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Abstract

The development of transformative technologies for mitigating our global environmental and technological chal-
lenges will require significant innovation in the design, development, and manufacturing of advanced materials and
chemicals. To achieve this innovation faster than what is possible by traditional human intuition-guided scientific
methods, we must transition to a materials informatics-centered paradigm, in which synergies between data science,
materials science, and artificial intelligence are leveraged to enable transformative, data-driven discoveries faster than
ever before through the use of predictivemodels and digital twins.Whilematerials informatics is experiencing rapidly
increasing use across the materials and chemicals industries, broad adoption is hindered by barriers such as skill gaps,
cultural resistance, and data sparsity. We discuss the importance of materials informatics for accelerating techno-
logical innovation, describe current barriers and examples of good practices, and offer suggestions for how
researchers, funding agencies, and educational institutions can help accelerate the adoption of urgently needed
informatics-based toolsets for science in the 21st century.

Impact Statement

Over the coming decades, human societies will face unprecedented challenges related to climate, energy, and
water security. A key component to address these is the rapid development of a broad range of transformative
technologies. Historically, these technologies were developed using the traditional scientific method, in which a
human scientist performed experiments by trial and error. However, the short timeframewith which technologies
must be developed requires significantly faster materials discovery and commercialisation methods than what is
commonly being practiced today. This article describes the importance of developing advanced materials and
chemicals to enable breakthrough technologies, why we must utilise cutting-edge data-driven tools to accelerate
this process, and how researchers, funding agencies, and educational institutions can help improve adoption of
this necessary data-centric scientific paradigm.

1. Introduction

A 2018 report by the UN’s Intergovernmental Panel on Climate Change suggests that humanity must
rapidly solve a broad range of global technological challenges by 2030 to avoid unprecedented environ-
mental, social, and economic risks (IPCC, 2018). Already in 2015, the UN defined 17 sustainable
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development goals (United Nations, 2015) which encompass a diverse set of important themes ranging
from social justice and public health to environmental stewardship. Many of these goals, particularly
responsible consumption and production, water security, clean energy generation, and better healthcare,
may be directly addressed by innovation in the materials and chemicals industries. Advances in materials
are critical for, among other things, improving the performance of battery materials, photovoltaics, and
carbon capture techniques; the use of new feedstocks for molecular recycling of plastics and bioplastics;
reduced reliance on critical elements; and making the production of materials more energy- and carbon-
efficient using catalysts for electrochemical processes, hydrogen reduction of iron ore, clinker substitutes
in cement, and decreased use of high-temperature heat treatments of metals.

Production of materials accounts for nearly a quarter of total global greenhouse gas emissions
(Hertwich, 2021). For many companies in the materials and chemicals industries, sustainability themes
have historically been driven by public relations and marketing narratives. Recently, however, due to
strains on the availability of critical materials, proposed EU regulation (European Commission, 2020),
and customer demand for environmental responsibility, sustainability initiatives have become critical to
the survival of the industries, and as such, ambitious goals have been set (BASF, 2020; ArcelorMittal,
2021). These goals generally aim to address one of four primary themes: (a) reduction in greenhouse gas
emissions, (b) increases in energy efficiency, (c) sale of more sustainable products, and (d) responsible
sourcing of raw materials.

While each of these goals depends on the development of novel high-performance materials and
chemicals, historically it has taken an average of 20 years to bring new material to market after its
discovery in the lab (Materials Genome Initiative, 2021). That timescale prevents rapid deployment of
new technologies which are essential for enabling significant mitigation of climate change before 2030.
To accelerate the process of materials discovery and deployment, we must move beyond the historical
paradigm of human-centered trial-and-error approaches in the lab and employ cutting-edge tools, high-
performance computing resources, and data-driven methodologies to harness the full power of human
ingenuity and innovation.

The authors of this perspective piece work for a company that has engaged in 60þ materials
informatics projects over the last 8 years with commercial, academic, and government partners. Seeing
the success of these projects, and the acceleration that material informatics has catalysed for materials
development, motivates this paper.

2. Adoption of Informatics in the Materials and Chemicals Industries

Large-scale digital transformation is occurring across a broad range of industries, fueled by cheap
computing power, proliferation of cloud-based database hosting infrastructure, ubiquitous data collection,
and powerful artificial intelligence (AI). Materials and chemicals companies are also following digitalisa-
tion trends, and industry leaders have begun adopting systematic data-driven R&D practices to optimize
materials and formulations through tuning of composition and processing conditions. Many manufac-
turers are creating “digital twins” by leveraging complex computer simulations to test the design and
performance of their products in a cost-efficient manner. Physics-based models from the nano- to
mesoscales can faithfully reproduce physical behavior, while AI and other data-driven tools can be used
to interpolate results at intermediate length scales. AccelorMittal, currently the top-ranked producer of
steel in theworld by volume, announced that “global R&D is focusing on launching digital transformation
projects throughout all aspects and segments of the business” (ArcelorMittal, 2021). Similarly, BASF, the
largest global chemical company, stated that “we integrate digital technologies into everyday operations
and make them an integral part of any R&D project workflow to boost effectiveness of research, increase
efficiency and open up new innovation opportunities” (BASF, 2021). These vignettes highlight a new
paradigm that is transforming the materials and chemicals industry: materials informatics.

Materials informatics (MI), the application of data science, materials science, and AI to the materials
and chemicals space, has enabled researchers to leverage complex, data-driven insights for the discovery
of novel materials faster than ever before by reducing the number of experiments required during the
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materials development process by 50–70% (Ling et al., 2017; Saal et al., 2020). AI is an ideal tool for this
challenge, as it excels at high-dimensional, multiobjective optimisation, enabling simultaneous refine-
ment of processing and composition parameters, which helps push products toward desired property
targets at both lab and production scales. The speed at which data-driven models can output new
predictions enables researchers to cast a wider net, exploring compositions that would be lower down
the priority list for physical experiments, which may lead to the discovery of novel, highly differentiated
materials. Furthermore, AI models are not constrained to conventional modes of thinking like typical
human researchers, which enables them to highlight newor unexpected results that a traditional researcher
may ignore.

Before deployment in real-world commercial or industrial applications, novel materials must meet a
myriad of constraints including processing requirements, cost, sustainability, durability, esthetics, safety,
and functionality. This development process involves multidimensional optimisation and extensive
testing, a costly and time-consuming process that is heavily reliant on human input and domain expertise.
However, with the cutting-edge tools of materials informatics at their disposal, researchers could
accelerate this process by identifying important patterns across datasets that are too large or complex
to be understood by traditional means (Cao et al., 2018; Mosavi et al., 2018), reducing the number of
experiments necessary to mature a technology from lab bench to market. While adoption of materials
informatics does not comewithout challenges (Citrine Informatics, 2020), great strides have beenmade in
the last 5 years toward the development of open-source materials-specific data models (Citrine Infor-
matics, 2021), incorporation of expert domain knowledge into AI models (Childs & Washburn, 2019),
transfer-learning architectures that can accommodate small, sparse datasets (Hutchinson et al., 2017), and
uncertainty quantification methods for enabling targeted iterative AI and Bayesian optimisation (Mosavi
et al., 2018). As these powerful tools gain traction in the materials and chemicals communities, newly
developed and existing software platforms will continue to enable broad adoption of MI across the
industry.

Common MI applications encountered in materials and chemicals industry today include

• the discovery of new materials that have specific target properties,
• optimisation of the composition or processing parameters of existing materials,
• identification of formulations that simultaneously meet performance, cost, and sustainability
criteria, and

• identification of themost informative experiments to perform under budgetary requirements or other
constraints.

As widespread adoption of MI continues across materials and chemicals industries and advances in
computing enable more powerful modeling techniques, it is expected that the core challenges addressed
by today’s materials informatics tools will expand to encompass new domains and materials classes.

The following two case studies illustrate innovative uses ofMI, in the first to replace animal testing and
in the second to guide strategic decision making.

2.1. Case study: Screening out toxic formulations

Safety, including toxicity, is a primary design consideration during chemicals andmaterials development.
Animal testing is commonly used as a final safety check for a chemical in development before bulk
production can occur, and this process often requiresmanymonths of testing. Failing at this last hurdle can
be expensive, requiring a return to an earlier point of the chemical design process. Therefore, development
of accurate model-based prediction of toxicity can significantly reduce materials and chemicals screening
costs by ensuring success of toxicity tests. More importantly, alternative screening methods can reduce or
even eliminate the use of controversial animal testing practices.

While there is robust literature demonstrating prediction of toxicity for single chemicals, prediction of
toxicity for multiphase complex formulations is more difficult. A chemical manufacturer recently used
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our company’s AI platform to develop an AI model that can predict toxicity for such complex formu-
lations based on ingredient composition and recipe. It took them 4weeks to develop a toxicity model with
82% accuracy.

Incorporating the domain knowledge of human formulation experts was key. The AI platform did this
in two ways. First, the ingredients were labeled by type (active, adjuvant, etc.) and the fractions of
different types of ingredients were used as inputs to the model. Second, the platform used SMILES
(Weininger et al., 1989) strings representing chemical formulas for the active ingredients and generated
30þ descriptors (e.g., molecular weight and the number of hydrogen bond donors), whichwere critical for
improving model performance when the quantity of input data and availability of descriptors is limited.

2.2. Case study: Materials informatics used for developing novel battery materials

The transition to a carbon-neutral economy will require significant advances in battery materials (Nitta
et al., 2015)which increase specific energywhilemaintaining high voltage. One of the primary challenges
in battery development is the trade-off between battery performance and availability of raw materials
(Peerless et al., 2020), which often varies by manufacturer (Vikström et al., 2013).

In a prior work (Peerless et al., 2020), three existing databases of battery materials were combined and
then sorted into two groups depending on their composition and the availability of their constituent
elements in the earth’s crust, scarce or abundant. An AI model was trained and used to predict the specific
energy and voltage of different material combinations. Uncertainty quantification (UQ), the calculation of
the expected accuracy of individual model predictions, was used to visualize the likelihood of achieving
target properties in the two design spaces. By calculating the likelihood of achieving target material
properties for every candidate in the design space, potential performance of designs can be assessed, and
the probability of achieving battery design goals with and without scarce elements can be estimated and
used to inform research strategy. This analysis (Figure 1) showed that a higher specific energy is easier to

Figure 1. Design space visualisations for battery materials (Peerless et al., 2020). Reproduced under
creative commons license.
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achieve with cathodes that use rare elements, which provided researchers information they used to make
data-driven decisions about the likelihood of success when performing physical tests with different
materials.

The strategic utility ofMI is important for commercial organisations as they race to develop sustainable
products and rely on smart uncertainty qualification.

3. What’s Holding MI Back?

While materials informatics will be a key component of digital transformation, adoption of MI is not yet
universal across the entire use-case spectrum, including fundamental research at universities, translational
research at institutes, research at small- and medium-scale companies, and R&D at global materials and
chemicals corporations. To achieve such widespread adoption, challenges involving skills gaps, cultural
alignment, and data must be addressed.

3.1. Skills

In an environment where data is king, researchers with the data management skills needed to wrangle data
into an informatics platform will become more readily available as many systems across the organisation
rely on these same skills. Similarly, as materials informatics platforms continue to evolve and mature and
best practices are baked in, the requisite data science skills to utilise these tools shrink and usability across
a wider range of user backgrounds improves. However, a general understanding of fundamental data
science concepts such as design spaces, latent variables, normalisation/dimensionality reduction, and
uncertainty quantificationwill remain one of themost important factors determiningmaterials informatics
success. Familiarity with these concepts enables researchers to effectively communicate between differ-
ent teams in an organisation, ensuring that relevant domain knowledge is integrated and leveraged by the
models. A required course on key data science concepts for students in the physical sciences would help
mitigate this knowledge gap and facilitate more cross-cutting research at universities and other academic
institutions where projects are often siloed in a single department even when interdisciplinary collabo-
ration is encouraged by funding agencies. There is also a need for courses that can add to the existing
skillsets of experienced researchers. For example, a short crash course in advanced data science topics for
materials scientists may be modeled after an analogous 1-day course designed for petroleum engineers
(Society of Petroleum Engineers, 2021).

The Minerals, Metals & Materials Society (TMS) report Creating the Next-Generation Materials
Genome Initiative Workforce (The Minerals, Metals & Materials Society (TMS), 2019) recommends
addressing skill gaps in three key areas: data (data handling, visualisation, and software for materials
workflows), computation (first-principles, microstructure, and multiscale modeling), and experiments
(uncertainty-informed multiobjective decision making and automated high-throughput methods). The
study found that materials researchers, including undergraduate and graduate students, should develop
awareness of informatics tools and become conversant in topical areas including data management and
measurement tools.

The computational materials community has increased industry-focused outreach by sponsoring short
courses, hackathons, and workshops such as the NIST/University of Maryland “Machine Learning for
Materials Research Bootcamp” (University of Maryland, 2021). Other examples include the Computa-
tional Materials Science Summer School hosted at Texas A&MUniversity (2021) the Machine Learning
for Materials Workshop hosted by NIST (2021) and the Workshop on Artificial Intelligence Applied to
Materials Discovery and Design hosted by DOE’s EERE (U.S. Department of Energy, 2021).

Ultimately, investments in workforce development are needed to ensure that materials engineers are
comfortable using modern scientific analytics methods, including simulations for creating digital twins,
AI for developing predictive data-driven models, and core data science and statistical techniques for
applying uncertainty quantification and analysing and manipulating large datasets across multiple file
formats and organisational structures.
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3.2. Culture

3.2.1. Fear of the new and redundancy
As with every new technology, early adopters help develop use-cases and drive methodology forward
while others remain skeptical and only accept change once there is no alternative. Knowledge of what AI
can do for materials science is in part limited by incumbent mindsets. There is also the suspicion of AI in
popular culture, which has fostered its association with potential future job losses, unaccountable and
biased decision making, and the potential for computers to take over the world and declare war on
humankind!

On a more personal level, scientists and engineers often spend a significant fraction of their lives in
higher education and justifiably place a high value on the domain knowledge they have gained over years
of study and research. Their self-worth is therefore heavily tied to being the provider of that domain
knowledge. Scientists are also trained not to blindly trust something that they do not understand; they
abhor a “black box.”

To help alleviate these concerns, careful education is needed to help materials researchers see AI as a
tool in a suite of other technologies that enables them to do their jobs more efficiently, rather than a threat
to their livelihood or self-worth. Emphasis should be placed on how AI models can provide insight into
underlying physical mechanisms which are difficult for humans to grasp because of high-dimensionality
and the interconnectedness of multiple physical phenomena. AI need not be a black box, but rather can
shine a light on subtleties that are too complex for humans to easily identify. Deep domain knowledge and
expertise are still needed more than ever. Rather than a “big data” problem, materials informatics often
suffers from a “small data” problem of complex, sparse, and noisy datasets, and one of the most effective
methods to compensate for shortcomings in datasets is the expertise and domain knowledge of a well-
trained materials scientist.

3.2.2. Is it worth the cost?
As with the adoption of any new technology, transitioning to an MI-focused culture will incur costs.
However, these costs will be recouped from savings made on the reduced costs of developing materials
and chemicals when compared to traditional workflows within a similar timeframe. Companies are seeing
benefits from Materials Informatics in three ways: acceleration of development (fewer experiments per
project), more information to direct research investments, and capture and systematic reuse of company
intellectual property. While the reduction in number of experiments needed is well known, the other two
benefits need a little more explanation. Using uncertainty quantification, researchers can calculate the
probability of one or more material candidates in a design space hitting a target property set. This process
can be carried out in different design spaces (i.e., representing different research directions) and the
probability compared. Researchers therefore can choose in a data-driven way whether to go a high-risk
route that might achieve remarkable results or the lower risk direction for incremental improvement. The
final benefit is a side effect of codifying knowledge. Domain knowledge is captured in datasets, design
spaces, and AI models which become digital assets that can be reused by future researchers on adjacent
projects. Researchers can both learn from these resources and adapt and reuse them to accelerate their own
research. This is particularly important where many knowledgeable researchers are nearing retirement. In
commercial companies, of course, they want to make sure that company IP does not leave the building
when a researcher decides to change jobs.

Open-source data science tools can enable insightful deep data analytics for individual projects and
teaching purposes. For example, the popular Matminer Python package (Ward et al., 2018) provides
free visualisation tools, open materials datasets, hooks for connecting to external databases, and data
processing utilities to support machine learning. Pymatgen (Ong et al., 2013) provides tools for
analysing material structure and thermodynamics, connecting to the Materials Project database, and
generating phase diagrams and other visualisations. Materials Cloud (Talirz et al., 2020) and nanoHUB
(Madhavan et al., 2013) provide free curated datasets, computation tools, educational videos, and
training seminars.
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However, to get the most out of MI at the organisational level, scalable platforms to develop pipelines
for acquisition, storage, and analysis of data must be utilised. As an example, the NFDI-MatWerk
consortia (NFDI-MatWerk, 2021) is building distributed materials data infrastructure for facilitating
interoperability and consistency between materials discovery workflows across different research insti-
tutions (Fraunhofer Institute for Mechanics of Materials, 2021).

While the extra effort and cost to implement such software tools raise an initial activation barrier toMI,
the improvements in product development efficiency compound over time as knowledge and data are
digitized, resulting in significant net savings. As prominent MI successes accumulate (Saal et al., 2020),
the utility of MI will become more clearly evident to a wider audience.

3.3. Data

In some respects, misconceptions about data often serve as larger roadblocks to MI adoption than the
suitability of the data itself. Successful materials informatics projects have started with as few as 32 data
points (Antono et al., 2020). However, many organisations that decide to employMI mistakenly feel that
they need to focus on aggregation of data from historical sources or publicly available databases before
they can start MI projects. By instead starting small MI projects with the data already available,
organisations can start to demonstrate the value of MI and get researcher buy-in, educate the team on
what it can do, and get a better understanding of the optimal data structure they need to build. That is not to
say that more data is not better! Comprehensive, high-quality datasets typically perform better than small
datasets when utilised by knowledgeable researchers with the right tools. Corporations have a financial
incentive to protect their data, as it is often expensive to produce and secrecymay offer them a competitive
advantage, but publicly funded academic research projects should be required to acquire, store, and
organize data in a way that aligns with the FAIR (findability, accessibility, interoperability, and reusabil-
ity) principles (GO FAIR, 2021). In this way future researchers will continue to be able to stand on the
shoulders of giants.

Early success in materials informatics came from work involving simulation-derived materials
property databases, such as the Materials Project (Ong et al., 2013), due to their alignment with FAIR
principles (particularly the highly structured and API accessible nature of the database) and the
comprehensive, homogenous, and self-consistent nature of their data (Ward et al., 2018). Such datasets
across the materials landscape would result in a step-change in the speed of materials research. Projects
are underway to aggregate historical, published experimental data and make it widely accessible (Tetko
et al., 2016; Dridi et al., 2021). This is challenging work. Data-scraping techniques, image recognition,
and other high-throughput digitisation methods are improving, but poor labeling and incomplete
metadata make useful datasets hard to come by. Investment in these projects is worthwhile for research
funding bodies to ensure the reusability of data which will accelerate projects they fund in the future.
Dissemination requirements for publicly funded research should include alignment with the FAIR
principles, so that all future data is accessible to the public. There are efforts to encourage imple-
mentation of FAIR principles among scientists, including GO FAIR (GO FAIR, 2021), the Research
Data Alliance (RDA, 2021), the Materials Research Data Alliance (MaRDA, 2021), and CODATA
(CODATA, 2021). Best practices suggested by GO FAIR include storing rich metadata, using open
protocols to access the data, and providing clear data usage licenses. There may also be areas of high-
priority research where high-throughput testing techniques are now available, and historical data is
unreliable, where it makes sense to fund projects to freshly acquire new data, so that reliable, FAIR
data can be made available globally to seed important research that will help us meet our sustainability
challenges. This is analogous to the Human Genome Project, which has spawned a tsunami of genetic
research.

Rather than focus on methods for retrieving historical data, many researchers would be better off
focusing on the steps they can take today for acquiring, storing, and disseminating data in a way that
makes it searchable, reusable, and machine-readable in the future. Data should be stored in industry-
standard machine-readable formats which can be parsed using a broad range of software tools and
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operating systems, such as the JSON and CSV formats. While recording data, researchers should pay
extra attention to how the data will be interpreted in the future, as data without context becomes
meaningless without the knowledge of the person who recorded it. Data context can be provided by
including metadata which describes important attributes of the data, including the date of its acquisition,
its author, detailed processing parameters or measurement conditions, instrument settings, relevant
ambient conditions, and unique identifiers which can be used to distinguish between multiple materials
or chemical samples which may have the same formula or other identical characteristics. Finally, data
should be stored in a schema that makes it easy to retrieve. This often requires insertion into an established
database architecture such as the SQL relational model or hierarchicalMongo databasemodel. The proper
use of an established database structure enables rapid searchability and consistent organisation of data,
which are critical to success in materials informatics.

4. Summary

We must act quickly to address global challenges like pollution, water security, and climate change.
Solutions to these problems will rely on innovative materials and chemicals which enable clean
energy generation, highly efficient manufacturing, and novel methods for recycling and repurposing
existing materials. The status quo, human intuition-guided trial-and-error methods of the past are not
fast enough to solve these challenges on the timeframes in which they are needed. For this reason,
new methods must be adopted to accelerate the R&D process and bring new materials and
technologies to human society faster than ever before. Materials Informatics provides the suite of
tools needed for this acceleration. To enable its swift, widespread adoption, we must support
widespread education, cross-discipline communication, and data sharing. These challenges can be
addressed by ensuring that

• all publicly funded research has a requirement for sharing data in alignment with FAIR data
principles,

• public research organisations have access to modern informatics infrastructure which enables
widespread dissemination and analysis of data,

• output data (e.g., raw data from characterisation equipment) is stored in standard machine-readable
formats with appropriate metadata that describes context and details so that the data can be reused in
the future,

• data is collected and combined according to a consistent, structured schema in established database
architectures so that it can be rapidly searched, manipulated, extracted for use in appropriate analysis
workflows, and transferred to other schemas and databases as necessary,

• undergraduate students in the physical sciences receive adequate training in relevant data science
concepts, and

• professional societies such as ASM and IOM3 offer courses on materials informatics and modern
data analysis techniques.

By following these important guidelines, researchers and institutions can improve their ability to
incorporate materials informatics techniques in their established materials and R&D processes, ensuring
that their products can be developed as rapidly as possible using powerful cutting-edge technologies.
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