall also from Section 4 that E0(X) denotes M0(X) equipped
with this semi-inner product, and that E0(X) is an inner product space if and only if
X is strictly quasihypermetric. We begin by collecting some elementary properties of
E0(X).

LEMMA 5.1. Let (X, d) be a compact quasihypermetric space. Then we have the
following.

(1) |I (µ, ν)| = |(µ | ν)| ≤ ‖µ‖ · ‖ν‖ for all µ, ν ∈ E0(X).
(2) F = {µ ∈ E0(X) : ‖µ‖ = 0} is a linear subspace of E0(X).
(3) F = {µ ∈ E0(X) : (µ | ν)= 0 for all ν ∈ E0(X)}.
(4) With (ν1 + F | ν2 + F) := (ν1 | ν2), the quotient space E0(X)/F becomes an

inner product space.
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(5) F = {µ ∈ E0(X) : dµ is a constant function}.
(6) If there exist ϕ ∈M1(X) and c ≥ 0 such that |I (ϕ, ν)| ≤ c‖ν‖ for all

ν ∈ E0(X), then for each µ ∈M(X) there exists cµ ≥ 0 such that
|I (µ, ν)| ≤ cµ‖ν‖ for all ν ∈ E0(X).

(7) If there exist µ0 ∈M+

1 (X) and c ≥ 0 such that |I (µ0, ν)| ≤ c‖ν‖ for all
ν ∈ E0(X), then there exists K ≥ 0 such that |I (µ, ν)| ≤ K‖ν‖ for all
ν ∈ E0(X) and for all µ ∈M+

1 (X).

PROOF. It is well known that (1)–(4) hold in all semi-inner product spaces.
(5) Let µ be in F . Part (3) implies that I (µ, δx − δy)= 0 for all x, y ∈ X , and

hence that dµ(x)= dµ(y) for all x, y ∈ X . Conversely, if dµ is a constant function,
then it is easy to check that I (µ)= µ(X)= 0, giving ‖µ‖ = 0.

(6) Consider ϕ ∈M1(X) and c ≥ 0 such that |I (ϕ, ν)| ≤ c‖ν‖ for all ν ∈ E0(X),
and let µ ∈M(X). If µ(X)= 0, then the assertion follows by (1). If µ(X) 6= 0,∣∣∣∣I( µ

µ(X)
, ν

)∣∣∣∣ ≤ ∣∣∣∣I( µ

µ(X)
− ϕ, ν

)∣∣∣∣+ |I (ϕ, ν)|
≤

(∥∥∥∥ µ

µ(X)
− ϕ

∥∥∥∥+ c

)
· ‖ν‖,

and hence |I (µ, ν)| ≤ (‖µ− µ(X)ϕ‖ + c|µ(X)|)‖ν‖ for all ν ∈ E0(X).
(7) Consider µ0 ∈M+

1 (X) and c ≥ 0 such that |I (µ0, ν)| ≤ c‖ν‖ for all
ν ∈ E0(X). Then for µ ∈M+

1 (X),

|I (µ, ν)| ≤ |I (µ− µ0, ν)| + |I (µ0, ν)|

≤ ‖µ− µ0‖ · ‖v‖ + c‖v‖

= [(2I (µ, µ0)− I (µ)− I (µ0))
1/2
+ c] · ‖ν‖

≤ [(2I (µ, µ0)− I (µ0))
1/2
+ c] · ‖ν‖

≤ ‖ν‖ · [(2D(X)− I (µ0))
1/2
+ c],

for all ν ∈ E0(X). 2

THEOREM 5.2. Let X be a compact quasihypermetric space. If there exist
µ ∈M0(X) and c 6= 0 such that dµ(x)= c for all x ∈ X, then

(1) X is not strictly quasihypermetric, and
(2) M(X)=∞.

PROOF. Let µ ∈M0(X) and c 6= 0 be such that dµ(x)= c for all x ∈ X .
(1) Clearly, µ 6= 0 and I (µ)= 0, and so X is not strictly quasihypermetric.
(2) Write µ= αµ1 − βµ2, where α, β ≥ 0 and µ1, µ2 ∈M+

1 (X). Since µ 6= 0
and µ(X)= 0, we have α = β 6= 0. Now c = dµ(x)= αdµ1−µ2(x) for all x ∈ X .
Hence dµ1−µ2(x)= K for all x ∈ X , where K := c/α 6= 0. For each n ≥ 1, define
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νn ∈M1(X) by setting νn = n sign K (µ1 − µ2)+ µ2. Then, since I (µ1 − µ2)=

(1/α2)I (µ)= 0, we have

I (νn) = n2 I (µ1 − µ2)+ 2n sign K I (µ1 − µ2, µ2)+ I (µ2)

= 2n|K | + I (µ2)

→∞

as n→∞, and so M(X)=∞. 2

Recall from Section 4 that in the case where M(X) is finite, there is a natural
extension of the semi-inner product on E0(X) to a semi-inner product on the whole of
M(X), which we then denote by E(X), given by

(µ | ν)= (M(X)+ 1)µ(X)ν(X)− I (µ, ν)

for µ, ν ∈M(X). In the following results, we find that a great deal of extra
information about the spaces and operators under consideration becomes available
under the assumption that M(X) is finite.

THEOREM 5.3. Let (X, d) be a compact quasihypermetric space. Then the following
conditions are equivalent.

(1) M(X) <∞.
(2) There exist µ ∈M1(X) and c ≥ 0 such that |I (µ, ν)| ≤ c ‖ν‖ for all ν ∈ E0(X).
(3) For all µ ∈M(X), there exists cµ ≥ 0 such that |I (µ, ν)| ≤ cµ ‖ν‖ for all

ν ∈ E0(X).
(4) There exists K ≥ 0 such that |I (µ, ν)| ≤ K ‖ν‖ for all ν ∈ E0(X) and for all

µ ∈M+

1 (X).
(5) There exists c ≥ 0 such that ‖dν‖∞ ≤ c ‖ν‖ for all ν ∈ E0(X).
(6) There exists c ≥ 0 such that |I (µ1)− I (µ2)| ≤ c ‖µ1 − µ2‖ for all µ1,

µ2 ∈M+

1 (X).

THEOREM 5.4. Let (X, d) be a compact quasihypermetric space, and assume that
M(X) <∞. Then

(1) |µ(X)| ≤ ‖µ‖ for all µ ∈ E(X), and
(2) there exists c ≥ 0 such that ‖dµ‖∞ ≤ c ‖µ‖ for all µ ∈ E(X).

Before proving these two theorems, we note a useful corollary and remark.

COROLLARY 5.5. Let (X, d) be a compact quasihypermetric space, and assume that
M(X) <∞. Then E0(X) is closed in E(X).

REMARK 5.6. If additionally X is strictly quasihypermetric, then we can reformulate
Theorem 5.3 in the usual language of normed linear spaces. Recall that each
µ ∈M(X) defines a linear functional J (µ) on M(X) by J (µ)(ν)= I (µ, ν) for
ν ∈M(X). Then for X strictly quasihypermetric, Theorem 5.3 tells us that the
following conditions are equivalent.
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(1) M(X) <∞.
(2) J (µ) : E0(X)→ R is bounded for some µ ∈M1(X).
(3) J (µ) : E0(X)→ R is bounded for all µ ∈M(X).
(4) sup ‖J (µ)‖<∞, where µ ranges over M+

1 (X).
(5) The mapping T0 : E0(X)→ C(X) defined by T0(µ)= dµ for µ ∈ E0(X) is a

bounded linear operator.
(6) The concave functional I is Lipschitz-continuous on M+

1 (X) with respect to the
norm-induced metric.

We now turn to proofs of the theorems.

PROOF OF THEOREM 5.3. Parts (6) and (7) of Lemma 5.1 imply the equivalence of
conditions (2), (3) and (4).

(4) implies (1): Let µ ∈M1(X). Write µ as µ= αµ1 − βµ2, with α, β ≥ 0,
α − β = 1 and µ1, µ2 ∈M+

1 (X). Then

I (µ) = I (α(µ1 − µ2)+ µ2)

= α2 I (µ1 − µ2)+ 2α I (µ2, µ1 − µ2)+ I (µ2).

If I (µ1 − µ2)= 0, then by assumption

|I (µ2, µ1 − µ2)| ≤ K ‖µ1 − µ2‖ = 0,

and so I (µ)= I (µ2)≤ M+(X). If I (µ1 − µ2) < 0, then we find that

I (µ) = −‖µ1 − µ2‖
2α2
+ 2α I (µ2, µ1 − µ2)+ I (µ2)

= −‖µ1 − µ2‖
2
(
α −

I (µ2, µ1 − µ2)

‖µ1 − µ2‖
2

)2

+
I (µ2, µ1 − µ2)

2

‖µ1 − µ2‖
2 + I (µ2).

Hence, in both cases,

I (µ)≤ I

(
µ2,

µ1 − µ2

‖µ1 − µ2‖

)2

+ M+(X)≤ K 2
+ M+(X).

Therefore, M(X)≤ K 2
+ M+(X) <∞.

(1) implies (2): Fix any x ∈ X , and assume that for all n ∈ N there exists νn ∈ E0(X)
with |I (δx , νn)|> n ‖νn‖. Suppose that ‖νn‖ = 0 for some n. By Lemma 5.1 part (5)
there exists c ∈ R with dνn (y)= c for all y ∈ X . Since M(X) <∞ by assumption,
Theorem 5.2 implies that c = 0. Hence I (δx , νn)= dνn (x)= 0, a contradiction.
Therefore, ‖νn‖> 0 for all n ∈ N. Now, defining µn ∈M1(X) by

µn = δx +
n sign I (δx , νn)

‖νn‖
νn,

we have

I (µn)=
2n

‖νn‖
|I (δx , νn)| − n2 > 2n2

− n2
= n2
→∞
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as n→∞, contradicting the fact that M(X) <∞. Thus |I (δx , ν)| ≤ c‖ν‖, for some
c ≥ 0 and for all ν ∈ E0(X).

(4) implies (5): By assumption, |I (δx , ν)| ≤ K ‖ν‖, for all ν ∈ E0(X) and for all
x ∈ X . Since dν(x)= I (δx , ν) for ν ∈ E0(X) and x ∈ X , we are done.

(5) implies (2): Fixing any x ∈ X , we have |I (δx , ν)| = |dν(x)| ≤ ‖dν‖∞ ≤ c ‖ν‖,
for all ν ∈ E0(X).

(4) implies (6): Let µ1, µ2 ∈M+

1 (X). Then by assumption,

|I (µ1)− I (µ1, µ2)| = |I (µ1, µ1 − µ2)| ≤ K ‖µ1 − µ2‖

and
|I (µ1, µ2)− I (µ2)| = |I (µ2, µ1 − µ2)| ≤ K ‖µ1 − µ2‖,

and hence |I (µ1)− I (µ2)| ≤ 2K ‖µ1 − µ2‖.
(6) implies (1): Let µ ∈M1(X), and write µ= αµ1 − βµ2, where α, β ≥ 0,

α − β = 1 and µ1, µ2 ∈M+

1 (X). Now

I (µ) = I (α(µ1 − µ2)+ µ2)

= I (β(µ1 − µ2)+ µ1)

= −‖µ1 − µ2‖
2α2
+ 2α I (µ2, µ1 − µ2)+ I (µ2)

= −‖µ1 − µ2‖
2β2
+ 2β I (µ1, µ1 − µ2)+ I (µ1).

Therefore, I (µ2, µ1 − µ2)≤ 0 implies that I (µ)≤ I (µ2)≤ M+(X) and I (µ1,

µ1 − µ2)≤ 0 implies that I (µ)≤ I (µ1)≤ M+(X).
Now suppose that I (µ2, µ1 − µ2) > 0 and I (µ1, µ1 − µ2) > 0. It follows that

I (µ1) > I (µ1, µ2) > I (µ2). Suppose that ‖µ1 − µ2‖ = 0. Now Lemma 5.1 part (5)
implies the existence of some γ ∈ R such that dµ1(x)− dµ2(x)= γ for all x ∈ X .
Therefore, integrating, we have

I (µ1)− I (µ1, µ2)= γ = I (µ1, µ2)− I (µ2),

which gives I (µ1)− I (µ2)= 2γ . But by assumption

|I (µ1)− I (µ2)| ≤ c‖µ1 − µ2‖ = 0,

which gives |2γ | ≤ 0, and hence γ = 0, and it follows that I (µ1)= I (µ1, µ2)=

I (µ2), a contradiction.
Hence we can assume that I (µ1) > I (µ1, µ2) > I (µ2) and that ‖µ1 − µ2‖> 0.

Now, as in the proof that (4) implies (1), we find that

I (µ) ≤
I (µ2, µ1 − µ2)

2

‖µ1 − µ2‖
2 + I (µ2)

≤
(I (µ1)− I (µ2))

2

‖µ1 − µ2‖
2 + I (µ2),

so by assumption I (µ)≤ c2
+ I (µ2)≤ c2

+ M+(X).
Therefore, in either case, M(X)≤ c2

+ M+(X) <∞. 2
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PROOF OF THEOREM 5.4. (1) Consider µ ∈ E(X) with µ(X) 6= 0. Then

‖µ‖2 = (M(X)+ 1)µ(X)2 − I (µ)

= µ(X)2(M(X)+ 1− I (µ/µ(X)))

≥ µ(X)2.

Hence |µ(X)| ≤ ‖µ‖ for all µ ∈ E(X).

(2) Let x ∈ X and µ ∈ E(X). Since (µ | δx )= (M(X)+ 1)µ(X)− I (µ, δx ), we
have

|dµ(x)| = |(M(X)+ 1)µ(X)− (µ | δx )|

≤ (M(X)+ 1)‖µ‖ + ‖δx‖ · ‖µ‖

= ‖µ‖ · (M(X)+ 1+ (M(X)+ 1)1/2),

and so ‖dµ‖∞ ≤ ‖µ‖ · (M(X)+ 1+ (M(X)+ 1)1/2). 2

REMARK 5.7. The constant c in part (6) of Theorem 5.3 can be taken to be nonzero.
This is clear if X is singleton. For nontrivial X , suppose that c = 0. Then I (µ1)=

I (µ2) for all µ1, µ2 ∈M+

1 (X), and since I (δx )= 0 for all x ∈ X , it follows that
I (µ)= 0 for all µ ∈M+

1 (X). But for any distinct x, y ∈ X , (δx + δy)/2 ∈M+

1 (X),
and then I ((δx + δy)/2)= d(x, y)= 0, a contradiction. Thus we can assume that
c 6= 0.

We can therefore interpret part (6) of the theorem as saying that M(X) <∞ if and
only if the following strengthened quasihypermetric property holds: there exists L > 0
such that

I (µ1 − µ2)+ L · |I (µ1)− I (µ2)|
1/2
≤ 0

for all µ1, µ2 ∈M+

1 (X). (Note that by condition (5) of Theorem 3.2, the
quasihypermetric property is equivalent to the statement that I (µ1 − µ2)≤ 0 for all
µ1, µ2 ∈M+

1 (X).)

It turns out that with the imposition of the condition that M(X) <∞, the assertion
of Theorem 3.6 leads to a characterization of the strictly quasihypermetric property.

THEOREM 5.8. Let X be a nontrivial compact quasihypermetric space with
M(X) <∞. Then the following conditions are equivalent.

(1) X is strictly quasihypermetric.
(2) T is injective.
(3) im T is dense in C(X).

PROOF. That (1) implies (2) follows by Theorem 3.6 and the equivalence of (2) and (3)
follows by Theorem 2.4, so it remains to show that (2) implies (1). Let I (µ)= 0 for
some µ ∈M0(X). Then part (5) of Lemma 5.1 gives us c ∈ R such that dµ(x)= c for
all x ∈ X . But by Theorem 5.2 we get c = 0, since M(X) <∞. Hence dµ = 0, and
therefore, using the injectivity of T , we get µ= 0. 2
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REMARK 5.9. The condition M(X) <∞ is necessary in Theorem 5.8. In [27,
Theorem 5.4] we will construct a space X which is quasihypermetric but not strictly
quasihypermetric and has M(X)=∞, but for which it is easy to check that T
is injective.

Consider the interval [a, b] in R, with its usual metric. For each c ∈ [a, b], we
clearly have dδc(x)= |x − c| for all x ∈ [a, b]. It is straightforward to confirm that the
linear span of these functions in C([a, b]) is exactly the subspace of piecewise linear
continuous functions, which is dense in C([a, b]), and it follows that im T is dense in
C([a, b]). Since M([a, b])= (b − a)/2<∞ (see [5, Lemma 3.5] or [27, Corollary
3.2]), we obtain the following result.

COROLLARY 5.10. Every compact subset of R with the usual metric is strictly
quasihypermetric.

We noted earlier (see Theorem 3.4) the fact that each compact subset X of Rn is
strictly quasihypermetric for all n. By Theorem 5.8, this is equivalent to the fact that
im T is dense in C(X) for each such X . The fact that the latter statement holds is a
fundamental result in the theory of radial basis functions; see [29, Theorem B.1].

6. Completeness

We now address the question of the completeness of the spaces E0(X) and E(X),
under the assumption that M(X) is finite. Recall that the seminorms on E0(X) and
E(X) become norms precisely when X is strictly quasihypermetric.

Our main result is the following (cf. [22, Theorem 1.19]).

THEOREM 6.1. Let (X, d) be a compact quasihypermetric space with M(X) <∞.
Then the semi-inner product space E0(X) is complete if and only if X is finite.

For the proof, we need the following lemma. (Recall that T0 : M0(X)→ C(X)
is the restriction of the linear map T to the subspace M0(X). Also recall that for
µ ∈M(X), the functional J (µ) is defined by J (µ)(ν)= I (µ, ν) for ν ∈ E0(X).)

LEMMA 6.2. Let (X, d) be a compact quasihypermetric space with M(X) <∞.

(1) The operator T̃0 : E0(X)/F→ C(X) defined by T̃0(µ+ F)= T0(µ) for
µ ∈ E0(X) is well defined and compact.

(2) The adjoint operator T̃ ′0 : M(X)→ (E0(X)/F)′ is given by T̃ ′0(µ)(ν + F)=
−(µ | ν) for all µ in M(X) and ν ∈ E0(X).

(3) dim E0(X)/F <∞ if and only if X is finite.
(4) E0(X)/F is complete if and only if dim E0(X)/F <∞.

PROOF. (1) Suppose that µ1 + F = µ2 + F for some µ1, µ2 ∈ E0(X). Then
µ1 − µ2 ∈ F , and by Lemma 5.1 part (5) and Theorem 5.2 we conclude that dµ1−µ2 ≡

0, and so T̃0(µ1 + F)= T̃0(µ2 + F).
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Let B = {ν + F ∈ E0(X)/F : ‖ν + F‖ ≤ 1}. For ν + F ∈ B,

|T̃0(ν + F)(x)− T̃0(ν + F)(y)| = |dν(x)− dν(y)|

= |(ν | δx − δy)|

≤ ‖ν‖ · ‖δx − δy‖

= ‖ν + F‖ · (2d(x, y))1/2

≤ (2d(x, y))1/2,

for all x, y ∈ X .
By Theorem 5.3 part (5), for each ν + F ∈ B,

‖T̃0(ν + F)‖∞ = ‖T0(ν)‖∞ = ‖dν‖∞ ≤ c‖ν‖ = c‖ν + F‖ ≤ c,

for some constant c. The Arzelà-Ascoli theorem now implies that T̃0(B) is relatively
compact in C(X), and therefore T̃0 is compact.

(2) By definition,

T̃ ′0(µ)(ν + F)= µ(T̃0(ν + F))= µ(T0(ν))= µ(dν)= I (µ, ν)=−(µ | ν)

for all µ ∈M(X) and ν ∈ E0(X).

(3) Of course, if X is finite, then dim E0(X)/F <∞, so let us assume that
dim E0(X)/F = n for some natural number n (note that n = 0 obviously implies that
X is a one-point space). Thus there are µ1, . . . , µn ∈ E0(X) such that

E0(X)/F = [µ1 + F, . . . , µn + F].

Now consider µ ∈ E0(X). Then there exist α1, . . . , αn ∈ R such that

µ+ F = α1(µ1 + F)+ · · · + αn(µn + F),

and we have µ−
∑n

i=1 αiµi ∈ F . By Lemma 5.1 part (5) and Theorem 5.2, it
follows that dµ−

∑n
i=1 αiµi

= 0. Therefore, dµ ∈ [dµ1, . . . , dµn ], and we conclude that
im T0 = [dµ1, . . . , dµn ]. But im T = [im T0, dδx ] for each fixed x ∈ X , since dν =
dν−ν(X)δx + ν(X) · dδx for each ν ∈M(X), and so dim(im T ) <∞. Therefore, X is
finite, by Theorem 2.1.

(4) Clearly E0(X)/F is complete if dim E0(X)/F <∞, so let us assume that
E0(X)/F is complete. The Riesz representation theorem, with Lemma 6.2 part (2),
implies that (E0(X)/F)′ = T̃ ′0(M0(X)), since

T̃ ′0(µ)(ν + F)=−(µ | ν)= (−µ+ F | ν + F)

for all µ, ν ∈ E0(X). Therefore, T̃ ′0 : M(X)→ (E0(X)/F)′ is compact, since T̃0 is
compact by part (1), and im T̃ ′0 = (E0(X)/F)′, which is by assumption complete.

But it is well known (see, for example, [33, Theorem 7.4]) that this situation
implies that im T̃ ′0 is of finite dimension, and hence (E0(X)/F)′ is of finite dimension.
Therefore, E0(X)/F is of finite dimension, and so X is finite, by part (3). 2
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COROLLARY 6.3. With the hypotheses of the lemma, E0(X)/F is complete if and
only if X is finite.

PROOF OF THEOREM 6.1. If X is finite, the required conclusion is trivial, so let us
assume that E0(X) is complete. Let (µn + F)n≥1 be a Cauchy sequence in E0(X)/F ,
where µn ∈ E0(X) for all n. Since

‖µn − µm‖ = ‖(µn + F)− (µm + F)‖

for all n and m, we conclude that (µn)n≥1 is a Cauchy sequence in E0(X), and hence,
by assumption, there exists µ ∈ E0(X) (not necessarily unique) such that

‖µn − µ‖→ 0 as n→∞.

Hence ‖(µn + F)− (µ+ F)‖→ 0 as n→∞. Therefore, E0(X)/F is complete, and
hence, by Corollary 6.3, X is finite. 2

COROLLARY 6.4. Let (X, d) be a compact strictly quasihypermetric space with
M(X) <∞. Then the inner product space E0(X) is a Hilbert space if and only if
X is finite.

Finally, we apply an earlier result to extend Theorem 6.1 to the space E(X). Indeed,
by Corollary 5.5, E0(X) is closed in E(X) when M(X) <∞, so the completeness of
E(X) would imply the completeness of E0(X), and we therefore obtain the following.

COROLLARY 6.5. Let (X, d) be a compact quasihypermetric space with M(X) <∞.
Then the semi-inner product space E(X) is complete if and only if X is finite.

There is also of course a result paralleling Corollary 6.4 for E(X) in the strictly
quasihypermetric case.
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