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Abstract

Manganese (Mn) is a crucial trace element that actively participates in a diverse array of
physiological processes. Mn is maintained at appropriate levels in the body by absorption and
excretion by the body. Dysregulation of Mn homeostasis can lead to a variety of diseases,
especially the accumulation of Mn in the brain, resulting in toxic side effects. We reviewed the
metabolism and distribution of Mn at multiple levels, including organ, cellular and sub-cell
levels. Mitochondria are the main sites of Mn metabolism and energy conversion in cells.
Enhanced Mn superoxide dismutase activity reduces mitochondrial oxidative stress and
inhibits cancer development. In addition, Mn enhances anti-cancer immune responses through
the cGAS-STING pathway. We introduced various delivery vectors for Mn delivery to cancer
sites for Mn supplementation and anti-cancer immunity. This review aims to provide new
research perspectives for the application of Mn in the prevention and treatment of human
diseases, especially by enhancing anti-cancer immune responses to inhibit cancer progression.

Introduction

Manganese (Mn) is the third most abundant transition metal in the Earth’s crust™V). It is widely
present in soil (450-4000 mg/kg®), where it is involved in the processing and recycling of soil
organic carbon®, and is used as a raw material in industrial fields, including mining, welding
and battery manufacturing®. For all living organisms, Mn is an essential trace and nutrient
element for cellular metabolism®®. Plants need Mn for the synthesis of chlorophyll, the
promotion of photosynthesis and maintenance of the normal colour of the blade!”. Mn widely
exists in animals and functions as an enzyme component and activator®). As an active cofactor,
it participates in a series of biological reactions of a variety of key metalloenzymes, including
arginase, pyruvate carboxylase, acetylcholinesterase, glutamine synthetase (GS) and manganese
superoxide dismutase (MnSOD/SOD2),® to support the normal physiological activities of cells.
In the human body, it is involved in fat metabolism, bone growth and the development and
normal operation of the nervous system®'V),

Normal Mn levels range from 4 to 12 pg/l in whole blood, from 1 to 8 pg/l in urine, and from
0-4 to 0-85 pg/l in serum?). To maintain the balance of Mn in the human body, the human body
absorbs Mn from the environment and diet"®). The majority of Mn intake comes from water
and foods (for example, beans, rice, nuts, whole grains, seafood, seeds, chocolate, tea, etc.'¥)),
with rice (>42%) as the main food source of Mn®”). Mn intake from environmental exposure or
other external sources, such as air pollution or occupational exposure, is relatively rare. Dietary
intake of Mn is mainly absorbed in the intestine(!®). Excess Mn is delivered to the liver through
the portal vein and excreted with bile through the faeces, while a small amount can be
reabsorbed by the intestine. Urinary excretion of Mn is less than 10% of total excretion!”, In
certain populations, such as those with abnormally elevated Mn consumption or gastrointestinal
absorption disorders, obtaining sufficient Mn from dietary sources or the environment may be
challenging. In such cases, intravenous supplementation of Mn may be necessary to meet the
body’s requirements. In mice, intravenous administration of Mn has been shown to produce
higher concentrations of Mn in most organ tissues compared with inhalation®). The disruption
of Mn homeostasis leads to a variety of diseases in humans®. Mn is needed for the biosynthesis
of mucopolysaccharides in bone matrix formation and is a cofactor for enzymes in bone
tissue"”). Long-term dietary Mn deficiency can cause osteoporosis, and its mechanism is related
to the increase of serum calcium and phosphorus levels and the decrease of bone calcium
levels®?. Despite its importance for human health (it is a cofactor for normal cellular
functioning enzymes), Mn is also toxic to human organs in excess. High levels of Mn are most
likely to accumulate in the brain, especially in the basal ganglia, leading to neurotoxicity?!-23,
The main mechanisms of neurotoxicity in the human brain include oxidative stress,
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mitochondrial dysfunction, transporter dysregulation, metal
imbalances, neuroinflammation and protein trafficking pathway
dysregulation®?. Specifically, Mn destroys DOPA decarboxylase
in central nerve cells, resulting in a decrease in L-DOPA content.
The balance of L-DOPA and acetylcholine (ACH) is disrupted, and
the content of ACH is temporarily increased, resulting in
conduction dysfunction in the central nervous system®®). Excess
Mn induces oxidative stress response and causes dopaminergic
(DA) neuron degeneration, leading to a series of neuropsychiatric
symptoms and signs®®. The main symptoms are psychological
and emotional disturbances, as well as many motor symptoms,
including gait disturbance, tremor, stiffness and bradykinesia®”).

In addition, changes in Mn content are one of the characteristic
markers of cancer progression and metastasis. Mn increases in a
time-dependent manner during the development of carcinoma
in situ within 3-5 weeks, and a Mn-rich niche is formed in
distant metastatic carcinomas®®, Mn mainly impacts cancer by
affecting the body’s anti-cancer immune response. Mn can
promote the survival and proliferation of immune T cells and
effectively promote the cancer killing ability of natural killer T
cells (NKT) ?°-32) In summary, Mn plays an important role in
anti-cancer immunity in the body. Clarifying the role and
mechanism of Mn in cancer is expected to provide new
directions for cancer treatment in the future.

As an important nutritional element, appropriate amounts of
Mn help to maintain human health and resist diseases, but the
imbalance of Mn homeostasis can lead to the development of
diseases. Therefore, it is necessary to study its physiological
function in human body. We will further review the anti-cancer
mechanism of Mn and the precise delivery method of Mn to
explore new options for the treatment of tumours.

Pathways of Mn uptake, excretion and distribution
Pathways of Mn uptake

Mn is an important dietary element, and plant foods such as whole
grains, nuts and vegetables are rich in Mn, with the most abundant
content in tea®?. Although the content of Mn in animal food
(meat, fish and milk) is not high, its absorption and retention are
both high, and it is a good source of Mn intake for humans. The
efficiency of Mn absorption by the small intestine is affected by
many factors, including intestinal pH, divalent metal transporter-1
(DMT1), competition from divalent metals (such as iron, copper,
zinc or calcium) and chelators such as phytic acid®¥. Mn is
absorbed by intestinal cells in the form of Mn®* through its binding
to transferrin. Subsequently, endocytosis internalises the formed
complex (Mn**-transferrin) and facilitates the dissociation of
Mn?* into Mn?*©%), Mn?* is then transported into the cytosol by
DMT-16%, Mn absorbed from the small intestine enters the blood
through small intestinal epithelial cells. Most Mn is bound to Mn-
transporting proteins in the plasma for transport, and a small part
of the Mn directly enters erythrocytes.

Exposure of the body to the intake of Mn in the occupational
environment is the main cause of the toxic side effects of Mn. With
the rapid development of modern society, most industrial
production involves the metal field, and large amounts of Mn
are applied in industrial production. We found that Mn levels were
higher in most workers than in the general population,®**”) and
inhalation exposure to airborne Mn was common in welders and
smelters®®, In the occupational environment, humans absorb Mn
mainly through the lungs, and only particles with an aerodynamic
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diameter of less than 5 pm can reach the alveoli. Then, Mn is
absorbed in the form of ions.

After people ingest Mn from the external environment, a
portion of Mn enters the blood for transport to different tissues®”,
and part is transported from the nose to the brain along the
olfactory nerve, from which it can bypass the blood-brain barrier
(BBB) and enter the central nervous system through the brain®*.
Many ways have been identified for Mn to enter the brain,
including the following three main routes: the capillary endothelial
cells of the BBB, the choroid plexus of the blood-cerebrospinal fluid
barrier, and through the olfactory nerve in the nasal cavity directly
to the brain®?, When the plasma concentration of Mn is within the
physiological range (0-076-78 pM), Mn is mainly transported into
the brain through saturation of cerebral capillaries. Beyond this
range, however, the unsaturated transport of Mn into the brain
through cerebrospinal fluid (CSF) occurs more rapidly“). The
third route is more important because most reports of the toxic side
effects of Mn have occurred through inhalation exposure.

Pathways of Mn excretion

The pathways of Mn excretion from the body are as follows: the
main pathway is excretion from the liver and gallbladder in the
form of faeces, followed by excretion in the form of urine®?. In
addition, a small amount of Mn can be excreted through sweat®®.
Regardless of the level of Mn absorption, adults can maintain the
balance of Mn concentrations in tissues by regularly regulating the
absorption rate and excretion rate of Mn. In the liver, Mn is
separated from the blood and bound to bile before being re-
secreted into the intestine. A small fraction of Mn is reabsorbed in
the intestine, forming the hepato-enteric circulation. In the brain
parenchyma, rapid accumulation of Mn occurs in brain structures
such as the amygdala, end grain, hippocampus and pale sphere
structure, and Mn has a half-life of approximately 5-7 d. However,
Mn has the longest retention time in the periaqueductal grey
matter, amygdala and endothelium?).,

Content and distribution of Mn

Mn exists in the human body in the form of a variety of proteins
and enzymes such as manganese superoxide dismutase, GS and
arginase®”, and acts as a coenzyme in a variety of biological
processes such as skeletal system development, energy metabolism,
enzyme activation, and functions of the nervous system, immune
system and reproductive hormones'®. Mn is involved in a variety
of biological processes such as nutrient metabolism, bone
formation, the free radical defence system, ammonia clearance
and neurotransmitter synthesis in the brain. Mn is most commonly
stored in mitochondria after uptake, and therefore the highest
concentration is found in mitochondria-rich organs such as liver,
kidney and pancreas*?. The normal concentration of manganese
varies in different human tissues: 1 mg/kg in bone, 1-04 mg/kg in
the pancreas®, 0-98 mg/kg in the renal cortex, 1-2-1-3 mg/kg in
the liver and 0-15-0-46 mg/kg in the brain® (Fig. 1). We
summarise the normal range of Mn content in various organs of
the human body in Table 1. Excessive Mn can easily accumulate in
the brain, leading to the onset of neuropsychiatric symptoms. In
the brain, Mn preferentially accumulates in the caudoputamen,
globus pallidus, substantia nigra and subthalamic nucleus“”).
Under normal conditions, intracellular Mn mainly accumulates in
mitochondria and participates in the process of oxidative
phosphorylation (OXPHOS) in mitochondria. Chronic excessive
exposure to Mn has been confirmed to induce mitochondrial
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Table 1. Mn homeostasis. The concentration of Mn in human organs and body
tissues ranked from lowest to highest

Organ or body tissue Concentration Reference
Urine 0-07-1-703 pg/l [137]
Blood 4-15 pg/l [138]
Brain 0-15-0-46 mg/kg [139]
Spleen 0-98 mg/kg [140]
Kidney 0-98 mg/kg [5]
Bone 1 mg/kg [141]
Pancreas 1-04 mg/kg [140]
Liver 1.2-1-3 mg/kg [142]

dysfunction, which is related to oxidative damage®). In fact, high
concentrations of Mn can cause neurotoxicity and lead to
psychiatric diseases“**”), such as Parkinson’s disease and
gamma-aminobutyric acid (GABA) system-related diseases'?).
The daily intake of Mn per adult should be approximately
2-6 mg/d®Y, and the World Health Organization/Food and
Agriculture Organization (WHO/FAO) of the United Nations
recommends Mn levels in drinking water <400 pg/1®%.

The effects of Mn homeostasis on microbial survival

The number of bacteria present in the human body is almost equal
to the ratio of human cells (1-3:1). The intestinal flora (99%) is the
most important group of bacteria in human body, and erythrocytes
(84%) are the most important cells®?. As a metabolic ‘organ’ in the
human body, the interaction between bacterial communities is a
key factor affecting human health. Mn is not only an indispensable
catalytic centre and structural core for various enzymes but also
involved in a variety of biological processes, including OXPHOS,
glycosylation and signal transduction. It is also an essential metal
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Fig. 1. Mn in the human body. Mn contents in various tissues of
the human body and the pathways of Mn intake and excretion.

element for pathogenic microorganisms to maintain basic
biochemical activity and virulence. Hosts can utilise Mn to
participate in the process of nutritional immunity to prevent
pathogen invasion®®?).,

Role of Mn in pathogenic microbes

Usually, the survival environment of pathogenic microorganisms
in the host body is brutal, and they need the participation of metal
ions to maintain survival. The oxidative defence system of human
body can kill pathogenic bacteria, but manganese can improve the
tolerance of pathogenic bacteria to reactive oxygen intermediates
(ROISs). In addition, Mn is involved in the adaptation process of
pathogens to the human body by acting as a cofactor for enzymes
involved in intermediary metabolism and cell signalling pathways,
maintaining the expression of virulence related genes and other
pathways®?. A defence strategy called ‘nutritional immunity’ is
employed by host cells invaded by pathogenic microorganisms. It
aims to prevent invading pathogens from acquiring metal ions,
such as Mn, from the host®. In brief, during an inflammatory
episode, Mn binds to calprotectin to compete for or strip the metal
from pathogen metalloproteins, inactivating them and weakening
their defence against the host immune response. In some cases,
pathogens have developed the ability to compete with calprotectin-
mediated metal starvation in the gut®®. In patients with various
types of infection, it can be observed that their serum and tissue Mn
levels are significantly reduced®”). A series of experiments have
shown that once host cells have phagocytosed pathogens, Mn
transporters, including natural resist-associated macrophage
protein 1 (NRAMPI1) encoded by the human SLCI1IAI gene,
and other metal transporters, limit the intracellular utilisation of
Mn by pathogens®®>?),

To prevent themselves from being killed, pathogenic micro-
organisms have evolved a complicated system to obtain metal ions
from the host for improved survival®**?), Among a variety of
pathogens, such as Staphylococcus aureusV, Staphylococcus
preumoniae®®, Salmonella typhimurium©%? and Yersinia pes-
tis(®>%), two manganese transport systems have been identified
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Table 2. Transport proteins. The functions of different transport proteins in pathogenic microbes/cells

Transport Pathogen microbes/
protein Function cell Reference
BmtA BmtA transports Mn to fight superoxides contained in cells and to defend the spirochete from the Borrelia burgdorferi [70]

initial host immune response, including the extremely deleterious effects of ROS generated during the

innate host immune response to Lyme borreliosis
NRAMP The metal transporter NRAMP of Saccharomyces cerevisiae prevents oxidative damage by transporting  Saccharomyces [143]

manganese into the cell cerevisiae
MntH Competes with the host manganese-binding protein calvin for manganese acquisition, thus enabling Staphylococcus [71]

the pathogen to proliferate and maintain its SOD activity aureus
MntABC [144]
MntC MntC maintains SOD activity by binding manganese into the cells, thereby maintaining S. aureus [145]

virulence
MntE Staphylococcus aureus uses cationic diffusion accelerator (CDF) family protein MntE to reduce the [73]

toxicity of Mn by excreting excess Mn
MntP Mn-mediated manganese efflux from the gram-negative pathogen Salmonella enterica Typhimurium Salmonella enterica [146]

in response to manganese overload and nitric oxide stress serovar Typhimurium
MntX In Neisseria meningitidis, Mn?* export via MntX regulates the intracellular Mn:Fe ratio and protects Neisseria meningitidis [147]

against manganese toxicity that is exacerbated in low iron conditions

Pathogen microbes and nutritional immunity
invade
u1 Ilze
/—- Limit
F Signal
Sate receptor
B # calprotectm
Pathogen
\_' 2 3 ; pathogen
# \ CP/‘{;;‘“ @ proliferate
Fig. 2. Pathogen microbes and nutritional immunity.

Host cells and pathogenic microorganisms compete for
Mn. Calprotectin in host cells compete for the Mn in
pathogen metalloproteins, inactivating them and impair-
ing their defence against host immune responses.
Pathogenic microorganisms, however, compete with
the host calprotectin to obtain Mn, thereby allowing the
pathogen to proliferate and maintain its SOD activity.

that are closely related to host pathogenesis and involve
intracellular transporters such as MntABC, MntH, NRAMP,
BmtA and MntX©”-7%, They control the uptake of Mn and thus the
virulence of pathogens. For example, the S. aureus proteins
MntABC and MntH compete with the host manganese-binding
protein calprotectin for Mn acquisition, thereby enabling the
pathogen to proliferate and maintain its SOD activity’" (Fig. 2).
The functions of different transport proteins in pathogen
microbes/cells are described in Table 2.

Excessive Mn may be harmful to bacteria

Various Mn efflux proteins, such as MntE, MntP and MntX
(which have the same names as the proteins listed above but
represent different proteins), control the export of excess Mn
from bacteria to prevent toxicity caused by excessive Mn"?. For
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example, in Staphylococcus aureus (S. aureus), the Mn export
protein MntE is necessary for the pathogen to exert its full
virulence during infection, indicating the presence of Mn
toxicity in the pathogen, whereas a mutant strain of S. aureus
lacking the MntE has reduced resistance to oxidative stress and
lower oxidative stress levels(’?).

In addition, Mn plays a role in regulating the activity of viral
enzymes at the host-virus interface, and the most important
finding is that Mn contributes to the assembly and integration of
human immunodeficiency virus (HIV) 7. Mn has been shown
to increase the number of DNA nucleotide triphosphate errors
in pathogens and retroviruses in vitro>), Thus, in the presence
of excess Mn, the mutation rate of HIV increases significantly.
In the DNA-based herpes simplex virus, for example, Mn ions
seem to act as DNA polymerase super catalysts to promote DNA
replication”®).


https://doi.org/10.1017/S0954422425100139

Manganese in health and disease

accumulate accumulate
inhibit
damage l
hi Mj calcium efflux
mtDNA
MnSOD
(S0D2)
decrease Yy
FASTKD2 @
DHX30, \/. Ca® overload Loss of the
MRPS1 SW mitochondrial
l e inner membrane
RNA l potential

inhibit l

—

inhibit

14
protein:Mi{PS1 8B I 1 1

Damaged
mtDNA

Lipid Protein
peroxidation oxidation

Abnormal

Inflammation

function

In conclusion, pathogens such as bacteria and fungi have robust
self-protection systems to regulate Mn homeostasis, thereby
maintaining virulence and evading Mn toxicity. Impaired Mn
metabolism impairs pathogen proliferation and virulence, and this
process could be a potential research target for the prevention of
pathogen invasion in the host.

Mn regulates mitochondrial function

At the subcellular level, most of the metabolism of manganese
occurs in mitochondria. It enters the mitochondria via DMTI
present in the outer mitochondrial membrane, while efflux is very
slow””), In addition to high storage concentrations, Mn enters
mitochondria more rapidly, with intracellular mitochondria
increasing Mn at a higher rate than nuclei after chronic Mn
treatment’®). Mitochondria are the site of manganese metabolism
and energy conversion in cells. Its main function is OXPHOS to
synthesise ATP and supply life activities. In addition to being a key
organelle for intracellular energy generation, mitochondria are also
involved in metabolic processes such as apoptosis, lipid metabo-
lism and free radical production. The inhibitory effects of excess
Mn on the respiratory chain and calcium efflux in cellular
mitochondria, and the anti-cancer effects of the antioxidant
enzyme MnSOD, are summarised in Fig. 3.

Excessive accumulation of Mn can inhibit calcium efflux

Excess Mn is detrimental to mitochondrial function both in vivo
and in vitro, leading to dysfunction. Mn is involved in the
antioxidant system of mitochondria and can interfere with calcium
metabolism in mitochondria”®., Experimental studies have shown
that Mn exposure in the brain, especially in the striatum and
hypothalamus, leads to Mn accumulation while simultaneously
affecting Ca?* metabolism in mitochondria. It inhibits the outflow
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of Ca** from mitochondria such that Ca®* gradually accumulates
in mitochondria, affecting the transmission of excitation in
mitochondria and causing a series of dysfunctions®”). Elevated
calcium levels lead to reactive oxygen species (ROS) production
and to the opening of the mitochondrial permeability transition
pore (mPTP). This process leads to a loss of the inner membrane
potential, mitochondrial swelling, impaired OXPHOS and inhib-
ition of ATP synthesis. All of these processes further generate ROS
associated with Mn neurotoxicity and aggravate mitochondrial
dysfunction?,

Dysregulation of Mn homeostasis impairs the assembly and
function of the respiratory chain

Mn can be harmful to human health when it is present in excess or
deficient in the body. Mn exposure impaired the composition and
function of the mitochondrial ribosomal proteins DHX30 and
MRPS18B, and the mitochondrial RNA particle FASTKD2,
disrupting the mitochondrial transcription process. FASTKD2 is
a component of the mitochondrial RNA granule required for the
processing of polycistronic mitochondrial RNA, a step necessary
for mitochondrial protein synthesis. Notably, genetic disruption of
the mitochondrial RNA granule or pharmacological inhibition of
mitochondrial transcription-translation in cells is protective
against acute Mn exposure in vitro®'=83, FASTKD2 and other
mitochondrial RNA binding proteins (including DHX30, GRSF1
and the mitochondrial ribosomal subunit) participate in protein
complexes, such as MRPS18B®384),

The disruption of Mn homeostasis results in interference with
RNA particles within mitochondria. RNA particles are important
intermediates for protein synthesis in mitochondria. They are
responsible for the transcription of genetic information from DNA
into RNA and further direct protein synthesis. The disruption of
Mn homeostasis interferes with the formation and stability of RNA
particles, thereby affecting protein synthesis within mitochondria.
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Werner et al. tested whether Mn exposure could induce these RNA
granule phenotypes in induced pluripotent stem cell (iPSC)-
derived human astrocytes and glutamatergic neurons and reported
that iPSC-derived neurons presented reduced levels of DHX30,
GRSF1 and MRPS18B when exposed to low Mn concentrations.
These results suggested that a disruption of Mn homeostasis could
reduce the composition of mitochondrial RNA particles and thus
affect mitochondrial protein synthesis®!.

Effect of MnSOD activity on mitochondrial redox balance

Active MnSOD is a mature antioxidant enzyme in mitochondria.
MnSOD activity is essential for maintaining the redox balance in
mitochondria and can protect cells from oxidative stress damage
caused by excessive reactive oxygen species (ROS)®>%%). In normal
cells, MnSOD can maintain mitochondrial integrity and promote
cell regeneration. In cancer cells, MnSOD attenuates the
deleterious effects of ROS stimulation, including the promotion
of cancer development and maintenance.

Specifically, hypoxia and hypermetabolism are the common
characteristics of cancer cells, and their daily energy requirements
are far higher than normal cells. This means that cancer cells need
to produce more mitochondria to meet their energy demand.
However, the mitochondria produced by cancer cells often have
abnormal phenomena such as wrinkled outer membranes,
membrane structural integrity defects, mitochondrial distribution
around the nucleus, and hollow mitochondria. An important cause
of abnormal mitochondrial structure and morphology is the
frequent mutation of mitochondrial DNA (mtDNA) in cancer
cells®”). mtDNA mutations not only cause changes in mitochon-
drial appearance but also directly cause dysfunction, increase ROS
production and redox imbalance in mitochondria, and stimulate
the proliferation and invasion of cancer cells®**?. During
carcinogenesis, tumour cells typically exhibit increased reactive
oxygen species (ROS) production®??), increased ROS accumu-
lation and dysregulation of antioxidant enzymes®?. ROS derived
from the electron transport chain in mitochondria can activate
signalling pathways related to carcinogenesis. For example, H,0O,
(a form of ROS) can activate receptor tyrosine kinase®**?), Ras-
mitogen-activated protein kinase (Ras-MAPK)®**”) and phos-
phatidylinositol 3-kinase (PI3K) pathways®". As an antioxidant
enzyme, MnSOD can convert superoxide into hydrogen peroxide
(H,0,) and oxygen, and further convert it into harmless water and
oxygen during cancer progression, thereby reducing oxidative
damage to cells and playing a protective antioxidant role®®®.
Animal experiments have revealed that mice with a monoallelic
knockout of MnSOD (SOD2%/7) exhibit increased superoxide
levels, which leads to the occurrence of cancer®”. Compared with
wild-type control, SOD2"/~ mice are more likely to develop cancer
and have a shortened lifespan, suggesting that the loss of MnSOD
activity promotes carcinogenesis. In addition, an analysis of
mitochondrial DNA from patients with breast cancer has shown a
common deletion of MnSOD in the blood, resulting in impaired
MnSOD activity and increased oxidative damage®?.

In general, enhanced MnSOD activity reduces mitochondrial
oxidative stress and inhibits cancer development. Taking
advantage of the antioxidant effects of manganese in mitochon-
dria, it has also been used in cancer therapy in some cases. For
example, single-atom manganese anchored on carbon dots can
effectively concentrate in mitochondria, interfere with their
oxidation-reduction balance, and exhibit excellent anti-cancer
performance and good magnetic resonance imaging (MRI)
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Fig. 4 cGAS-STING signalling pathway. Mn increases the sensitivity of cGAS to dsDNA
in cancer cells and regulates the cGAS-STING pathway to promote the anti-cancer
immunity of immune cells. Mn binds to cGAS and enhances its anti-cancer effect by
inhibiting the binding of immune receptors such as PD-1 and CTLA-4 on the surface of
immune cells to ligands such as PDL-1 and BT on the surface of cancer cells. In the
STING pathway, Mn stimulates IRF-3 in tumour cells to produce IFN, thereby activating
the anti-cancer effect of immune cells such as NKT and CTL.

signal responsiveness under visible light irradiation, showing its
application potential in the integration of tumour diagnosis and
treatment(1%0),

Mn enhances anti-tumour immunity through the
CcGAS-STING pathway

Mn, an indispensable trace element in the human body, is not only
an important cornerstone for maintaining health but also plays a
non-negligible role in the anti-cancer process. We summarise the
key pathways and mechanisms through which Mn exerts its anti-
cancer effects by enhancing immune responses (Fig. 4).

Increased dsDNA sensitivity

Further studies showed that Mn-mediated anti-tumour immune
responses were dependent on the cyclic GMP-AMP synthase-
stimulator of interferon genes (cGAS-STING) pathway. Mn can
directly interact with cGAS, increase the sensitivity of dsDNA,
significantly stimulate the expression of interferon (IFN) regula-
tory factor (RF3/IRF7) and type I IEN®¥, and then stimulate T cells
to exert immune function. cGAS activity is affected by a variety of
factors, of which the sensitivity of double-stranded DNA (dsDNA)
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is a key factor. As an important immune antigen, dsDNA can
stimulate the activity of cGAS and trigger a strong immune
response. The sensitivity of dssDNA may be insufficient, resulting
in a weakened immune response and thus affecting the efficacy of
disease treatment. Mn can act on cancer cells, directly bind to
cGAS, stabilise cGAS activity, increase its sensitivity to dSDNA (%)
and thus stimulate the cGAS-STING pathway to participate in
human immune responses. This implies that, in the presence of
manganese, even low concentrations of dsDNA are effective in
stimulating cGAS activity to elicit a strong immune response.

Inhibition of immunosuppressive molecules

More importantly, Mn could directly bind to cGAS and reduce
surface programmed cell death protein-1 (PD-1) and cytotoxic
T-lymphocyte associated protein 4 (CTLA-4) protein concen-
trations. PD-1 and CTLA-4 are two important immunosuppres-
sive molecules!%?, and their elevated expression inhibits T-cell
function. By activating the cGAS-STING pathway, manganese
ions can reduce the expression of these inhibitory molecules,
thereby relieving immunosuppression and enhancing anti-
tumour immune responses(!°2199) At present, anti-PD-1/PD-L1
antibodies have been successfully used to treat various types of
cancer!7-11% However, due to individual differences, most
patients cannot benefit from this therapy!!!>!1®). Divalent
manganese, as a natural STING agonist, can cooperate with
anti-PD-1 /PD-L1 antibodies in cancer immunotherapy!!!”).
Even in low immunogenic tumour models such as B16, the
combination of STING agonists with anti-PD-1/PD-L1 antibody
treatment significantly prolonged the survival of mice compared
with the corresponding monotherapy!!'®). Preliminary clinical
evidence suggests that Mn supplementation, when administered as
Mn chloride via intranasal (0-05-0-1 mg/kg/d) or inhalation (0-1-
0-4 mg/kg/d) routes in combination with subsequent intravenous
chemotherapy (day 2) and anti-PD-1 antibody (2-4 mg/kg, day 3)
on a 3-week cycle, demonstrates promising efficacy in treatment-
refractory advanced metastatic solid tumours. The observed
objective response rate reached 45-5% with a disease control rate
0f 90-9% in patients who had failed standard anti-cancer therapies
including chemoradiotherapy and prior PD-1 blockade'’"). These
findings need further confirmation in randomised controlled trials.
In addition, Mn could significantly increase the expression of
CD80 and CD86 in Dendritic cells (DCs) by activating the cGAS-
STING pathway. CD80 and CD86 are costimulatory molecules
that bind to their respective receptors on the surface of T cells and
induce T-cell activation, thereby enhancing the adaptive immune
response.

Amplify the activities of cGAS and STING

Mn can also amplify the activation of ¢cGAS and STING by
increasing cyclic guanosine monophosphate-adenosine mono-
phosphate (cGAMP) production and increasing the binding
affinity of cGAMP-STING. STING proteins trigger downstream
signals on the endoplasmic reticulum (ER) surface by activating
and recruiting interferon regulatory factor 3 (IRF-3), TANK-
binding kinase 1 (TBK-1) and nuclear factor kappa B (NF-kB),
followed by the expression and secretion of IFNs. Type I IFNs
stimulate adaptive and innate immunity to cancer by promoting
DC maturation and antigen presentation to stimulate T cells'!?).
IFNs can also promote NKT recruitment and CTL infiltration'2?
to exert anti-cancer effects. One study showed that STING
knockout (Sting gt/gt) mice had a faster growth rate of tumour cells
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(such as RMA-S lymphoma and B16-BL6 melanoma) than wild-
type mice, indicating that STING plays an important role in anti-
tumour response. In Rag2 knockout (Rag2~/~) mice lacking both T
and B cells, when STING was knocked out (Rag2~'~ Sting gt/gt),
these mice were significantly more sensitive to RMA-S and
B16-BL6 tumours. This suggests that STING also plays a key role in
NK cell-mediated anti-tumour responses. Knockout of cGAS gene
(Cgas™") in tumour cells by CRISPR/Cas9 technology can reduce
the activation of NK cells, further confirming the importance of the
cGAS-STING pathway in NKT activation. These experimental
results suggest that cGAS in cancer cells recognise their own DNA
to produce cGAMP molecules. The cGAMP molecule is recognised
by the STING protein of the host cell and activates STING.
Activated STING proteins trigger an interferon response and
produce cytokines such as IFN-f. These cytokines can activate NK
cells to enhance anti-cancer immune responses and improve the
ability to recognise and kill cancer cells!?").

On the basis of the mechanism that Mn promotes anti-tumour
effects in a ¢cGAS-STING-dependent manner, a bovine serum
albumin/ferritin-based nanoagonist incorporating Mn ions (Mn2")
and P-lapachone has been developed. This protein-based cGAS-
STING nanoagonist was able to efficiently activate T-cell mediated
anti-cancer immune responses in in vitro cell experiments and
inhibit cancer growth and also showed significant therapeutic
effects in animal models!?2),

Mn delivery strategies

Mn, as an essential trace element, plays an essential role in anti-
cancer immunity under physiological conditions. Studies have
demonstrated that the growth of cancer cells and lung metastasis
are significantly accelerated in Mn-deficient mice. Exogenous
Mn?" effectively activates the cGAS-STING pathway, significantly
promotes the ability of host antigen-presenting cells to present
cancer antigens, promotes the infiltration of cytotoxic T cells into
tumour tissues, and enhances the specific killing of tumour
cells"°V, Given these findings, targeted delivery of Mn to cancer
sites represents a promising therapeutic strategy for supporting
anti-cancer immunity and enhancing the efficacy of cancer
treatments. Consequently, the development of efficient Mn
delivery systems has become the focus of current research.

Intelligent responsive delivery systems

Due to the immunosuppressive microenvironment (ISME) in
cancer tissues!??), the clinical efficacy of cancer immunotherapy
often falls short of expectations. As a result, responsive nano-
carriers for Mn delivery have emerged, particularly targeting the
low pH conditions of the tumour microenvironment (TME). The
Warburg effect indicates that cancer cells predominantly rely on
aerobic glycolysis for energy, resulting in the accumulation of
lactate and creating an acidic environment within cancer
tissues'!?Y. In contrast to the pH of approximately 7-4 in normal
tissues, the extracellular environment of cancer cells typically
exhibits a pH of 6-8, with even lower pH values in endosomes and
lysosomes, around 5-0-5-5!2°. MnO, nanomaterials remain
stable in a neutral environment (pH 7-4)(12% but can effectively
catalyse endogenous H,O, to generate O, in the acidic TME(27),
alleviating cancer hypoxia. The catalytic reaction is as follows:
MnO, + 2H* — Mn2* + 2H,0 + %O0,.

MnO, nanomaterials are unique TME-responsive nanomate-
rials that have garnered considerable attention due to their high
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biocompatibility, structural stability and easily modifiable surfa-
ces!?®). Nanoshells constructed from MnO, can rapidly decom-
pose in acidic TME, releasing Mn*" and the anti-cancer drugs
loaded within the shell'??), Polydopamine (PDA), a novel polymer
inspired by mussels, offers natural advantages such as good
biocompatibility, adhesion and multiple drug response releases.
The PDA shell remains stable at pH 7-4 but ruptures upon reaching
the cancer site (pH 6-8) due to acidic conditions*?). Therefore,
coating an additional layer of polydopamine (PDA) on the MnO,
nanoshell can serve as a ‘gate’ to control drug release, reducing
premature drug release in the bloodstream!*!).

Targeted delivery of Mn

In addition to utilising TME characteristics for Mn delivery,
targeting the biological characteristics of cancer cells has also
become a significant strategy. Hyaluronic acid (HA), recognised
for its excellent biocompatibility and CD44 receptor-mediated
cancer-targeting capability, has become a widely used delivery
vehicle32139), Research indicates that modifying HA on the
surface of MnO, nanosheets enables successful targeting of Mn**
to cancer sites and its release into the cancer microenviron-
ment(!*¥), Research also found that decorating MnQ, surfaces with
gene-engineered exosomes carrying CD47 exhibits good cancer-
targeting capabilities!?”. Another common targeted delivery
strategy involves loading MnO, onto nanoparticles coated with
the same kind of cancer cell membrane, where the cell membrane
coating ensures active cancer targeting, resulting in efficient
endocytosis and high accumulation">*), Furthermore, a study has
proposed targeting Mn delivery to the ER, since STING signalling
activation and subsequent immune responses are primarily
associated with the ER. It reported the design of ER-targeted
Mn-based nanocomplexes (NC) by complexing Mn?* with a
zwitterionic polymer, poly(2-(N-oxide-N,N-dimethylamino) ethyl
methacrylate) (OPDMA). In mouse models of colon and
hepatocellular carcinoma, intravenously injected Mn/OPDMA
NC delayed cancer growth rates by 2-4-5 times compared with
free-Mn?"-treated mice and extended the survival period of the
mice(13®),

In recent years, a variety of delivery methods have been
developed to precisely deliver Mn to cancer sites, including
intelligent responsive delivery systems and targeted delivery
systems. These strategies are expected to provide novel therapeutic
approaches for patients with cancer. By exploiting the low pH
properties of the tumour microenvironment and targeted delivery
strategies, scientists are designing vectors that can deliver
manganese precisely to the cancer site. These innovative delivery
systems not only enhance treatment precision but may also lead to
new breakthroughs in cancer treatment in future clinical
applications.

Conclusions

In conclusion, Mn is an indispensable trace element in the human
body, and an imbalance of Mn homeostasis can lead to changes in
human physiological states and many diseases. Mn positively
regulates host immunity, mitochondria and microbes to exert anti-
cancer effects. In recent years, a variety of delivery methods have
been developed to precisely supplement manganese nutrition to
cancer sites, including intelligent responsive delivery systems and
targeted delivery systems. This is expected to provide new
therapeutic strategies for cancer patients. However, the specific
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mechanism of manganese inhibition of tumours is still unclear,
and further studies are needed in the future to explore the
therapeutic strategies that manganese can be applied to the clinical
treatment of cancer. It is hoped that this review can provide new
ideas and programmes for scholars to conduct more in-depth
research on Mn.
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