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Abstract

We prove a version of Montel’s theorem for analytic functions over a non-Archimedean
complete valued field. We propose a definition of normal family in this context, and
give applications of our results to the dynamics of non-Archimedean entire functions.
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Introduction

Montel’s theorem states that any family of holomorphic maps with values in P1(C)\{0, 1,∞}
is a normal family. In particular, one can extract subsequences that converge in the topology
of the uniform convergence on compact subsets. This result was proven at the beginning of the
20th century and soon became a landmark in complex analysis in one variable. Shortly after
its publication, it was used by Fatou and Julia to set the foundations of complex dynamics.
We refer to the survey of Zalcman [Zal98] for interesting results related to normal families and
applications.

Our goal is to prove a Montel’s-type theorem in the context of non-Archimedean analysis.
More specifically, we fix a complete (non-trivially) valued field (k, | · |), and consider maps
between open subsets of the projective line P1,an

k over k in the sense of Berkovich. The first
observation is that the obvious generalization of Montel’s theorem is not true over a non-
Archimedean field. In fact, any sequence of constant functions ζn ∈ k such that |ζn|= 1 and
all residue classes are distinct admits no subsequence converging to an analytic function.

On the other hand, Hsia [Hsi00] (see also [HY00]) obtained a version of Montel’s theorem
in the case the source space is a ball and the target space is P1

k\{0,∞}. Two remarks are in
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A non-Archimedean Montel’s theorem

order about this result. First, the conclusion is that a suitable family of analytic functions is
equicontinuous. But this does not imply the existence of convergent subsequences. Second, the
assumption on the source space is a very strong one over a non-Archimedean field. For instance,
Hsia’s theorem fails on annuli. Our main theorems are attempts to remedy these issues.

Let us mention immediately that our results rely in a crucial manner on the sequential
compactness of the closed unit ball in the affine spaces AN,an

k for all dimensions N > 1. It was
proved by the first author [Fav11] for some specific classes of non-Archimedean fields, and by
Poineau [Poi11] in full generality.

Theorem A. Suppose k is a non-Archimedean complete non-trivially valued field. Let X be any
connected open subset of P1,an

k and let fn :X → P1,an
k \{0,∞} be a sequence of analytic maps.

Then there exists a subsequence {fnj} which converges pointwise to a map f :X → P1,an
k .

In fact, this result is also true for any affinoid domain, but we stick to open sets for simplicity.
Of course there is a price to pay for this statement to be true. In general, f needs not

be analytic, nor even continuous; see § 4 for some examples. Our next result gives some basic
information about the pointwise limit of analytic maps avoiding three points. Observe that in
the previous theorem fn(X) is only assumed to avoid two points, just like in Hsia’s version of
Montel’s theorem.

Recall that the local degree degxf of an analytic map at a rigid point x ∈ k is the
ramification degree of f at x. This function extends in a natural way to the Berkovich space;
see [BR10, Fab11, FR10]. For a type II point (see § 1.1 for a formal definition) x ∈ P1,an

k , the local
action of f is encoded in a degree degxf rational map Txf acting on the projective line over the
residual field k̃. In order to state our next result, we introduce the notion of unseparable degree
degunx (f) at a type II point x. If the characteristic of k̃ is p > 0, we have that Txf(z) =R(zp

n
)

for some separable rational map R and some n> 0. In this case, we say that degunx f = pn. If the
characteristic of k̃ is zero, then we set degunx f = 1.

We let H be the complement of rigid points in P1,an
k .

Theorem B. Let X be any connected open subset of P1,an
k . Let fn :X → P1,an

k \{0, 1,∞} be a

sequence of analytic maps converging pointwise to a map f :X → P1,an
k . Suppose that for any

type II point x ∈X, the sequence degunx fn is bounded.

Then the map f is continuous. Moreover, it is either constant or it maps non-rigid points to
H and f(X)⊂ P1,an

k \{0, 1,∞}.

It is likely that the assumption on the inseparable degree is superfluous in the case char(k) = 0.
Let us add a word about the proofs of these results (in the case maps avoid three points).

Over the complex numbers, Montel’s theorem follows from the existence of a hyperbolic metric
on P1(C)\{0, 1,∞} that is necessarily contracted by any holomorphic map. Ultimately, it relies
on the fact that the universal cover of P1(C)\{0, 1,∞} is the unit disk (note that P1,an

C = P1(C)).
Over a non-Archimedean field k the space P1,an

k \{0, 1,∞} is already simply connected, so that
the former approach fails in this context. On the other hand, we may exploit the tree structure
of P1,an

k . If X is a ball or an annulus and fn :X → P1,an
k \{0, 1,∞} is a sequence of analytic

maps, then their images should avoid the convex hull of {0, 1,∞}, which looks like a tripod.
By extracting a subsequence, we can reduce our analysis to the case in which all images lie in a
fixed ball of bounded radius. At this point, we need to split our analysis into two cases according
to whether or not the local degrees are uniformly bounded. When they are unbounded, the
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proofs of Theorems A and B follow by looking closely at the preimage of the center of the tripod
(the Gauss point in P1,an

k ). When the local degrees are bounded, then we are essentially in the
situation of a family of polynomials Pn of a fixed degree d with coefficients (a(n)

0 , . . . , a
(n)
d ) that

are uniformly bounded. By sequential compactness, we can assume (a(n)
0 , . . . , a

(n)
d ) is converging

in Ad+1,an and we show that this implies the pointwise convergence of Pn.

From our results, there naturally arises the question of finding a characterization for the limit
maps of analytic functions. Over the complex numbers pointwise limits of analytic functions are
characterized as being functions that are analytic outside a polar set. We refer to [Kra10] for a
recent survey on this question. We shall not touch upon this problem in the present article.

As we mentioned above, Montel’s theorem in complex analysis is closely related to the notion
of normal families. In a non-Archimedean context, we propose the following definition.

Definition. Let X be any open subset of P1,an
k . A family F of analytic functions on X

with values in P1,an
k is normal if, for any sequence fn ∈ F and any point x ∈X, there exist a

neighborhood V 3 x and a subsequence fnj that is converging pointwise on V to a continuous
function.

Let us insist on the fact that the condition on the limit to be continuous is crucial to obtain
a reasonable notion.

Recall that a normal family of analytic maps in the sense of [HY00, Definition 5.38] is a set
of functions that are equicontinuous at any rigid points with respect to the chordal metric d(·, ·)
on the standard projective line, where d(z, w) = |z − w|/(max{1, |z|}max{1, |w|}). These two
notions of normality are related as follows.

Theorem C. Let X ⊂ P1,an
k be any open subset and let F be a family of analytic functions on

X with values in P1,an
k . Then the following statements are equivalent:

• F is normal in a neighborhood of any rigid point;

• F is equicontinuous at any rigid point with respect to the chordal metric on P1(k).

These three theorems subsequently imply the following corollary.

Corollary D. Any family of meromorphic functions on an open subset X of P1,an
k such that,

for all x ∈X, local unseparable degrees at x are bounded, and avoids three points in P1,an
k , is

both normal and equicontinuous at any rigid point.

We give two dynamical applications of this fact. First we prove that the domain of normality
of a rational map coincides with its Fatou set; see Theorem 5.4 below. Recall that Rivera-Letelier
proved that the Fatou set coincides with the equicontinuity locus (for the uniform structure) in
the case k = Cp [BR10, Theorem 10.72]. But no characterization of the Fatou set in terms of
equicontinuity properties of the sequence of iterates was previously known in full generality. We
refer to [BR10, pp. 334–335] for an interesting discussion of this problem.

As a second application, we define the Julia set of an entire function in A1,an
k as the

complement of its domain of normality. In a sense, we put the work of Bézivin [Béz01] in the
framework of Berkovich spaces. We extend his work by showing that periodic orbits are dense in
the Julia set at least when char(k̃) = 0. We also show that contrary to the complex setting, there
exists no unbounded Fatou component (Baker domain) for non-Archimedean entire functions.
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Our paper is divided into six sections. The first four are aiming at the proofs of Theorems A
and B. The last two contain applications of our main results.

Section 1 contains a technical result that plays a key role in the following. It gives a sufficient
condition for a pointwise convergent sequence of analytic functions to have a continuous limit.
The case of families of bounded analytic functions is analyzed in detail in § 2, and a proof
of Theorem A is given as an application of these techniques. The sequential compactness of
Berkovich affinoid domains in arbitrary dimension appears in a crucial manner here. Section 3
deals with families of analytic functions with unbounded local degree, and contains a proof of
Theorem B. In § 4, we describe some examples to illustrate our results.

Section 5 is devoted to our notion of normality. We discuss local conditions for characterizing
normal families, and we relate the normality locus of a rational map to its Fatou set.

In § 6, we define the Fatou/Julia set of any transcendental entire map of A1,an
k , and give its

first properties.

1. Pointwise convergent analytic maps

Throughout, k is a complete field endowed with a (non-trivial) non-Archimedean norm. Recall
that a basic open set of P1,an

k is a connected component of the complement of finitely many
points.

Our goal in this section is to prove the following theorem.

Theorem 1.1. Let X ⊂ A1,an
k be a basic open set. Consider a sequence {fn} of analytic maps

fn :X → A1,an
k , and suppose it converges pointwise to a function f :X → A1,an

k . Then f is
continuous. Moreover, if f is not constant, then we have f(X ∩H)⊂H.

More than the result itself, it is the technique involved that will be useful in the following.
The proof relies on a thorough analysis of the local degrees of the sequence fn, and splits into
two parts. When the local degrees are uniformly bounded, then fn is uniformly Lipschitz for
the hyperbolic metric in H, and one infers the continuity of f from this bound. Otherwise, one
proves that the local degree explodes at one point in X, and the limit is constant.

We emphasize that the assumption on the limit function f to be valued in A1,an
k is crucial. In

fact, the sequence fn(z) = zp
n

in characteristic p converges pointwise on X = A1,an
k to a function

with values in P1,an
k that is not continuous. We refer to § 3.2 for more examples.

1.1 Basics on the Berkovich projective line
We refer to [BR10] for a thorough description of this space, or to [Ber90]. For sake of simplicity,
we assume that k is algebraically closed.

The Berkovich affine line A1,an
k is the set of multiplicative semi-norms on the ring k[T ] whose

restriction to k coincides with its non-Archimedean norm. We shall denote by |P (x)| ∈ R+ the
semi-norm of a polynomial P ∈ k[T ] with respect to a point x ∈ A1,an

k . Given x ∈ A1,an
k , the set

{P, |P (x)|= 0} is a prime ideal, and x induces a norm on the fraction field of k[T ]/{P, |P (x)|
= 0}. One denotes by H(x) the completion of this field with respect to x. It is a non-Archimedean
valued extension of (k, | · |).

Since k is algebraically closed, x is determined by its values on linear functions T − z with
z ∈ k. In particular, when {P, |P (x)|= 0} is non-trivial, then x is called a rigid point (or a type I
point), and can be identified with a point in k. The set of type I points is denoted by A1(k) and,
for any subset X ⊂ A1,an

k , we shall write X(k) for the intersection X ∩ A1(k).
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Otherwise x is a norm, and falls into one of the following three categories. If its value group
is equal to |k∗|, and the transcendence degree of H(x) over k is equal to 1, then x is said to be
of type II. If the value group of x is not equal to |k∗|, then x is said to be of type III. Finally, in
the remaining case, x is said to be of type IV.

One can show that for any point x which is not of type IV, there exists a unique closed
ball B (that is, of the form Br(y) = {z, |z − y|6 r}, for some y ∈ k and r > 0) such that
|P (x)|= supB |P |. The quantity sup{|z − z′|, z, z′ ∈B} is called the diameter of B. If x is not of
type IV, we write diam(x) ∈ R+ for the diameter of its associated ball.

As usual, we denote the Gauss point by xg, which is by definition the type II point of A1,an
k

associated to the unit ball.
The set A1,an

k is endowed with the topology of the pointwise convergence, for which it is locally
compact. There is also a natural partial order relation x6 x′ if and only if |P (x)|6 |P (x′)| for
all P ∈ k[T ].

Given x ∈ A1,an
k , the set (x,∞) := {y, y > x} is a subset of type II and III points that

correspond to an increasing family of balls. In particular, the diameter function on this family
induces a natural homeomorphism between (x,∞) and a subset of R+. In particular, the function
diam has a natural extension to A1,an

k which is continuous on segments (x,∞). It is a fact
that any two points x1, x2 ∈ A1,an

k admit a maximum max{x1, x2} for the order relation, and
(x1,∞) ∩ (x2,∞) = (max{x1, x2},∞).

It follows that A1,an
k admits a natural (non-metric) R-tree structure; see [FJ04, ch. 3]

for a formal definition. Given any two points x1, x2 ∈ A1,an
k , we denote [x1, x2] = {x1 6 x6

max{x1, x2}} ∪ {x2 6 x6 max{x1, x2}}, and call it the segment joining x1 to x2.
The set A1,an

k is endowed with a natural structural sheaf of analytic functions. If U is an open
subset of A1,an

k , then O(U) is the completion with respect to the sup norm on U ∩ k of the space
of rational functions in k(T ) having poles outside U . Any analytic function f ∈ O(U) gives rise
to a continuous map f : U → A1,an

k . When P is a polynomial, and f is a rational map having no
poles on U , then |P (f(x))| := |(P ◦ f)(x)|.

The complement of rigid points in A1,an
k is denoted by H. It is endowed with a natural

complete metric which respects the tree structure, is invariant under the action of PGL(2, k),
and is defined by dH(x(r), x(r′)) = |log r − log r′| if x(r) is the point associated to the ball
centered at 0 of radius r. The restriction of any analytic map f to a segment I ⊂H is piecewise
affine in the sense that one can subdivide I into finitely many segments (x, x′) on which
dH(f(x), f(x′)) =mdH(x, x′) for some integer m.

The projective Berkovich line P1,an
k = A1,an

k ∪ {∞} can be defined topologically as the one-
point compactification of A1,an

k . It is convenient to view ∞ as a function on k[T ] sending any
polynomial of positive degree to ∞, and restricting to the standard norm on k. By convention,
∞ is a type I point, so that the space of type I points in P1,an

k is naturally in bijection with P1(k).
The projective Berkovich line is compact, and has a natural structure of an R-tree for which it
is complete in the sense of [FJ04].

The space P1,an
k can also be defined as an analytic curve over k in the sense of Berkovich by

patching together two copies of the ringed space A1,an
k using the map T 7→ T−1. We thus have a

natural notion of analytic functions on any open subset of P1,an
k .

Recall that a ball in P1,an
k is either a ball in A1,an

k or the complement of a ball in A1,an
k .

It is closed (respectively open) if it is defined by a non-strict (respectively strict) inequality.
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An affinoid domain in P1,an
k is the complement of a finite union of open balls. The boundary of

an affinoid domain is a finite set. We denote by AY the convex hull of ∂Y . It is a finite tree that
is called the skeleton of Y . It is a fact that the image of an affinoid domain by a non-constant
analytic map is an affinoid domain.

A basic open set of P1,an
k is a connected component of the complement of finitely many points

in P1,an
k . As for affinoid domains, the boundary of a basic open set U is finite, and its convex

hull is a finite tree that we denote by AU and refer to as the skeleton of U .

Since P1,an
k is a non-metric R-tree, we may define the space of directions TxP1,an

k at a point x
as the set of equivalence classes of segments of the form (x, y) with x 6= y under the relation that
identifies segments whose intersection contains (x, y′) for some y′. For a type I or type IV point,
TxP1,an

k is reduced to a singleton, hence they are end points of P1,an
k for its R-tree structure.

When x is of type III, TxP1,an
k has two points, so that x is a regular point. Finally, when x is a

type II point, then TxP1,an
k is isomorphic to the projective line over the residue field k̃ of k, and

this isomorphism is canonical once a coordinate is fixed on the affine line. Since #P1(k̃) > 3, a
type II point is always a branched point in P1,an

k .

Any analytic map f defined in a neighborhood of x induces a map

Txf : TxP1,an
k → Tf(x)P

1,an
k .

When x is of type II, then Txf is given by a rational function under the natural identification of
TxP1,an

k with P1(k̃). We shall denote by degxf its degree.

It is a non-trivial fact that the function degxf can be extended to all points such that for any
open set U, V for which the induced map f : U → V is proper, then V 3 x 7→

∑
y∈f−1(x)∩U degyf

is a constant function; see [Fab11, FR10].

Let us finally fix some notation that will be used constantly in the following.

A direction at x containing a point x′ will be denoted by Dx(x′). We identify a direction in
TxP1,an

k with the subset of P1,an
k formed by all the points in that direction.

Given an affinoid domain Y , and any x ∈ int Y , we let valY (x) be the number of directions
at x pointing towards a point in ∂Y , that is, the number of connected components of A\{x},
where A is the convex hull of ∂Y ∪ {x}.

1.2 Fast directions

In this section, we analyze the local degree on segments pointing towards infinity, and prove a
technical result (Proposition 1.6 below) that will be applied several times in the next sections.

Lemma 1.2 (Convexity). Suppose f : Y → A1,an
k is a non-constant analytic function on an

affinoid domain Y ⊂ A1,an
k . Then, for any two points x0, x

′ ∈ Y ∩H such that the segment (x0, x
′)

contains no vertex of the convex hull of AY ∪ {x0, x
′}, the function s 7→ log diam f(xs) is a

convex, piecewise linear, and non-locally constant map.

Proof. We first prove that the restriction of log diam ◦f to any closed segment I ⊂H is piecewise
linear with respect to the hyperbolic metric dH. It is sufficient to treat the case of rational maps.
Indeed, any analytic map is a uniform limit of rational maps, and any two analytic maps that
are sufficiently close in sup norm in a neighborhood of I are equal on I. For rational maps,
the result follows from [BR10, Theorem 9.35 A], by noting that if x, x′ ∈H correspond to balls
one contained in the other, then dH(x, x′) = |log diam(x)− log diam(x′)|. Observe also that the
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absolute value of the slope of this function is given by the local degree on any segment where it
is linear. In particular, it cannot be locally constant.

Consider a point x ∈ (x0, x
′), and let D0, D1 ∈ TxA1,an

k be the two directions determined by x0

and x′, respectively. Since x is not a vertex of AY ∪ {x0, x
′}, at least one of these two directions

(say D1) is mapped by Txf to the direction D determined by ∞ at f(x).
Let m0 (respectively m1) be the slope of log diam ◦f on (x0, x) (respectively (x, x′)) in a

neighborhood of x. Suppose by contradiction that m0 >m1. Since D points to ∞, we have
m1 > 0. Note that x is automatically a type II point. Then Txf is a rational map of degree at
least m0, and there necessarily exists at least one direction D2 at x different from both D0 and D1

which is mapped to D. By assumption, x cannot be a vertex of the convex hull of AY ∪ {x0, x
′},

so that the open ball B determined by D2 in P1,an
k is actually contained in Y . But then f(B)

would contain ∞, which contradicts f(Y )⊂ A1,an
k . 2

For convenience, we introduce the following definition.

Definition 1.3. Let Y ⊂ A1,an
k be an affinoid domain and f : Y → A1,an

k be an analytic function.
A fast direction D ∈ TxA1,an

k for f at x is a direction determined by a point in ∂Y such that
∞∈ Txf(D) and maximizing degDTxf over all such directions.

For any non-constant function f and any point x ∈ int Y , the map Txf : TxP1,an
k → Tf(x)P

1,an
k

is surjective. In particular, any point x ∈ int Y admits a fast direction.

Definition 1.4. Given any x ∈ int Y , a fast arc at x is a segment [x, x′] such that for all
y ∈ [x, x′), the direction at y determined by x′ is a fast direction.

Note that the restriction of f to a fast arc is injective and increasing to ∞.

Lemma 1.5. Any point x ∈ int Y admits a fast direction D such that

degDTxf >
degxf

valY (x)
.

Proof. If x is not of type II, then degDTxf = degxf for any direction at x. Suppose x is of
type II. Then

∑
degDTxf = degxf , where the sum ranges over all directions D that are mapped

to infinity by Txf , which implies the result, since all these directions D must point to an element
of ∂Y . 2

We are now in position to prove the following key result.

Proposition 1.6. Consider an affinoid domain Y ⊂ A1,an
k . Then there exists a constant C > 0

such that, for all non-constant analytic maps f : Y → A1,an
k and all x0 ∈ int Y , there exists x′ ∈ ∂Y

with the following properties:

(i) [x0, x
′] is a fast arc (for f);

(ii) degx′f > C · degx0
f ;

(iii) degDx(x′)Txf > C · degx0
f, for all x ∈ [x0, x

′).

As an immediate consequence, we obtain the following corollary.

Corollary 1.7. For any affinoid domain Y ⊂ A1,an
k , there exists a constant C ′ > 0 such that

for any analytic map f : Y → A1,an
k , we have

sup
x∈Y

degxf 6 C ′ sup
x∈∂Y

degxf.
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Proof of Proposition 1.6. If a direction D at a point x ∈ int Y satisfies ∞∈ Txf(D), then D is
necessarily determined by a point in ∂Y . It is thus always possible to find a fast arc[x0, x

′] joining
x0 to a point x′ ∈ ∂Y . Write [x0, x

′] = [v0, v1] ∪ [v1, v2] ∪ · · · ∪ [v`, x′] such that x0 = v0, and vi
are branched points of the convex hull of AY ∪ {x0}, and the interior of each segment does not
contain any other branched point of this finite tree.

Denote by xs the unique point of [x0, x
′] at hyperbolic length s of x0, and by Ds the direction

at xs pointing towards x′. Recall that the slope ∆(s) of s 7→ log diam f(xs) is equal to degDsf ,
which is in turn bounded from above by degxsf .

By Lemma 1.5, we have ∆(0) > degx0
f/valY (x0) and, by Lemma 1.2, ∆(s) > degx0

f/valY (x0)
as long as xs ∈ [x0, v1). At xs1 := v1, we apply again Lemma 1.5, so that

∆(s1) >
degv1f

valY (v1)
>

degDv1 (x0)f

valY (v1)
>

degx0
f

valY (x0) valY (v1)
.

Iterating the argument, we finally end up with the bound ∆(s) > Cdegx0
f for all s with C being

the inverse of the product from i= 0 to ` of valY (vi). Note that this bound is uniform in x since
` is bounded from above by the 1 + the number of branched points of the skeleton of Y ; and
valY (x) is always less than #∂Y .

We conclude the proof by noting that degx′f > degDsf for any xs ∈ [x0, x
′] sufficiently close

to x′. 2

1.3 The case of unbounded degree
In this section, we prove Theorem 1.1 in the case the local degree explodes.

Proposition 1.8. Let X ⊂ A1,an
k be a basic open set. Consider a sequence of analytic maps

fn :X → A1,an
k such that lim supn diam fn(x)<∞ for all x ∈X ∩H. If fn(x0) converges in A1,an

k ,
and degx0

fn→∞ for some x0 ∈X, then fn converges pointwise to a constant. Moreover, for all
x ∈X, we have that diam fn(x)→ 0.

Note that the limit function might be a constant in the hyperbolic space H.

Proof. By Corollary 1.7, we may (and shall) assume x0 ∈H, and write z0 = lim fn(x0). We begin
with the following lemma.

Lemma 1.9. Let X ⊂ A1,an
k be a basic open set. Suppose fn :X → A1,an

k is a sequence of analytic
functions such that lim supn diam fn(x)<∞ for all x ∈X ∩H. If x0 ∈H is a point such that
degx0

fn→∞, then we have diam fn(x0)→ 0.

Now pick any x ∈X ∩H, and consider an affinoid domain Y ⊂X containing both x0

and x. Let A be the convex hull of ∂Y ∪ {x, x0}. Denote by y0 := x0, y1, . . . , yN+1 := x the
consecutive vertices of A lying on [x0, x], so that [x0, x] =

⋃N
i=0[yi, yi+1]. We shall prove by

induction that diam fn(yi)→ 0 and lim fn(yi) = z0. There is nothing to prove for i= 0. Suppose
diam fn(yi−1)→ 0.

By Lemma 1.2, the function log diam ◦fn is convex and non-constant on [yi−1, yi]. Hence,
there exists a unique cn ∈ [yi−1, yi] such that diam fn(cn) 6 diam fn(y) for all y ∈ [yi−1, yi].
In particular, diam fn(cn) 6 diam fn(yi−1)→ 0 by the induction hypothesis. Since log diam is
increasing on the segment [cn, yi], and convex with slope equal to the local degree, we conclude
that log diam fn(yi) 6 log diam fn(cn) + dH(cn, yi) · degyifn. By contradiction, assume that there
exist ε > 0 and a subsequence fn such that diam fn(yi)> ε. If, passing to a further subsequence,
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degyifn is bounded, then we get diam fn(yi)→ 0. Otherwise, degyifn→∞ and Lemma 1.9 also
shows that diam fn(yi)→ 0, which is impossible. Hence, diam fn(yi)→ 0.

To show that fn(yi)→ z0, we pick a basic open set V containing z0. We must show that for
n sufficiently large, fn(yi) ∈ V . There exists r > 0 such that, if y ∈ V and diam y 6 r, then the
closed ball Br(y)⊂ A1,an

k with diameter r containing y is contained in V . Hence, if fn(yi−1) ∈ V
and diam fn(yi−1) 6 r, then fn(cn) ∈ V . Since the diameter is increasing from fn(cn) to fn(yi),
and the latter is at most r, for n sufficiently large, we also have that fn(yi) ∈ V . Therefore,
fn(yi)→ z0.

Now, for any x ∈X(k), take a small ball B containing x with boundary point xB ∈X. Thus,
fn(xB)→ z0 and it follows that fn(x) also converges to z0. 2

Proof of Lemma 1.9. Consider an affinoid domain Y ⊂X which contains x0 in its interior.
Suppose by contradiction that lim sup diam fn(x0)> 0. Passing to a subsequence, we may
assume that diam fn(x0) > ε > 0 and, for some x′ ∈ ∂Y , the arc[x0, x

′] satisfies the conditions of
Proposition 1.6 for all the fn. Since [x0, x

′] is a fast arc, the function f is injective and increasing
to infinity. From the third condition of Proposition 1.6, we conclude that degxfn > Cdegx0

fn for
all x ∈ [x0, x

′]. Therefore, log diam fn(x′) > log diam fn(x0) + CdH(x′, x0)degx0
fn −→∞, which

contradicts the hypothesis of the lemma. 2

1.4 Proof of Theorem 1.1
We may always assume f to be non-constant. Pick x̄ ∈X and Y an affinoid neighborhood of x̄.
We shall prove that f |Y is continuous and f(Y ∩H)⊂H.

If supY degxfn→∞, then degxfn→∞ for some x ∈ ∂Y by Corollary 1.7. This is excluded
by Proposition 1.8 and our standing assumption. Whence,

sup
x∈Y

degxfn 6D (1)

for some D > 0. This bound is not sufficient for our purposes. But one can prove that

sup
x∈A1,an

k

sup
n>0

#f−1
n (x) ∩ Y 6D ·#∂Y. (2)

Indeed, if fn : Y → fn(Y ) is a proper map, then d(y) :=
∑

x∈f−1
n (y)∩Y degxfn is constant on

f(Y ). Noting that f−1
n (fn(∂Y ))⊂ ∂Y , and computing d(y) at a point in fn(∂Y ), we get

#f−1
n (x) ∩ Y 6 d(y) 6D ·#∂Y . When fn is not proper onto its image, we can only conclude

that the maximum of y 7→ d(y) is attained at a point in fn(∂Y ). But this is sufficient to get the
bound in (2).

Lemma 1.10. The function f is sequentially continuous.

We give a proof of this fact later. Let us prove that f is then continuous at x̄. We proceed
by contradiction. That is, there exists a basic open set V containing f(x̄) such that for all
open sets U ⊂ Y that contain x̄, there exists xU ∈ U such that f(xU ) /∈ V . It is sufficient to
construct a sequence {xm}m>1 ⊂X converging to x̄ such that f(xm) /∈ V for all m> 1. We
proceed inductively. Let U1 = int Y and x1 = xU1 . We may assume that xm and Um have already
been constructed. If xm is not in the direction of infinity at x̄, then let Bm be a closed ball
containing xm and not containing x̄ such that diam x̄− diamBm < 1/m. Otherwise, let Dm be
an open ball containing x̄ and not containing xm such that diamDm − diam x̄ < 1/m. In the
former case we let Um+1 = Um\Bm and in the latter Um+1 = Um ∩Dm. Now let xm+1 = xUm+1 .
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Passing to a subsequence, the directions {Dx̄(xm)} are either pairwise distinct or coincide for all
m. In both cases, we get xm→ x̄ by construction. This shows f is continuous.

Now, since f is continuous and not constant on Y , one can find a point x ∈ Y ∩H whose
image f(x) belongs to H. Pick any other x′ ∈ Y ∩H. Then

dH(f(x), f(x′)) 6 lim inf
n

dH(fn(x), fn(x′)) 6DdH(x, x′)<∞.

We have thus proved f(Y ∩H)⊂H. This concludes the proof of Theorem 1.1.

Proof of Lemma 1.10. We proceed by contradiction. Assume that f is sequentially discontinuous
at x̄. Then there exist a basic open set V containing f(x̄) and a sequence xm→ x̄ such that
f(xm) /∈ V for all m.

Without loss of generality, for all m we have that xm ∈ Y and f(xm) ∈B, where B is a
connected component of A1,an

k \V and fn(x̄) ∈ V for all n. Denote by zB the boundary point
of B. Let ym(n) be the closest preimage of zB to x̄ under the map fn : [xm, x̄]→ A1,an

k . Then
dH(x̄, ym(n)) > dH(fn(x̄), zB)/D. Observe that lim inf dH(fn(x̄), zB)> 0, since closed hyperbolic
balls are closed in the topology of A1,an

k . Hence, there exists ε > 0 such that dH(x̄, ym(n))> ε.
Fix n= n0, and observe that {ym(n0)}m∈N has at most D elements. Passing to a subsequence of
xm, we may assume ym(n0) = y is a fixed point in H. But xm→ x̄ in A1,an

k , and y ∈ (xm, x̄), so
that dH(y, x̄) = 0, a contradiction. 2

Remark 1.11. The argument above to obtain continuity from sequential continuity can be
generalized as follows. Let X be any affinoid domain (of arbitrary dimension), let S be any
topological space, and let f :X → S be any sequentially continuous map. Then f is continuous.

Indeed, pick any x̄ ∈X and any open subset V 3 f(x̄). Suppose by contradiction that x̄ lies
in the closure of B = {x 6= x̄, f(x) /∈ V }. Since X is an angelic space (see [Poi11]), one can find a
sequence xn ∈ B such that xn→ x̄, which is impossible by assumption.

2. Family of analytic functions with bounded local degree

In this section, we give a proof of our first main result (Theorem A). To do so, we first deal
with the case of analytic maps with values in an affinoid domain, and we prove the following key
result.

Theorem 2.1. Let U be a basic open set and Y ( P1,an
k be an affinoid domain. Then any

sequence of analytic functions fn : U → Y admits a subsequence that is pointwise converging on
U to a continuous function.

The above result is false if U is assumed to be an affinoid domain. In fact, let B ⊂ A1,an
k be

the closed unit ball containing z = 0 and consider fn :B→B defined by fn(z) = zn. It follows
that any pointwise convergent subsequence has a limit f fixing the Gauss point xg and f is
constant and equal to 0 in the open unit ball containing z = 0 (compare with § 4.2).

2.1 Family of rational functions

Let us first analyze the special case of families of rational maps with fixed poles and uniformly
bounded degree.
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Proposition 2.2. Suppose k is algebraically closed and choose z1, . . . , zp ∈ k. Consider a
sequence, indexed by n> 0,

(a(n)
l , a

(n)
i,j ) ∈ kd+1 × kpd,

where 0 6 l 6 d, 1 6 i6 d, and 1 6 j 6 p.

If (a(n)
l , a

(n)
i,j ) converges to a point in Ad+1+pd,an

k , then the function

Pn(z) =
d∑
l=0

a
(n)
l zl +

p∑
j=1

d∑
i=1

a
(n)
i,j

(z − zj)i

converges pointwise to a continuous function P : A1,an
k \{z1, . . . , zp}→ A1,an

k .

Recall that Ad+1+pd,an
k denotes the set of multiplicative semi-norms on the ring of polynomials

in d+ 1 + pd variables with coefficients in k that restricts to the given norm on k.

Proof. We only need to show that Pn(z) converges in A1,an
k for any z ∈ A1,an

k \{z1, . . . , zp}. Then
the fact that P = limn Pn is a continuous function will follow from Theorem 1.1.

Write α= limn(a(n)
l , a

(n)
i,j ). We consider first the case of a rigid point z ∈ k. For any

w ∈ k, define the following polynomial in d+ 1 + pd variables: φw(Tl, Ti,j) =
∑d

l=0 Tlz
l +∑p

j=1

∑d
i=1(Ti,j/(z − zj)i)− w. Then

|Pn(z)− w|= |φw(a(n)
l , a

(n)
i,j )| → |φw(α)|.

Since k is algebraically closed, Pn(z) converges in k.
Next we consider the case of a type II point z. Recall that, given ζ such that |z − ζ|6 diam(z),

for all w ∈ k,
|z − w|= max{diam(z), |ζ − w|}. (3)

In order to prove that Pn(z) converges, we need to show that |Pn(z)− w| converges for
all w ∈ k. In fact, if ζ ′ ∈ k is such that |z − ζ ′|6 diam(z) and |ζ ′ − zj |> diam(z) for all j,
then |Pn(ζ ′)− Pn(z)|6 diam Pn(z). Since |Pn(ζ ′)− w| is convergent, taking ζ = Pn(ζ ′) in (3),
we just need to prove that diam Pn(z) converges. To show that diam Pn(z) converges, choose
ζ0, . . . , ζp(d+1)+1 ∈ k such that:

• |ζi − z|= diam(z) for all i;
• |ζi − ζj |= diam(z) for all i 6= j;
• |ζi − zj |> diam(z) for all i, j.

Since the degree of Pn is bounded by p(d+ 1), at least two different directions determined by
the ζi at z are mapped to distinct directions at Pn(z). Hence, the three conditions above ensure

diam Pn(z) = max{|Pn(ζi)− Pn(ζj)|, i 6= j},

which is convergent by the same argument as above.
Finally, if z ∈ A1,an

k is a point of type III or IV, we pick a segment I ⊂H of positive and
bounded length containing z. Denote by zs the unique point in I at hyperbolic distance s from z.
By Lemma 1.9, the function δn(s) := log diam Pn(zs) is Lipschitz for the hyperbolic metric with
Lipschitz constant 6d and hence forms a family of equicontinuous functions. Since type II points
are dense on any non-trivial segment of H, we know that δn(s) is converging pointwise on a dense
set of I, whence δn(s) converges on I to a continuous function (possibly ≡−∞).

This concludes the proof. 2
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2.2 Proof of Theorem 2.1

Since the range of all maps is included in an affinoid domain, any pointwise limit is necessarily
continuous by Theorem 1.1. We only have to prove the existence of a subsequence that converges
pointwise.

Let us first prove the theorem under the assumption that k is algebraically closed.

Without loss of generality, we may assume Y is the unit ball. If degx0
fn is unbounded for

some x0 ∈ U , then, after passing to a subsequence, fn(x0) is converging in Y , and we may apply
Proposition 1.8. We conclude that fn converges pointwise to lim fn(x0).

From now on, we suppose that degxfn is bounded for all x ∈ U . Consider an affinoid domain
X ⊂ U . Since U is a countable union of affinoid domains, a diagonal argument shows that it is
sufficient to establish the pointwise convergence of an appropriate subsequence in X.

By Proposition 1.6, there exists D > 0 such that degxfn 6D for all x ∈X and for all
n. Extracting a subsequence, we may assume that either there exists x0 ∈X ∩H such that
limn diam fn(x0) = 0 or infn diam(fn(x))> 0 for all x ∈X ∩H.

In the first case, since the local degrees are uniformly bounded on X, we get fn(x)→ f(x0)
for all x ∈X ∩H. Since balls of sufficiently small diameter are mapped onto balls, fn(x)→ f(x0)
for all x ∈X.

In the second case, we use the Mittag–Leffler decomposition on affinoid domains of the affine
line; see [FV04, p. 7]. For any d, write fn = P dn +Rdn with P dn a rational map of degree 6d
and supX(k) |Rdn|6 ηd for a sequence ηd→ 0 as d→∞. Since affinoid domains are sequentially
compact by [Poi11], using a diagonal extraction argument we may assume that for each d the
coefficients of P dn converge in the Berkovich affine space of the suitable dimension. Proposition 2.2
then shows that P dn → P d pointwise on X for all d.

If x ∈X ∩H, pick d large enough such that diam(fn(x))> ηd for all n. Then fn(x) = P dn(x) for
all n so that fn(x)→ P d(x). If x ∈X(k) is a rigid point, and diam P d(x)> ηd for some d, then
fn(x) = P dn(x) +Rdn(x)→ P d(x). Otherwise, diam P d(x) 6 ηd for all d. Pick ε� 1 and d� 1
such that ηd 6 ε/2. As P dn(x) converges to a point of diameter 6 ηd, there exists an N such that
for n, m>N , we get |P dn(x)− P dm(x)|6 2ηd, whence |fn(x)− fm(x)|6 max{ηd, 2ηd}6 ε. This
proves fn(x) is a Cauchy sequence and converges by completeness.

Now we establish the theorem when k is not algebraically closed. We start by embedding k into
k̄, where k̄ denotes the completion of an algebraic closure of k. Denote by Uk̄ and Yk̄ the subsets
of P1,an

k̄
obtained as a lift of U and Y , respectively, under the quotient P1,an

k̄
→ P1,an

k by the Galois
action. It follows that fn lifts to a map f̄n : Uk̄→ Yk̄ such that f̄n ◦ σ = σ ◦ f̄n for all σ ∈Gal(k̄/k).
Thus, we may extract a subsequence f̄nj → f̄ which is pointwise convergent in Uk̄. Since Galois
group elements act continuously and f̄ is continuous, f̄ ◦ σ = σ ◦ f̄ for all σ ∈Gal(k̄/k). Recall
that U ⊂ A1,an

k and U = Uk is isomorphic to Uk̄ modulo the action of Gal(k̄/k). Similarly, Y is
isomorphic to Yk̄ modulo the Galois action, whence f̄ descends to a continuous map f : U → Y
which is the pointwise limit of fnj . 2

2.3 Proof of Theorem A

We shall rely on the following two results that are consequences of Theorem 2.1. Recall that xg
denotes the Gauss point.
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Lemma 2.3. Let X be the affinoid obtained after removing finitely many directions at xg
from P1,an

k . Consider a sequence fn :X → P1,an
k of analytic maps such that f−1

n {xg}= {xg},
and degxgfn→∞.

Then there exists a subsequence fnj converging pointwise in X.

Lemma 2.4. Let U be an open annulus and fn : U → P1,an
k \{0,∞} a sequence of analytic maps.

Then there exists a subsequence fnj converging pointwise in U .

Since any connected open set of P1,an
k is a countable union of basic open sets, we may assume

X is a basic open set. Decompose X into a finite union of open annuli and affinoids as follows.
Let πX :X →AX be the natural retraction of X on its skeleton. For each open edge I = (v1, v2)
of AX , the set AI = π−1

X (I) is an open annulus and, for each branched point v of AX , the affinoid
Xv = π−1

X (v) is the complement of finitely many directions at v.
Apply Lemma 2.4 finitely many times to extract a subsequence fn converging pointwise in

the union of the annuli AI .
Now let Y be the affinoid Xv associated to a vertex v of AX . Passing to a subsequence, let

w = lim fn(v). If necessary, passing to a further subsequence, fn(v) = w for all n or fn(v) 6= w
for all n.

Observe that fn(Xv) ∩ (0,∞) is reduced to fn(v) (if non-empty). It follows that in the latter
case fn converges to w in Y .

If fn(v) = w for all n, and degvfn→∞, then we apply Lemma 2.3 to extract a pointwise
convergent subsequence in Y . We may thus assume that fn(v) = w and degvfn = d for all n.
Let I1, . . . , I` be all the edges of AX with one end point at v and consider the basic open
set U = Y ∪AI1 ∪ · · · ∪AI` . If w /∈ (0,∞), then w is in a direction D of a point x ∈ (0,∞). It
follows that fn(U)⊂D for all n. Thus, we may apply Theorem 2.1 to extract a subsequence
that is pointwise converging in Y . If w ∈ (0,∞), then the degree dj along Ij is constant for all j
such that fn(Ij)⊂ (w,∞), by Lemma 1.2 applied to fn and 1/fn. Therefore, dj is bounded by d.
After observing that if x ∈ U and fn(x) ∈ (w,∞), then x ∈ Ij for some 1 6 j 6 `, we have that a
neighborhood of fn(U)⊂B for some closed ball B and all n. Applying Theorem 2.1, we obtain
the desired subsequence converging pointwise in Y and Theorem A follows.

Proof of Lemma 2.3. Recall that we identify a direction D at xg with the open ball in P1,an
k of

points determining D. As f−1
n {xg}= {xg} for all n, then, for any direction D determined by

points in X, fn(D) is the ball determined by the direction Txgfn(D).
Since degxgfn→∞, without loss of generality we may assume that Txgfn 6= Txgfm provided

that n 6=m. Let S ⊂ P1(k̃) be the set of directions D at xg determined by points in X, and such
that fn(D) = fm(D) for some n, m with n 6=m. Observe that S is countable.

In the directions which are not in S, the sequence fn converges pointwise to xg. From
Theorem 2.1 and a diagonal argument, we may extract a subsequence fnj converging pointwise
in D for all directions D in S. 2

Proof of Lemma 2.4. It is sufficient to prove that we may extract a pointwise convergent
subsequence in an (open) annulus Y ⊂ U such that Ȳ ⊂ U . Write [aY , bY ] =AY ⊂AU .

Relabeling aY , bY , if necessary, and passing to a subsequence we may assume that there exists
a ball B (containing 0 or ∞) such that either fn(Y )⊂ P1,an

k \B or fn(aY )→ 0 and fn(bY )→∞.
In the first case, we obtain a pointwise convergent subsequence from Theorem 2.1.
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In the latter case, we first observe that f−1
n (0,∞)⊂ (aY , bY ) and fn(aY , bY )⊂ (0,∞) for all

n sufficiently large, since f(Y )⊂ P1,an
k \{0,∞}. By Lemma 1.2 applied to fn and 1/fn, there

exists dn > 1 such that degxfn = dn for all x ∈ AY .
First we prove pointwise convergence in AY . Denote by xs ∈ AY the point in (aY , bY ) at

hyperbolic distance s from aY , so that

log ◦ diam(fn(xs)) = dn(s− sn)

for some sn ∈ R, after passing to a subsequence and maybe postcomposing by 1/z. Passing to
further subsequences, let t= limn sn ∈ [−∞,+∞] and β = limn dn(t− tn) ∈ [−∞,+∞]. If s 6= t,
then fn(xs)→±∞. Now fn(xt) converges to the unique point yβ in [0,+∞] of diameter exp(β)
with the obvious interpretation when β =±∞.

For every xs ∈ (aY , bY ), let Xs be the union of the directions at xs not determined by aY
or bY . It follows that for s 6= t, in Xs, the maps fn converge pointwise to limn fn(xs) = 0 or ∞.
Similarly, if β =±∞, then fn converges pointwise in Xt to limn fn(xt) = 0 or ∞. So, we assume
that β ∈ R and we have to prove that a subsequence converges pointwise in Xt. In fact, passing
to a subsequence, either fn(xt) = yβ for all n or fn(xt) 6= yβ for all n. In the latter case, we have
pointwise convergence to yβ in Xt. In the former, we may apply the previous lemma (Lemma 2.3)
to conclude that fn has a pointwise converging subsequence in Xt. 2

3. Montel’s theorem

In this section, we give a proof of Theorem B. To do so, we first need to analyze in more detail
families of analytic functions with unbounded local degree that avoid three points in P1,an

k .

3.1 Family of analytic functions with unbounded local degree
Recall that AY denotes the skeleton and ∂Y the boundary of a basic set (or of an affinoid
domain).

Our aim is to prove the following two results.

Proposition 3.1. Let X be any basic open subset of P1,an
k and fn :X → P1,an

k \{0, 1,∞} be any
sequence of analytic functions such that degxfn→∞ for some x ∈X. Then, replacing fn by a
suitable subsequence, we are in one of the following two situations:

• either fn is converging pointwise on X to a constant function;

• or there exists a branched point x′ of AX such that fn(x′) = xg for all n and degx′fn→∞.

Proposition 3.2. Let X be a basic open subset of P1,an
k , x0 ∈X, and fn :X → P1,an

k \{0, 1,∞}
be a sequence of analytic functions such that f−1

n (xg) = x0 for all n and degx0
fn→∞. Then

degunx0
fn→∞ (so that the residual characteristic of k is positive).

Proof of Proposition 3.1. Suppose first that the set of integers n such that xg /∈ fn(X) is infinite.
Then we can find a subsequence such that fnj (X) is included in a closed ball of P1,an

k having xg
as a boundary point. By relabeling 0, 1,∞, and possibly extracting again a subsequence, we may
suppose fnj (X)⊂ {|z|6 1} for all j. By Proposition 1.8, we conclude that some subsequence is
converging to a constant function, as required.

From now on, we assume f−1
n (xg) ∩X is non-empty for any n. Pick any point x′ ∈ f−1

n (xg) ∩
X. Since fn(X) avoids the triple {0, 1,∞}, the point x′ is necessarily a branched point of AX .
We may thus assume that f−1

n (xg) is independent of n. If x ∈ f−1
n (xg), then the proposition

follows. Hence, we also assume that x /∈ f−1
n (xg).
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Let U be the connected component of X\f−1
n (xg) containing x. Passing to a subsequence,

fn(x)→ y, and, maybe after postcomposition by a fixed projective transformation, fn(U) is
contained in the unit ball. By Proposition 1.8, diam fn(z)→ 0 for all z ∈ U . Now choose a
point x′ ∈ f−1

n (xg) ∩ ∂U . Let A be the convex hull of {x} ∪ ∂U and let (z′, x′) be the edge of
A with end point x′. We proceed by contradiction and suppose that degx′fn is bounded. By
convexity (Lemma 1.2), it follows that degzfn is bounded for all z ∈ (z′, x′). Thus, dH(fn(z), xg)
is also bounded for all z ∈ (z′, x′). Since diam fn(z)→ 0, we obtain the desired contradiction and
conclude that degx′fn→∞. 2

Proof of Proposition 3.2. We rely on the following lemma, whose proof is given below.
Recall that in characteristic p, the Frobenius morphism is defined by F (z) = zp. When p= 0,

the Frobenius morphism is by convention the identity map.

Lemma 3.3. Let S be any finite subset of P1(k̃). Then there exists a finite collection of separable
rational functions Ri with the property that any rational function R such that R−1{0, 1,∞}⊂ S
is the composition of Ri with some iterate of the Frobenius morphism.

Since fn(X) avoids {0, 1,∞}, and f−1
n (xg) ∩X is reduced to x0, any direction at x0 which

is not determined by a branch of AX is necessarily mapped to a direction avoiding {0, 1,∞}. In
particular, we can apply the previous lemma to Tx0fn and, after taking a suitable subsequence,
we have

Tx0fn =R ◦ F d(n)

for some fixed separable fraction R ∈ k̃(T ) and some d(n) > 0. Note that by our assumption
degx0

fn = deg(R) pd(n)→∞, so that we can take d(n) to be strictly increasing to infinity. Note
in particular that we have char(k̃)> 0. 2

Proof of Lemma 3.3. Since the triple {0, 1,∞} is totally invariant by the Frobenius morphism,
we can write R= R̃ ◦ Fn for some n, where R̃ is separable and R̃−1{0, 1,∞}⊂ S.

First we show that deg(R̃) 6 d− 2 with d := #S. Indeed, we have #R̃−1(0) = deg(R̃)−∑
R̃−1(0)(degR̃(x)− 1), and similarly for 1 and ∞. Summing up, we get

d > #R̃−1{0, 1,∞}= 3deg(R̃)−
∑

R̃−1{0,1,∞}

(degR̃(x)− 1)

> 3deg(R̃)− (2deg(R̃)− 2),

as required. We can thus write R̃ in the form

R̃(T ) = a

∏
(T − zi)∏
(T − z′j)

for some a ∈ k, and a collection of at most d− 2 points zi, z′j ∈ S, and such that R̃(z′′) = 1 for
some z′′ ∈ S. The collection of such fractions R̃ is finite. 2

3.2 Proof of Theorem B
Recall the setting: X is a connected open subset of P1,an

k and fn :X → P1,an
k \{0, 1,∞} a sequence

of analytic functions pointwise converging to f in X such that degunx fn is bounded for all type II
points x ∈X.
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Since any point in a connected open subset of P1,an
k has an affinoid neighborhood, it is

sufficient to consider an affinoid domain Y ⊂X and show that the restriction of f to Y is
continuous.

Let us first assume that supn supY degxfn <∞. We claim that one can find a closed ball B of
positive diameter such that fn(Y )⊂ P1,an

k \B (possibly after extracting a subsequence). Indeed, if
it is not the case, by the maximum principle we may find x0, x∞ ∈ ∂Y such that fn(x0) converges
in A1,an

k and fn(x∞)→∞. On the other hand, we have

dH(fn(x0), fn(x∞)) 6 sup
n

sup
Y

degxfn × dH(x0, x∞)<∞,

which yields a contradiction. We conclude that f is continuous and f(Y ∩H)⊂H, by
Theorem 1.1.

When the local degree is unbounded, by extracting a subsequence we can assume that f−1
n (xg)

is a fixed (finite) set S of branched points of AX . Let us now assume that supn supY degxfn =∞.
By Corollary 1.7, one can find a point x ∈ Y such that degxfn→∞. By Proposition 3.1, after
extraction either we are done or we infer the existence of a branched point x′ of AY such that
fn(x′) = xg for all n, and degx′fn→∞. Hence, degx′fn→∞ for some x′ ∈ S.

Now, for all x ∈ S, consider the connected component Y (x) of {x} ∪ (X\S) containing x. By
Proposition 3.2 applied to Y (x′), we infer that degunx′ fn→∞. Theorem B follows, since this is
not possible by assumption.

4. Examples

We explore various examples of limits of analytic maps.

4.1 Limits of analytic maps
Let us describe some typical maps appearing as limits of analytic functions avoiding three points
in the projective line.

Consider a sequence ζn ∈ k such that |ζn|= 1, and |ζn − ζm|= 1 for all n 6=m. Pick any
integers r 6 s, and a ∈ k. Then the sequence fn : P1,an

k → P1,an
k given by fn(z) = zr + aζnz

s is
pointwise converging to the unique continuous function whose restriction to the standard affine
line sends a point z ∈ k to the point corresponding to the ball B(zr, |a| · |z|s). Note that except
in the trivial case a= 0 this function is never analytic.

4.2 Non-continuous limits
We now explore a class of examples showing that assumptions are needed to get continuous
limits.

Pick any rational function R ∈ k(T ) of degree d> 2. Suppose all its coefficients are 61 in
norm, and the reduction of R in the residue field of k has degree d (in this case, R is said to
have good reduction). Consider the sequence of analytic functions fn =Rn!. Then fn converges
pointwise to a function f that is not continuous.

To see this, recall that P1,an
k \{xg} has a partition into open balls B(ζ), one per element ζ of

the residue field k̃ of k. Denote by R̃ the residue map acting on P1(k̃).

(1) If ζ is not preperiodic for R̃, then Rn!(x)→ xg for any point x ∈B(ζ).

(2) If ζ is preperiodic to a periodic cycle of R̃ that is critical, then one can find c ∈ P1,an
k such

that Rn!(x)→ c for any point x ∈B(ζ).
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(3) If ζ is preperiodic to a periodic cycle of R̃ that is non-critical, then Rn!(B(ζ)) is eventually
mapped to some open ball B(ζ ′) that is fixed by RN for some N . And pointwise convergent
subsequences of RNm have (continuous) non-constant limit maps on B(ζ ′).

The description of the limit map in the last case highly depends on the characteristic of the
field. When the characteristic of k is zero, and the residual characteristic is positive, the ball
B(ζ ′) is a component of quasi-periodicity, and Rn!→ id on it. Finally, in positive characteristic,
when R is the Frobenius map, only cases (1) and (2) appear.

In characteristic p > 0, for εn small enough, the restriction of any polynomial fn = zp
n

+
εnz

pn+1 to the affinoid domain {|z|6 2} ∩ {2|z|> 1} ∩ {2|z − 1|> 1} avoids {0, 1,∞}. By
Theorem A, one can extract many subsequences of fn that converge pointwise. However, none
of the obtained limits are continuous.

4.3 Analytic maps avoiding fewer points

Theorem B does not hold with analytic maps avoiding only two points. Take X = A1,an
k \{0}

and fn(z) = zn. Any limit is 0 on {0< |z|< 1} and ∞ on {1< |z|<∞}. Hence, it cannot be
continuous at xg.

Theorem A does not hold with analytic maps avoiding only one point. Pick c ∈ k such
that |c|> 4 and consider the quadratic polynomial Pc(z) = z2 + c. Then {Pnc } is a family of
analytic maps on A1,an

k with values in A1,an
k = P1,an

k \{∞}. We claim that no subsequence of Pnc
is converging pointwise on A1,an

k .

The filled-in Julia set Kc = {z ∈ A1,an
k , |Pnc (z)| is bounded} is a Cantor set included in

A1(k), and there exists a homeomorphism π :Kc→{0, 1}N such that π ◦ Pc = σ ◦ π, where
σ{εn}= {εn+1} is the left shift on {0, 1}N.

Suppose by contradiction that Pnjc converges pointwise on A1,an
k . This would imply σnj to

converge pointwise on {0, 1}N. Choose any sequence ε such that εnj = 1 if j is odd and εnj = 0
if j is even. Then σnj (ε) does not converge, which gives a contradiction.

5. Normal families and applications

Let us recall the following notion from the introduction.

Definition 5.1. Let X be any open subset of P1,an
k .

A family F of meromorphic functions on X is normal if, for any sequence fn ∈ F and any
point x ∈X, there exist a neighborhood V 3 x and a subsequence fnj that is converging pointwise
on V to a continuous function.

5.1 Local conditions for normality

In the complex case, Marty’s theorem (for example, see [Mar31]) is a characterization of the
normality of a family of meromorphic maps in terms of the chordal derivative. Such a result is
unclear in the non-Archimedean context. However, we prove the following theorem.

Theorem 5.2. Suppose X ⊂ A1,an
k is an open set containing 0 and F is a family of analytic

maps f :X → A1,an
k such that supF |f(0)|<+∞.

If the family F is normal in a neighborhood of 0, then supF |f | and supF |f ′| are both uniformly
bounded in some neighborhood of 0. The converse statement holds if char(k) = 0.
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As an immediate corollary, we infer the following corollary.

Corollary 5.3. Suppose f is an entire function fixing the origin. Then {fn} is a normal family
in a neighborhood of 0 if and only if |f ′(0)|6 1.

The corollary also holds for rational maps. It is a consequence of Theorem 5.4 below and the
fact that any repelling fixed point lies in the Julia set (a proof of this is given in [BR10, p. 343]
when char(k) = 0).

Proof. If |f ′(0)|6 1, then there exists a ball B containing 0 such that f(B)⊂B. By Theorem 2.1,
the sequence {fn} is a normal family on B. The converse is a direct consequence of the previous
theorem. 2

Proof of Theorem 5.2. Assume the family is normal in some ball B 3 0. Denote by x0 ∈H
the point associated to B and pick a subsequence fn (possibly with repetition) such that
limn |f ′n(x0)|= supF |f ′(x0)|. Reducing B and passing to a subsequence, we may suppose fn
converges pointwise to a continuous function g on B. Since sup |fn(0)|<∞, and g is continuous,
by extracting a further subsequence and rescaling the image, we may suppose fn(x0) converges
to a point in B(0, 1/2). Therefore, fn(B)⊂B(0, 1) for n� 1, and Schwarz’ lemma then implies
supB |f ′n|= |f ′n(x0)| is uniformly bounded. It follows that supF supB |f ′|<∞, as required.

Assume conversely that |f ′n|6 C in a some ball B 3 0 of radius r, and look at the power series
expansion fn(z) = fn(0) +

∑
i>1 a

(n)
i zi. We have

sup
i>1
|i| |a(n)

i |r
i 6 C.

If char(k̃) = 0, then supi>1 |a
(n)
i |ri 6 C. Therefore, fn(B(0, r))⊂B(0, C) and the claim follows

from Theorem 2.1. If char(k̃)> 0 and 0< ρ < r/char(k̃), then

sup
i
|a(n)
i |ρ

i 6 sup
i
C|i|−1

(
ρ

r

)i
6 C sup

i

(
char(k̃)ρ

r

)i
<+∞,

since char k = 0. Thus, for suitable positive constants ρ, C ′ we have that fn(B(0, ρ))⊂B(0, C ′).
Now we may apply Theorem 2.1 to establish that F is normal in a neighborhood of z = 0. 2

5.2 Normality and equicontinuity: proof of Theorem C
Suppose F is a family of analytic functions on an open subset X of P1,an

k with values in P1,an
k .

Assume first that any z ∈ P1(k) admits a neighborhood U on which F is a normal family. Let
us split the family F into two subfamilies F0 = {f ∈ F , |f(z)|6 1} and F1 = {f ∈ F , |f(z)|> 1}.
Then Theorem 5.2 applied to F0 shows that supF0

supU |f ′|<∞. This implies the equicontinuity
of F0 on U . The same argument can be applied to F1, since 1/f ∈ F0 for all f ∈ F1.

Conversely, pick z ∈ P1(k) and a ball B containing z such that {f :B→ P1(k)}f∈F is
equicontinuous. For any sequence fn ⊂F , we must find a subsequence that is converging to
a continuous function in a neighborhood U ⊂B of z. After extraction, and possibly replacing
fn by f−1

n , we may always assume that |fn(z)|6 1 for all n. By equicontinuity, shrinking B if
necessary, we conclude that fn(B) is included in the unit ball for all n. Let U be the convex hull
of B. From Theorem 2.1, we conclude that there exists a subsequence fnj converging pointwise
to a continuous function.
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5.3 Fatou set of a rational map
Recall that the Julia set of a rational map R of degree at least two is the set of points x ∈ P1,an

k

such that for any open subset U containing x, there exists an integer n such that Rn(U) contains
all P1,an

k but a countable set of discrete rigid points; see [BR10, FR10].
As a first application of our results, we prove the following theorem.

Theorem 5.4. Suppose R is a rational function of degree at least two. Then the Fatou set of R
coincides with the set of points x ∈ P1,an

k such that {Rn} forms a normal family in a neighborhood
of x.

Proof. Suppose x belongs to the Julia set J(R) of R. Pick a subsequence nj such that Rnj (x)
converges to a point y ∈ P1,an

k . Since J(R) is closed, y belongs to the Julia set.
The set of non-repelling rigid periodic points of R is not empty. In fact, the argument of

Benedetto [Ben98] in characteristic zero extends verbatim in arbitrary characteristic as follows.
If R admits a rigid periodic point with multiplier a root of unity, then this is clear. Otherwise,
we can apply the Woods Hole formula, see [AB64], and [SGA5, Corollaire 6.12] for a proof:

1 =
∑

R(p)=p

1
1−R′(p)

.

Now if |R′(p)|> 1 for all p, the right-hand side is <1, which gives a contradiction.
If there exists an attracting orbit, we let V be a forward invariant union of closed balls

containing this cycle such that V is contained in the Fatou set F (R), and pick a point y′ ∈ V
that is not periodic. If there is an indifferent periodic cycle, we let y′ be one of the points of this
orbit. For an appropriate closed neighborhood V ⊂ F (R) of the orbit, we have that R(V ) = V .

In both cases, we have found a point y′ and a closed neighborhood V ⊂ F (R) of y′ such that
the cardinality of R−n{y′} tends to infinity as n→∞ and R(V )⊂ V .

By [FR10], the probability measures d−njRnj∗δy′ converge to a measure whose support is
equal to J(R). In particular, the closure of

⋃
j R
−nj{y′} contains x. One can thus find a sequence

yj tending to x and such that Rnj (yj) = y′. Now suppose {Rnj} is a normal family at x. Then
we could find a (sub)-subsequence Rnjl that is converging pointwise to a continuous function
f on a neighborhood U of x. Pick j large enough so that yj belongs to U . Then Rnj (yj) = y′

and hence Rnj′ (yj) ∈ V for all j′ > j. Thus, for all j we would have that f(yj) ∈ V ⊂ F (R), but
f(yj)→ f(x) = y ∈ J(R).

Now suppose x belongs to the Fatou set. We claim that there exists a basic open subset
V 3 x such that

⋃
n>1 R

n(V ) avoids a closed ball B. We give a proof of this fact below and first
conclude with the proof of the theorem.

Suppose first that there exists a point x′ ∈ V such that degx′(Rn)→∞. Choose coordinates
such that xg, 0, 1,∞∈B. Then Proposition 3.1 can be applied and shows that any subsequence
of Rn admits a sub-subsequence that is converging to a constant. In particular, the family {Rn}
is normal in a neighborhood of x.

Next suppose that degx′(Rn) is bounded for all x′ ∈ V . Then we apply Theorem 2.1 with
X := V and Y := P1,an

k \B. This shows again that the family {Rn} is normal in a neighborhood
of x.

We now indicate how to prove our claim. Let U be the connected component of F (R) that
contains x. If Rn(U) 6= U for any n> 1, then the family {Rn}n>1 maps U into P1,an

k \U , and
hence the iterates of any basic open set V avoid a closed ball B ⊂ U . Then, we may restrict to
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the case where U is a periodic Fatou component, which we will assume to be fixed for sake of
convenience. Suppose U is the basin of attraction of a fixed point lying in U . Then we pick V
to be a basic open set that is relatively compact in U and contains x and the fixed point in U .
Then

⋃
n R

n(V ) is still relatively compact in U ; hence, its complement contains a closed ball.
Otherwise, it is known that U is a basic open set in which the local degree of R is constant and
equal to 1 and whose boundary points are type II Julia periodic points (see [Riv03, Chapitre 5]
over k = Cp, and [FR10, Proposition 2.16] for a sketch in arbitrary complete fields). Then R fixes
the skeleton of U and permutes its boundary points; hence, RN |AU = id for some N . Denote
by π(x) the unique point in AU such that [π(x), x] ∩ AU = {π(x)}. Choose a small open (not
necessarily connected) subtree T of AU that is relatively compact in U , invariant by R, and such
that π(x), R(π(x)), . . . , RN−1(π(x)) belongs to T . Set V = π−1(T ). Then V is R-invariant, and
avoids U\V that is a non-empty open set. 2

6. Fatou–Julia theory of entire maps

We now explore the dynamics of a transcendental entire (that is, not a polynomial) map
f : A1,an

k → A1,an
k . In view of Theorem 5.4, it is natural to make the following definition.

Definition 6.1. The Fatou set F (f) of f is the set of points x where the sequence {fn} forms
a normal family in a neighborhood of x. The Julia set J(f) is the complement of the Fatou set
in A1,an

k .

Bézivin [Béz01] studied the iteration of transcendental entire maps over Cp, defining the
Fatou set in terms of equicontinuity of the iterates with respect to the chordal metric. Theorem C
implies that the intersection of our Fatou set with the set of rigid points is precisely the Fatou
set in the sense of Bézivin.

6.1 The Fatou set and the Julia set
Theorem 6.2. Let f be any transcendental entire map of A1,an

k . Then the following holds.

• The Fatou set is an open subset of A1,an
k which is totally invariant under f .

• The Julia set is an unbounded closed totally invariant perfect subset of A1,an
k . Moreover,

J(f)⊂
⋃
n>0 f

−n{z} for all z ∈ A1,an
k .

• A periodic rigid orbit belongs to the Julia set if and only if it is repelling.

The reader may find in [Béz01, Propositions 5.6] related results concerning the rigid Julia
set.

In order to prove the theorem, it is convenient to establish the following lemma.

Lemma 6.3. Given a transcendental entire map f , let φ(τ) = sup|z|6eτ {log |f(z)|}. Assume that

f(0) = 0. If φ is not locally affine at τ0 and φ(τ0)> τ0, then J(f) ∩ {z ∈ k, |z|= eτ0} 6= ∅.

Proof. The function φ(τ) := sup|z|6eτ log |f(z)| is a piecewise affine and convex function on R
with slopes that are integral, non-zero, and tending to infinity. Denote by zρ the point associated
to the ball B(0, ρ) and observe that f(zρ) = zeφ(log ρ) if φ is not locally constant at ρ. Moreover,
the local degree of f at zρ is the slope of φ in a sufficiently small interval (log ρ, ε+ log ρ), ε > 0.
And, the direction pointing to 0 at zρ maps onto the direction pointing to 0 at f(zρ) with degree
given by the slope of φ in a sufficiently small interval (−ε+ log ρ, log ρ).
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Now consider r = eτ0 . From what precedes, there exists a closed ball B contained in a direction
at zr different than the direction of 0 such that f(B) =B(0, r). The set K =

⋂
n>0 f

−nB is a
decreasing sequence of non-empty compact sets and hence is non-empty. Pick any point x in the
boundary of K. Then x lies in the Julia set, since fn(x) is bounded and there exists x′ ∈ (x,∞)
arbitrarily close to x such that fn(x′) = zr for some n; hence, fn+m(x′)→∞ as m→∞. It
follows that J(f) ∩ {z ∈ k, |z|= r} 6= ∅. 2

Proof of Theorem 6.2. The first statement about the Fatou set is a consequence of the second
on the Julia set. The third statement is a direct consequence of Corollary 5.3.

Without loss of generality, after a change of coordinates, we may assume that f(0) = 0. By
the previous lemma, one can find a point x ∈ J(f). Since f is an entire function, f−1(x) is
unbounded, which shows J(f) is unbounded.

Now we will simultaneously show that no point of J(f) is isolated and that for all z ∈ A1,an
k , we

have that J(f)⊂
⋃
n>0 f

−n{z}. In fact, given z ∈ A1,an
k , let Z = f−1(z)\{fn(z) | n> 0}. Since f

is a transcendental entire function, Z has infinite cardinality. Note that z /∈ f−n(Z) for all n> 0.
Given a ∈ J(f) and a basic open set X containing a, it is sufficient to show that f−n(Z) ∩X 6= ∅
for some n. By contradiction, suppose that fn(X) avoids Z. Then, X has a finite number, say
`> 1, of complementary balls. The number of complementary components of fn(X) is at most `,
so, for any subsequence of fnj , passing to a further subsequence fnji , we may assume that there
are two distinct elements z1 and z2 of Z which are in the same component of the complement
of fnji (X) for all i. Thus, fnji (X) avoids a closed ball. From Theorem 2.1, we obtain that fnji
has a subsequence converging to a continuous function; therefore, {fn} is normal in X, which
contradicts the fact that a ∈ J(f).

Taking z ∈ J(f), we conclude that J(f) has no isolated point. Therefore, J(f) is an
unbounded, totally invariant perfect subset of A1,an

k . 2

6.2 In residual characteristic zero
Proposition 6.4. Suppose char(k̃) = 0, k̃ is uncountable, and pick any non-constant entire

function on A1,an
k .

Then the Fatou set is non-empty and the Julia set is included in the closure of the set of
(rigid) periodic points.

Proof. Since k̃ is uncountable, (k, | · |) is not separable as a topological space, that is, does not
admit a countable dense subset. In particular, A1,an

k is not separable. Since, by Theorem 6.2,
J(f) is the closure of a countable set, it follows that F (f) 6= ∅.

Pick any point x ∈ A1,an
k which is not in the closure of the set of rigid periodic points. Then,

in some open neighborhood U of a preimage by f2 of x, the family of meromorphic functions

gn :=
fn − id
fn − f

· f
2 − f

f2 − id

avoids the values {0, 1,∞}. Since char(k̃) = 0, Corollary D implies {gn} is a normal family, which
shows {fn} is also normal in U , whence f2(x) (and x) lie in the Fatou set. 2

6.3 The basin of infinity
In the context of iterations of complex transcendental entire functions, a Baker domain is a
periodic unbounded component of the Fatou set contained in the basin of infinity. Our next
result rules out the existence of Baker domains when the residual characteristic vanishes.
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Theorem 6.5. Let f be any transcendental entire map.

Then the basin of attraction of infinity is connected. Moreover, for any x ∈ A1,an
k , there exists

y ∈ (x,∞) ∩ J(f) such that {fn(y)}n∈N is an increasing sequence converging to∞. In particular,
the Julia set always contains non-rigid points and Fatou components are bounded.

In the complex setting, it is still unknown whether every connected component of the basin
of infinity is unbounded. The second part of the above result is a non-Archimedean analogue of
a result of Eremenko [Ere89].

Proof. The fact that the basin of infinity is connected follows at once, since any entire map
preserves the natural order on A1,an

k .
For the rest of the proof, we may assume that f(0) = 0. Let φ be the associated function as

in Lemma 6.3. Given x ∈ A1,an
k , we let ρ > 0 be such that the closed ball B(0, eρ) contains x and

f(x). Consider ρ0 > ρ such that ρ1 = φ(ρ0)> ρ0. For n> 0, the intervals [φn(ρ0), φn+1(ρ0)) are
pairwise disjoint and cover [ρ0,∞). Since there exist infinitely many τ such that φ is not locally
affine at τ and τ > ρ0, we may consider a sequence τm ∈ [ρ0, ρ1) with the property that for all
m> 0 there exists nm > 1 such that φ is not locally affine at φnm(τm). Passing to a subsequence,
we may assume that τm converges to τ ′ ∈ [ρ0, ρ1]. Let y be the point associated to the ball of
diameter eτ

′
and containing x. We claim that y lies in the Julia set of f .

If τ ′ is an accumulation point of the sequence τm, then y ∈ J(f) follows from Lemma 6.3.
Otherwise, τ ′ = τm for all m. We may assume that nm is strictly increasing and pick a sequence
of points ym in the segment [x,∞) such that ym = fnm(y). From Lemma 6.3, there exists a
direction cm at ym which maps onto the direction of 0 at f(ym) and that contains a point in the
Julia set. Let zm be a direction at y which maps under Tyfnm onto cm. We claim that z` 6= zm
provided ` 6=m. We may assume that ` > m. It follows that Tyfnm+1(zm) is the direction of 0.
Therefore, Tyfn`(zm) is also the direction of 0 but Tyfn`(z`) = c`, which is not the direction of
0. Hence, z` 6= zm if ` 6=m, as required.

We conclude by observing that all directions zm contain Julia set elements, so that y admits
infinitely many directions intersecting this set. Therefore, y ∈ J(f). 2

6.4 Examples of entire maps
Example 6.6. Consider λ ∈ k such that |λ|> 1. Let a1 = 1 and, for all n> 1,

an+1 = λ−nan.

Then

f(z) =
∑
j>1

ajz
j

is a transcendental entire map such that for all x ∈ A1,an
k , there exists y ∈ [x,∞) with [y,∞)⊂

J(f).

Indeed, it is not difficult to check that for

n log |λ|< τ < (n+ 1) log |λ|,

the corresponding function φ is affine and has slope n+ 1 for all n> 1. Moreover, for all
τ > log |λ|, we have that φ(τ)> τ . Pick any irrational τ0 > log |λ| and a small neighborhood
I of τ0 in R. For a sufficiently large iterate, say m, of the expanding map φ, the interval φm(I)
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must contain a point of the evenly spaced points of the form {n log |λ|}n∈N∗ . Since at these points
φ is not locally affine, from Lemma 6.3 we conclude that an arbitrary neighborhood of the point
associated to the ball of radius exp(τ0) contains a Julia set element. Therefore, [x|λ|,∞)⊂ J(f),
where x|λ| is the point associated to B(0, |λ|). Since any arc [x,∞) coincides with [x|λ|,∞) in a
neighborhood of ∞, we conclude that f has the desired property.

Baker [Bak63] constructed complex entire transcendental maps with multiply connected
domains U such that fn(U) 6= fm(U) for all n 6=m and fn(U)→∞. Such a domain U is an
example of wandering Baker domains (see also [KS08] for recent developments along this line).
Our next example can be regarded as the non-Archimedean analogue of Baker’s examples.

Example 6.7. Consider λ ∈ k such that |λ|> 1. For n> 5, consider a sequence of negative
integers `n such that `5 < 0, `6 < 3`5, and

`n+2 = (n+ 1)(`n+1 − `n)

for all n> 5. Let

f(z) =
∑
n>5

λ`nzn

and, for all n> 5, consider the open annulus An obtained after removing the closed ball of radius
|λ|`n−`n+1 containing the origin from the open ball of radius |λ|`n+1−`n+2 containing the origin.

Then f defines a transcendental entire map such that f(An) =An+1 and An is a Fatou
component contained in the basin of infinity for all n> 5.

In fact, after checking by induction that `n+1 < (n− 2)`n, it follows that 0> `n+1 − `n is
strictly decreasing to −∞. It is not difficult to conclude that for

|λ|`n−`n+1 6 r 6 |λ|`n+1−`n+2 ,

we have

sup
|z|6r
|f(z)|= |λ|`n+1rn+1

whenever n> 5. Thus, φ is not locally affine exactly at the sequence of points τn =
(`n − `n+1) log |λ|. Moreover, φ(τn) = τn+1 and φ(τn, τn+1) = (τn+1, τn+2). Therefore, f(An) =
An+1 and the annulus An is contained in the basin of infinity. In particular, An is contained in
the Fatou set. Let xn be the point associated to the ball of radius |λ|`n−`n+1 . It follows that Txnf
has degree n+ 1. By Lemma 3.3, we conclude that given a neighborhood U of xn, there exists
m such that fm(U) contains the closed ball associated to xn+m. From Lemma 6.3, J(f) ∩ U 6= ∅.
Thus, xn ∈ J(f) for all n.

6.5 Questions

We end this article with some natural questions.

Question 6.8 [Béz01, Problem 1]. Does there exist a transcendental entire map whose Julia set
admits no rigid point?

A positive answer to this question would also give a positive answer to the next problem.

Question 6.9 [Béz01, Problem 2]. Does there exist a transcendental entire map that admits no
repelling rigid periodic points?
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Question 6.10 [Béz01, Problem 3]. Does there exist a transcendental entire map whose Julia set
is equal to A1,an

k ?

Recall that it is known that the Julia set of exp(z) is equal to C. On the other hand, any
non-Archimedean rational map admits at least one indifferent rigid fixed point and hence its
Fatou set is never empty. The existence of indifferent rigid fixed points for a transcendental
entire map is however unclear.

Question 6.11. Does there exist a transcendental entire map that admits no indifferent rigid
periodic points?

Question 6.12. Does there exist a transcendental entire map having a Fatou component U such
that

⋃
n f

n(U) is unbounded but fn|U does not converge to ∞?
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