Canad. Math. Bull. Vol. 26 (3), 1983

A MULTIVARIABLE FORM OF THE FUNDAMENTAL
THEOREM OF ALGEBRA

BY

PABLO M. SALZBERG*

ABSTRACT. Let H(x) be a homogeneous polynomial in n
indeterminates over an algebraically closed field K. A necesssary
and sufficient condition is given for H(x) to admit a factorization of
the form

k
[T le(@ex)+B,bex)]™, where «,B K, meN,
i=1

fori=1,....k;

a,be K", and “°” is the usual inner product. This condition involves
the linear derivatives of H(x).

Let H(x) be a homogeneous polynomial in x= (x4, ..., x,) of degree m over
an algebraically closed field K. Denote by Gy the vector space (over K)
generated by the set of all the derivatives of order m —1 of H.

The aim of this note is to prove the following result:

THEOREM. H(x) admits a factorization of the form

k
(1 [Tla@ex+8®ex1,
i=1
where a,be K"; o, ;€ K, m;eN fori=1,...,k and Y. m; =m, if and only if

Proof. First assume H(x) admits a factorization as shown in (1). Then
dim Gy =2 follows from explicitly differentiating (1).

Conversely, let dim Gy =2. Then we can find a,be K" such that Gy is
generated as a vector space over K by y,=a°x and y,=b o x. Since every
polynomial can be written as a polynomial of its linear derivatives (cf. [2],
Theorem 1), then H(x)= H*(y,, y,). The Fundamental Theorem of Algebra
([1]) asserts that H*(yy, yo) =I151 (ayy; + Biy2)™ for some a;, B; €k, m;eN
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(i=1,...,k and Y m; =m;), which yields (1) by substituting (y,,y,) by
(a°x,box). This concludes the proof.

When applied to quadratic forms this theorem yields the following well-
known result.

CoROLLARY. Let x"Ax#0 be a quadratic form over K. Then x"Ax=
(a°x)(b o x), where a,be K", if and only if rank A <2.
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