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ON THE DYNAMIC SCALING BEHAVIOUR OF SOLUTIONS
TO THE DISCRETE SMOLUCHOWSKI EQUATIONS

by F. P. DA COSTA

(Received 6th December 1994)

In this paper we generalize recent results of Kreer and Penrose by showing that solutions to the discrete
Smoluchowski equations

Cj= £ Cj-kck-2cj Y. ck,j=l, 2, ...
*=i »=i

with general exponentially decreasing initial data, with density p, have the following asymptotic behaviour

lim t2ci(0=-e-<"',

{=j/lfiicd

where / = {/': ct{t)>0, t>0} and g = gcd{/: c;(0)>0}.

1991 AMS Subject Classification: 82C22, 34D05, 12D10

1. Introduction

The discrete Smoluchowski equations are a model for the kinetics of irreversible
cluster growth, in which y-clusters (clusters with j particles) can coagulate with fc-clusters
to give (/ + /c)-clusters, but the reverse process of cluster fragmentation does not occur.

Denoting by cj=cJ(t)^0 the concentration of ay-cluster at time t^O, the equations
are

j — 1 00

<i= Z aj-ktkCj-kck-2Cj X aJtkck,j= 1,2,... (1)

where aJk = ak,;^0 are the rate coefficients for the coagulation reactions, and the first
sum is defined to be zero ify=l. Physically, the quantity p(t): = Yj'=iJcj(t) IS t n e t o t a l
density of the system at time t, and should be finite. This is reflected, mathematically, in
the choice of the Banach space of finite density sequences, X = {c=(cj): | |c||: =
ZJ=I . / | C J I <OO}, as the natural space for the study of (1). The mathematical theory of
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these equations, as well as that of more general equations describing the kinetics of
reversible cluster growth, has been the subject of several papers in recent years, and
questions about existence and uniqueness of solutions [1, 2, 15], and their asymptotic
behaviour [2, 4, 5, 13, 14] have been studied.

There are still a number of important open problems concerning the asymptotic
behaviour of solutions to (1). It is easy to prove that, under rather general conditions on
the coefficients a, t all global solutions to (1) converge, in the weak* topology of X, to
the zero solution as t->oo, [5, Theorem 4.3]. On the other hand, the asymptotic
behaviour of solutions in the strong (norm) topology of X is not yet completely
understood, particularly when the coagulation coefficients ajJc grow rapidly with j and k,
(see [4, 13] and references therein). For slowly growing coefficients, namely for
aj,k ~ O'̂ )"> a = 1/2, it has been proved, [1], that the solution of (1) with initial condition
c(6) satisfies \\c(t)\\ =p:= ||c(0)|| for all t^O.

This different asymptotic behaviour of solutions in the strong and in the weak*
topologies of X is analogous to what happens in the Becker-Doring and Generalized
Becker-Doring equations for supercritical initial data, i.e., initial data with density p > ps

where ps is a constant depending only on the coefficients of the equation [2, 5, 14]. A
problem that naturally arises in this context is to elucidate how is the total density p
distributed among the various clusters and how does this distribution evolve with time.
As pointed out by Ball et al. [3] this problem is, in a certain sense, related to the
question of how the energy of a dissipative infinite dimensional dynamical system is
distributed among the various modes as t-*oo.

A particular case of this type of problems occurs in the physics literature under the
names of similarity solutions, [7, Section 6.4], self-preserving size distribution, [10], or
dynamic scaling behaviour, [8, 9]. The conjecture is that for sufficiently large times and
cluster sizes the shape of the distribution of the total density among the ./-clusters
approaches a self-similar profile independent of that of the initial data; more precisely,
for sufficiently large t and j the solution eft) approaches t~"c(jt~p) for some positive
constants a and /?, and for some function c: R+-+IR+.

Recently Kreer and Penrose obtained a mathematically rigorous proof of this
conjecture, in the case where ajjc=l for all j and k, and the initial data are
exponentially decreasing and satisfy c1(0)>0, [12].

They use the generating function

<D(z,t):=£ cft)z', (2)

defined for all t^O and zeB7: = {zeC: | z | ^ l}> m order to obtain an integral
expression for eft): one can easily prove that <D(z, t) satisfies a differential equation (see
Proposition 4 below) that can be integrated to give

1 N0+rl-ct>(z)
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where AT0: = £j°= i c/0) and <£(z): = <D(z, 0) = £f=, c/0)zJ'. Since, for each r^O, <D(z,f) is
analytic in Bx one can use the Cauchy integral formula in (3) to obtain

where y0 = {z e C: | z \ = r0} for some r0 e (0,1).
The fundamental observation of [12], that makes possible the asymptotic evaluation

of (4), is the following: if the initial data (cjfl)) satisfies

(5)

for some positive constants A and A, independent of j , then <j){z) is analytic in the ball
| z | < 1 + A and, for each t ̂  0, so is <t>(z, t), except for poles at the zeros of the
denominator of the expression in the right-hand side of (3). Assuming c!(0)>0 and
denoting t~l by x, Kreer and Penrose proved that NQ + x — 4>(z) has only one zero, zx(x),
that converge to the unit circle dBt as x-*0, all the other zeros being bounded away
form B^ as T-»0. This allows (4) to be asymptotically evaluated by considering the
integral on a larger circle y2 such that Z,(T) is the only pole in its interior, minus the
integral on a small circle yl that contains z^x) in its interior for all sufficiently small
values of T. The integral over y2 can be shown to converge to zero uniformly as j , t-*co
with j/t bounded, and the integral over yl can be evaluated using the residue theorem,
and the limit as r->oo with £=j/t fixed can be computed from the knowledge of the
behaviour of zv(x) as T->0.

Using the above method, Kreer and Penrose concluded that

lim t2cJit) = &-«>, (6)
j . I ~* 00

4 = jlt fixed

uniformly for f in compact subsets of R+, [12, Theorem III].
It is argued in [12] that one should not expect this type of behaviour if the condition

C!(0)>0 is not fulfilled. In support of this claim the problem with initial data c}{O) = djm,
for some integer m>l, is considered. For this initial condition the solution can be
explicitly computed and is

otherwise

and from this one concludes that
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.. 2 it\_\e~ilm 'f j ~~> °° through a sequence of multiples of m . .
j.coo J [0 ifj -»oo through a sequence of integers not multiples of m.

4 = j/t fixed

Now, what this example actually shows is that the non-zero components of the
solution do, in fact, exhibit a dynamic scaling behaviour in the sense that if the limit is
computed using only those js for which c£t) > 0 then a limit function analogous to the
cases with c1(0)>0 is obtained. Another objection to the exclusion of initial data with
C!(0) = 0 is the following: suppose the initial condition (c/0)) is such that ci(0) = 0 but
there exists two coprime numbers pr and p2 such that cpl(0), cp2(0)>0. Then, the
positivity result in [6] (see Proposition 3 below) and results in elementary number
theory (see, e.g., [11, page 277]) imply that there exists a positive integer m0 such that
Cj{t) > 0 for all j > m0 and all t > 0. Thus, in this case, it is natural to ask if the limit

lim
j , t -*»

(=Jlt fixed

exists, without having to impose any restrictions on the set of js to be used in its
computation.

In this paper we extend the results of [12] to general exponentially decreasing initial
data, proving that an expression similar to (6) holds even for initial data with cl(0) = 0.
We use the Kreer-Penrose method and, as is possibly clear from the discussion above,
the key to get the result without assuming Cj(0)>0 is a more detailed analysis of the
zeros of

F(z,T): = N0 + T-<t>(z). (8)

The final result (Theorem 1) is the following:

If the initial data (c/0)) satisfies (5) then

lim t2cj(0=^c-?/p, (9)
j.r-oo P
=7/1 fixed

where , / is the set of subscripts j for which eft) > 0 (which is an infinite set independent
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of t for t>0, see below), and q = gcd{j: c/0)>0}. It is clear that this expression reduces
to (6) when c,(0)>0 (for which q = 1), and to (7) if c](0) = 5j,m (for which <? = p = m).

The paper is organized as follows:
In Section 2 we present some preliminaries: basic results on existence, uniqueness,

regularity, asymptotic behaviour, and positivity properties of solutions are quoted from
previous work on these equations. Moreover, we prove an auxiliary result on the
greatest common divisor of a countable set of positive integers that will be needed
afterwards.

In Section 3 we study the zeros of F(z, i) = N0 + x — (j)(z) for T in a neighbourhood of
the origin.

Finally, in Section 4 we prove that the dynamic scaling behaviour (9) holds.

2. Preliminaries

Throughout the paper we assume ajjc= 1 for ally and k. System (1) becomes

j - 1 oo

Cj= £ c j - t c*-2 c j Z ck,j= 1,2,... (10)
k = l * = 1

The following two Propositions are immediate consequences of results in [1,5]:

Proposition 1. [1, 5] For every co=(cOJ)eX+: = X n {(c,): c,-^0}, system (10) has a
unique solution ce<tf0(0,co;X+) such that c(0) = co. The solution c satisfies: \\c(t)\\ = p : =
|| c01| for every t ^ 0 ; the series YJJCM) I S uniformly convergent on compact sets of [0, <x>);
each component Cj is continuously dijferentiable on IR + ; and for all t ^O and all p^l, the
series YJJ^A1) is convergent iffY,jJPcoj converges.

Proposition 2. [5] The zero solution of (10) is globally asymptotically weak* stable in
X+, i.e., for all initial data cQeX+ the unique solution of (10) with c(0) = co satisfies

sup || c(t) || < oo and c/t)->0 as t->co,for every j .
re[0.oo)

For the precise characterization of the positivity properties of solutions we need to
introduce some notation: being c(t)=(c/0) any solution of (10), let

= {/elM:c,(t)>0} (11)

(12)

spanNo(P) = \j=£ riijpc. p{ e P, nt, e No, and max n u > 0 i. (13)
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Then we have the following

Proposition 3. [6] Let coeX + and let c be the solution q/"(10) with initial condition
c(0) = co. Then, for all t>0, J(t) = f is independent oft and is given by / = spanNo(P).

Define the Oth moment of a solution as N(t) = YJf=i Cj(t) and the generating function
<P(z, t) by (2), then

Proposition 4. [12, Proposition I] Let c be the solution of (10) with initial condition
c o e X + . Then N(t) and <D(z, t) satisfy the differential equations

^ O 2 N d (15)
at

with initial data JV(O) = No: = £j°= x cOj and <J>(z, 0) = <p{z): - £jL x cOjz
J, respectively.

For the study of the zeros of F{z, T) we need the following result:

Proposition 5. Let M = {m1,m2,. . .} be a countable subset of M and let q =
gcd(ml5m2,• • •). Then, there exists a positive integer n0 such that gcd (ml,m2,...,mm) = q.

Proof. Let Hj be the n u m b e r of d iv isors of nij and let d)P, k = l,...,nJf denote the
divisors of my Then

j=l k=l

Since
n ii j n + 1 ft j

n u wa n u
j=l * = 1 j = l k=l

we have

qn.=max 0 0 Wl^max "n (

Thus, the sequence (qn) is monotonic nonincreasing and bounded below. Hence, it
converges and so it must be constant and equal to q for sufficiently large n. •

3. The zeros of F( z, *)

With P defined by (12) denote the elements of P by Pi,p2,-- Assume co = (cOj)
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satisfies (5). Then <j>{z): = Yj= 1 COJZ' = YJPJ^P COP/PJ ' S defined and analytic in the ball
B 1 + A = {zeC: |z | < 1 + A } . Consider the function F: B1+Ax [0,oo)->C defined by (8). We
start the study of the zeros of F with the case T = 0.

Proposition 6. With the above assumption and definitions we have:
(i) All zeros of F(z,0) lie in By + A \# i -
(ii) Let q = gcd(pl,p2,...)- Then F(z,0) has exactly q zeros on the unit circle dBu which
are the q'h roots of unity, and all of them are simple.

Proof, (i) Let / be the restriction of F(- ,0) to [0,oo). Let 1^= - / ( l + A)elR + u{oo}.
Since / (0 ) = N 0 > 0 , / ( x H - T j - c O as x f l + A , and / ' ( * ) = -<t>'(x) =
— X~1YJPJCP Pfiopi

xPj<Q f ° r aH xe{0, l + A), we conclude that / has only one zero in
(0,1 + A), which, by the definition of / , is clearly x= 1. Now suppose zeC is a zero of
F(z,0). Then, since No=\<t>(z)\ ^<p(\z\), we have / ( | z | ) = F ( | z | , 0 ) ^ 0 , and thus \z\ ^ 1 .

(ii) Let (: = z* and mj: = pjq. Clearly gcd(w!,m2, . . . ) = 1. Define ip(Q: = N0 —
YJPJZP

 coPJC
ni- W e n a v e l/'(C(z)) = f(z,0). Being interested in the case | £ | = | z | = l , let

C = e'e. A complex number ( is a zero of i// iff No — YjcoPJC'nj = 0> i-e.,

and, since cOp. > 0 for all j , we must have

m,-0=Omod27r. (16)

Clearly 0 = Omod27t is a solution of (16). We prove it is the only solution. Observe that
(16) is an infinite system of equations if P is infinite. We need only to show that for
some finite subsystem the only solution is # = 0mod27i. By Proposition 5 we know that,
for some integer n0, gcd(m1,m2,...,mB0) = l. Consider the following finite subsystem of
(16):

ro,-0 = Omod27r,./e{l,...,«o}. (17)

Suppose there exist k and / such that mk and m, are coprimes, i.e. gcd(mfc, m,) = 1. Then

(18)

(19)

for some integers a and /?. Thus p = mfiL/mk and since mk does not divide mt it follows
that there exists an integer r such that tx = rmk> which means that (18) can be written as
Q — 2m, proving the result. If there are no pairwise coprimes in {mum2,...,mno} we can
argue as follows: take two equations from (17), for instance, m10=Omod27r and
m20=Omod27i and let g1=gcd(m1,m2). Write mi=g1rl, m2=glr2. As gcd(r1;r2) = l we
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can repeat the argument above to conclude that g^^Omodln. Proceeding in the same
way for pairs of equations with j = 3 and y=4, etc, we obtain another system of
equations for 6. The crucial fact here is that this new system has fewer equations than
(17). To be more precise, let h(x) = [(x + l)/2], where [y] denotes the integer part of y,
and define

g\l) = gcd(m2l-_!,m2i) for i= 1,2,...,ft(n0)

„( i) _ f &d(mno -1 ' " O if no is even
Shi no) \ T • J J

[mno if n0 is odd,
We have gcd(f(

1
1),^(

2
1),...,^o)) = gcd(ni1,m2,...^no) = l, and if 0 = Omod2n: is the only

solution of the equations

gy6 = 0mod2n,je{l,...,h(n0)},

then it is also the only solution of (17). If at least two of the g^h are pairwise coprimes
we argue as previously. Otherwise, we can recursively define

8h('Hno) k<r-V ) ( n o )

for « = l,2,...,

,g^-\o)) if h«- ̂ (no) is even

where /i")(n0) = /i(/i(/"1)(«0)) for / ^ 2 , and consider the equations

n,je{l,..., h«\n0)}. (20)

Let t] be the nonnegative integer such that noe(2l',2''+1]. We need only to apply this
procedure at most r\ times in order to obtain a pair of coprimes. In the worst possible
case we end up with the coprimes g^' and f$ and we can now solve the corresponding
system (20) and obtain 0=Omod27r as its unique solution.

Hence, ( = 1 is the only zero of i// in the unit circle and, consequently, the only zeros
of F(z,0) in the unit circle are the q'b roots of unity, (ok

q = exp(2nik/q), k=l,...,q.
Furthermore, for z#0,

1 X Pjc0pjz"
pjeP

and thus, for all k=l,...,q,

F«0)=-a>,-" £ Pf0pja>Vk=-< I mjqc0mjjico^k=-a}-
kp^0. (21)

pjeP mjqeP

https://doi.org/10.1017/S0013091500023294 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023294


DYNAMIC SCALING BEHAVIOUR OF SOLUTIONS 555

This concludes the proof. •

We now turn to the study of F(z,x) with T > 0 . The following result generalizes
Lemma II of [12]:

Proposition 7. With the assumptions of Proposition 6 the following holds true:
(i) For all sufficiently small reCO.Tj) there exists q simple zeros of F(z,x), denoted zk(x)
with k—l,...,q, satisfying \zk(x)\ > 1 and

(22)

where Rl2)(r) ~ O(x2) as T-+0.
(ii) All other zeros of F(Z,T), Z^T), k = q+l, q + 2,..., lie outside Bx and are uniformly
bounded away from it as T->0.

Proof. We start by studying the general location of the zeros. Let z e C be a zero of
F( •, T). Then N0 + x = \ <f>(z) \, and, since x > 0 and | <j){z) | ^ $( \ z |), we conclude that

/ ( | Z | ) = F ( | Z | , O ) = N O - 0 ( | Z | ) < N O + T - \<f>(z)\ = 0,

where / was defined in the proof of Proposition 6. This inequality implies \z\ >1 . We
now prove statements (i) and (ii) separately.

(i) From the last part of the proof of Proposition 6 we can appy an implicit function
theorem to F(z,x) = 0 at (a>Jj,O) to conclude that for all sufficiently small T there exist
functions zk{x) such that F(zk(x),T)SO and z^Tj-xw^eSBj as T-»0. By (21) there exists a
t 2 e(0 , t j ) such that, for all Te[0,t2) , {dF/dz)(zk(x),T)^O. Furthermore, we can differen-
tiate F(zk(i),T) = 0 with respect to T at T = 0 obtaining (22).

(ii) For the other zeros of F(Z,T) we argue as in [12]: Being F(z,0) analytic in B 1 + A it
has only a finite number of zeros inside every ball B 1 + A . with A'<A. Choose a A' such
that m>q is the number of zeros of F(z,0) in B1+A-. Of these, q zeros lie in 3Bt and the
remaining m—q in the anulus B1+A.\B~7. Let 1 +3<5 be the minimum of their moduli. As
the zeros depend continuously o f t there exists T3e(0,Tj) such that, for all Te[0,T3), all
of their moduli are larger than 1 + 25, and the same is valid for the zeros that lie in the
exterior of B1 + A. when T = 0. •

4. Dynamic scaling behaviour

We can now prove our main result, that generalizes Theorem III of [12].

Theorem 1. Let coeX+ satisfy (5) and denote by c the solution to (10) with initial
condition c(0) = c0. Then, the following holds true for the asymptotic behaviour of the
components of c,
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lim t2ck) = -e~ilp, (23)
j.<-oo P

i=jjt filed

where J is the infinite subset of N given in Proposition 3 and q = gcd(P), with P given by
(12). The convergence is uniform for £, in compact intervals o /R + .

Proof. Solving the initial value problems for N( •) and <I>(z, •) given in Proposition 4
we obtain

for f > 0 and z e B j . Since O(-,t) is analytic in Bx we can apply Cauchy's integral
formula and write

t2C<t) = i dZ

where t = t~1 and yo = {z-iz| = r o} for s o m e roe(0,l). By (5), 0(z) is analytic in B 1 + 4

and so O(-,t) can be extended to B 1 + 4 as an analytic function, except for poles at the
zeros of F(z,x). By Proposition 7 there exists T4e(0,min{T2,T3}) such that, for all
T £ [ 0 , T 4 ] , |Z 4 (T)-CBJ | <(5, for k = l,...,q, and|zk(r) | >l + 2S, for k = q + 1,4 + 2, . . . Thus,
if 1 ?£ k ̂  q we have | zk(x) | < 1 + 5 for all T e [0, T 4 ] and we can write

l *W _dz

-4>(z)

dz— / 9

where yk = {z:\z — coq\ =8} for k=l,...,q, and yq+l = {z:|z| = 1 +28}. For sufficiently
small 8 the curves yk, for k=l,...,q, are pairwise disjoint and zk(x) is the only zero of
F ( - , T ) in the interior of yk. (If 8 is such that yk, k=l,...,q, are not pairwise disjoint we
can choose a conveniently smaller 8 and redefine T4 accordingly.)

The integral over yq+l can be estimated as in [12]: the function F(z,x) is continuous
and different from zero for (z,T)eyq+l x [0, T 4 ] . Thus

Fm i n:= min | F ( Z , T ) | > 0 ,

and using (5) we have, for T e [0, T 4 ] ,
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-dz
2nA

~-(l+2d)J Fminp%

2nA

(24)

Let £=j-t. If ^ is in a compact set Ki,^2]<='R+ we have that (24) is valid for all ; ^ ^ 1 / T 4

and so the integral over yq+1 approaches 0 as;,t->oo, uniformly for £ in Ki,^2]-
The asymptotic behaviour of the other integrals can be computed using the residue

theorem, l'Hopital's rule, and (22):

-dz=-ft Res2=zt(r)
I k=l

To compute the limit of (25) as T-»0 observe that

lim
r->0

= lim (JV0 + T - F(Z,(T), T)) = lim (JV0 + T) =
t-0 t-0

(25)

(26)

t - 0 t - 0

and

lim
t->0

(27)

(28)

then
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with Vj = Y,inijmi. This implies that (a>^)J=(a)l)Vjk=l. If, additionally, £=/r is fixed, the
limit in the right-hand side of (28) can be written as

lim f 1 + & + R(2\ l/j)Y, (29)
J-00 \ J )

which is equal to eilp.
Using this result, together with (26) and (27), we can compute the limit of (25) as

j->co and T-»0, with £=jz fixed andje<f, obtaining (23). •
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