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Abstract. A compact Klein surface X is a compact surface with a dianalytic
structure. Such a surface is said to be g-hyperelliptic if it admits an involution ¢, that
is an order two automorphism, such that X/ < ¢ > has algebraic genus ¢. A Klein
surface of genus 1 and k& boundary components is a k-bordered torus.

By means of NEC groups, g-hyperelliptic k-bordered tori are studied and a geo-
metrical description of their associated Teichmiiller spaces is given.

1991 Mathematics Subject Classification. 30F50.

1. Introduction. Klein surfaces, introduced from a modern point of view by
Alling and Greenleaf [1], are surfaces endowed with a dianalytic structure. A com-
pact orientable Klein surface X with topological genus 1 and k£ > 1 boundary com-
ponents is a k-bordered torus. The surface X is said to be g-hyperelliptic if and only
if X admits an involution ¢, that is an order two automorphism, such that X/ < ¢ >
is an orbifold with algebraic genus ¢. In the particular cases ¢ =0, 1, X is hyper-
elliptic and elliptic-hyperelliptic respectively.

Non-Euclidean crystallographic groups (NEC groups in short) where intro-
duced by Wilkie [16] and Macbeath [10], and they are an important tool in the study
of Klein surfaces since the results of Preston [14] and May [13]. Klein surfaces can be
seen as quotients of the hyperbolic plane under the action of an NEC group. In
particular, when X is a torus, then X = D/I', where D denotes the hyperbolic plane
and I is a surface NEC group with signature:

o) = (1, +, [ (), k=1 (1.1)

The surface X is g-hyperelliptic if and only if there exists an NEC group Iy with
I' <o I'y such that I') /T = <¢>. If k > 4q the group I'; is unique [2] and I is said
to be the g-hyperellipticity group. In this case the automorphism ¢ is central in the
group Aut(X) and it is called the g-hyperelliptic involution. The g-hyperelliptic sur-
faces have been studied in [2], [3], [5], and [8].

The aim of this work is the geometrical study of the Teichmiiller space of ¢-
hyperelliptic tori by means of fundamental regions of NEC groups. This technique
was used in [6] and for the Moduli space of Riemann surfaces in [7].

In the next Section we give the necessary preliminaries about NEC groups and
Klein surfaces. In Section 3 the signature of the g-hyperelliptic group I'; is obtained.
As a result I'; may belong to one of four different classes. Afterwards we construct
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fundamental regions R with all right angles for groups belonging to the above clas-
ses. The parameters (lengths of the sides in R) can be taken as coordinates in the
Teichmiiller space of g-hyperelliptic tori. It is done in Section 4.

2. Preliminaries on NEC groups. An NEC group I is a discrete subgroup of
isometries of the hyperbolic plane D, including reversing-orientation elements, with
compact quotient X =D/

Each NEC group [ is given a signature [10]

o) =(g, £, [m,...,m],{(na,....ng), i=1,...,k}), (2.1)

where g, m;, n; are integers verifying g > 0, m; > 2, n; > 2. g is the topological
genus of X. The sign determines the orientability of X. The numbers m; are the
proper periods corresponding to cone points in X. The brackets (n;, .. ., n;;,) are the
period-cycles. The number k of period-cycles is equal to the number of boundary
components of X . Numbers n;; are the periods of the period-cycle (n;1, . .., nj,) also
called link-periods, corresponding to corner points in the boundary of X. The num-
ber p =ng+k—1, where n =1 or 2 if the sign of o(I") is ‘=’ or ‘+’ respectively, is
called the algebraic genus of X.
The signature determines a presentation [10] of I™:

Generators

X; i=1,...,rn

e; = 1,,k,

Cij i=1,....r; j=0,...,5;

a;, b; i=1,...,g (if o hassign‘+’),

d; i=1,...,g. (if o hassign ‘—’).

Relations:

x:.”"zl; i=1,...,r;

sz,j—l = c,%j = (¢ijorci)"™ = 1; i=1,....k j=1,...,s;
ei_lc,;oeic,-,sl =1; i=1,...,k

7 k g . .
[Txi[1e [T(abia; bt = 1; i=1,...,g (if o hassign ‘+);
i=1 =1 =l

lr lk [g . .
[Mxi[le]ld?=1; i=1,...,g (if o hassign ‘-);

i=1

The isometries x; are elliptic, e;, a;, b; are hyperbolic, ¢;; are reflections and d; are
glide reflections.

Wilkie in [16] found a fundamental region Ry from which he obtained the
algebraic structure of NEC groups. The region Ry is called a canonical region or
Wilkie region.

For an NEC group I" with signature as (2.1) the region Ry is a hyperbolic
polygon with sides labelled in anticlockwise order as follows

€1, 7/107'-'9)/15'[’819-'-381(7 kas ~-~1yk&kvgkvalaﬁpa]vﬁls '--7ag1 IBgvags ,Bg,

if sign *+’, or
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/ ’ * *
81"}/107'-'7)/]51’8]’ '-'78167 Vko’-~~7yk5k’8k7817815 -"a8g78g5

if sign ‘—’, where

ee)=¢ cly)=vn ale)=an blB)=pB, d(5)=23.

Let us denote by < s1, s > the angle between two consecutive sides. In Ry we
have

<&V >=<V,& >=1/2,

and the sum of the remaining angles (accidental cycle) is 2. Without a loss of gen-
erality we may suppose Ry is a convex polygon.

Every NEC group I" with signature (2.1) has associated to it a fundamental
region whose area w(I"), called the area of the group (see [15]), is:

r 1 1 k Si 1
;L(F)=27r<ng+k—2+2(1——_)+§ZZ(1—f)> (2.2)
i=1 m i=1 j=1 i

An NEC group with signature (2.1) actually exists if and only if the right hand side
of (2.2) is greater than 0 (see [17]).

If ' is a subgroup of an NEC group I" of finite index N, then I' is also an NEC
group and the following Riemann-Hurwitz formula holds:

w(I) = N(I"). (2.3)

Let X be a Klein surface of topological genus g with k boundary components. Then
by [14] there exists an NEC group I" with signature

such that X = D/I', where the sign is “+” if X is orientable and “—"" if not. An
NEC group with signature (2.4) is called a surface group.

For each automorphism group G of a surface X = D/ of algebraic genus p > 2
there exists an NEC group I” such that G = I""/I" where I' C I" C Ng, and Ng
denotes the normalizer of I" in the group G, the full group of isometries of D [13].

We give two previous results from [2] in Proposition 2.1 for future reference.

ProposITION 2.1. (a) The Klein surface X = D/ I is g-hyperelliptic if and only if
there exists an NEC group I'y with algebraic genus g such that I" < I'y.

(b) Let X be a g-hyperelliptic Klein surface of algebraic genus p > 2 such that
p > 4q + 1. Then the group Iy is unique and the automorphism ¢, < ¢ >=I"1/I’, is
central in Aut(X).

In our case the algebraic genus of g-hyperelliptic tori is K+ 1 so that the
inequality in Proposition 2.1 (b) becomes k > 4q.
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3. The signature of the g-hyperellipticity group I";. Let I" be a surface NEC group
with signature (1.1) and let I"; be an NEC group with I" <, I';. Then the signature of
I'yis 2]

o(I) = (g £ 121 {2"), ..., 2M))), (3.1)

where s; are even and ¢ = ng +n — 1. We have denoted by [2"] the set of proper
periods [2,.7.,2], and in a similar way the link periods in the period-cycles.

Our first task is to look for the possible values for g, r, n and s; in (3.1). This is
done by means of (2.3). Let m be the number of non empty period-cycles in (3.1).

PRrOPOSITION 3.1. The actual values for g,r and m in (3.1) are given in the
following table:

Case g n r m

1 020 0

I o0 2 0 1
nm o 2 0 2
Iv. 0 2 1 0
\'% 0 2 1 1
vi 0 2 2 0
VII 0 2 2 1
Viar 0 2 3 0
IX 0 2 4 0

X 1 1 0 O
XI 1 1 0 1
XII 1 1 1 0
X 11 2 0
XIV. 1 2 0 0
XV 21 0 0

Proof. From (2.3) we have
r 1 n
k—2<’7g+"_2+2+42,-=151>- (3.2)

The number of non-empty period-cycles is m and so
k<2 I
= (n_m)+§Zi=l Sis

or, equivalently, .
n
—2m>k—2n— 12i=1 5. (3.3)

From (3.2) we obtain

1
k—2n—52;1 si=2ng —4+r, (3.4)
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and from (3.3) and (3.4)

2m <4 — (2ng +r).

Giving numeric values to g and r and taking account of the sign in the signature we
obtain the entries of the table. O

We are interested in the case when the group of the g-hyperellipticity is unique.
As we saw in the previous section, k must be greater than 4¢; from now on we
always suppose that this condition holds.

THEOREM 3.2. Let X = D/I" be a k-bordered torus, k > 4q. Then X is g-hyper-
elliptic if and only if there exists a unique NEC group I'y with algebraic genus ¢, such
that I' <o I'y and the signature of I'y is one of the following four signatures:

(1) (0, 4, [-], {(—)7, 222042}y

(2) (0, +,[=1, {(=)7", 2%), (2)}), where s; + 55 = 2(k — 2q +2), s and s, are
even;

(3) (0, +.[241. {(-)}), where ¢ =0, k = 2;
@ (1, = [ {7, @22y},

Proof. First of all let us observe from (3.2) that if m = 0 (every period-cycle is
empty) then

k=2q—-1)+r,

and in this case k > 4¢ if and only if r > 2¢ + 2. From Proposition 3.1 we have
r < 4, then m # 0 except for the case IX.

Now we may discard a lot of cases in Proposition 3.1. The available ones are the
cases II, ITI, V, VII, IX and XI. Each case gives us a possible signature for I"; and
for each one we must study the existence of an epimorphism

91 ZF]—)ZQ = {1,y},

with ker6, = I

In order to construct such an epimorphism let us observe that since ker 6; must
be an orientable surface group ([4, Chapter 2]),

(a) consecutive reflections in a period-cycle cannot have the same image by 6,

(b) non orientable words (words in the generators of I'y — I') cannot belong to
ker 6, and

(c) the image by 6, of every elliptic generator must have order two.

Case IL: o(I') = (0, +, [, {(=)"", @2")}).

Since Iy has algebraic genus ¢ then n—1=¢. From (3.2) we have
k = 2(n — 2 +3); therefore s = 2(k — 2¢ + 2).
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To define 6, we see (a) implies

O1(cgr10) =y, j=0,....,k—=2q+2
O1(cqr12i41) =1, j=0,....k—=2g+1.

Thus we obtain k — 2g + 2 empty period-cycles in kerd;. The remaining 2(g — 1)
must be obtained from the empty period-cycles of I';: Cy,..., C,. Then g —1
reflections from the set {ciy, ..., c,0} Will be in ker 6, and for each one 0;(e;) = 1.
Let us define

O1(cio) = 6i(e)) = 1,
fori=1,...,g—1, and 0i(cs0) = 1. To complete the epimorphism there still are

two images to determine: 61(e,) and 60;(eq+1).
From the canonical relation e; - - - e,41 = 1, we have

01(ey) = O1(eq41),

and, by (b), 6i(e;) = 1; otherwise e,c, o would be a non-orientable word in ker 6.

Then
91 : F] —> Zz
e; — 1 i=1,...,q9+1,
) — 1 i=1,...,9-1,
€4q,0 - )
Co+12f  —> Y
Cori 1 — 1

Furthermore, by construction, 6; is unique up to automorphisms of ;.

Case 111: o(I'}) = (0, +, [<], {(=)771, (2), (2%2)}), with s, and s, even.
From (3.2) we have

>
and hence
s1 450 =2(k — 29 + 2).

Reasoning as in Case II we obtain the epimorphism 6; (unique up to Aut(l))
defined as follows:

912 Fl —> Zz
e — 1 i=1,....,q9+1,
cio —> 1 izl,...,q—l,
cj — y 1i=gq,q+1, jeven,
Cij —> 1 1=q,q+l, ] odd.
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Case V: o(I'1) = (0, +, [2], {(—)9, 25)}).

From the relation (3.2) we obtain

1 s S
k=2(g—14+=-4+2)=2g—1+~=
(¢ +2+2) g=1+3,

and hence

s =2k —2q+2).

But the number of period-cycles in ker 0, is

204+ (k—=2g+1),

where [ = #{c;o : 01(ci0) =1, i=1, ..., ¢q}. This number never equals k. So this case
must be discarded.

Case VII: o(I'1) = (0, +,[2, 2], {(—)%, 2)}).
Every epimorphism 6, : I'y7—>Z, such that ker#, is a surface group must
satisfy

01(x1) = 01(x2) = O1(ciy) =y,

for some c¢;; € I'|. Then ker6; is non-orientable, and this case must also be dis-
carded.

Case IX: o(I'1) = (0, +, 24, {(—))).
In this case the epimorphism 6, : I'y—> Z, such that ker 6, is a torus with two
boundaries is defined by

6p: I — 2,
x;, — y i=1,...,4, (see(c))
ege — 1
C1 — 1

is unique up to Aut(l").

Case XI: o(I') = (1, —, [-]. {(=)"". @)D.
From (3.2) k = 2(¢ — 1) + 5. So that s = 2(k — 2¢ + 2) and reasoning as in Case
I1, the epimorphism 6 is defined by

9]2 F] —> 22
di —_ y
e; — 1 i=1,...,q,
) — 1 i=1,...,9—-1,
Cq2 —> Y
Cqoe1 — 1
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4. Dimension of the Teichmiiller space. In this Section we study the Teichmiiller
space associated to g-hyperelliptic k-bordered tori.

Let G be the full group of isometries of the hyperbolic plane D. Given an NEC
group A let us denote by R(A, G) the set of monomorphisms r : A—>G such that
r(A) is a discrete group and the quotient D/r(A) is compact. Two eclements
ri, ry € R(A, G) are equivalent, r| ~ ry, if and only if there exists an element g € G
satisfying r(1) =g r(A) g~ !, for every i€ A The quotient space 7(A,G) =
R(A, G)/ ~, the Teichmiiller space of A, is homeomorphic to a cell with dimension
d(A). If A'is a Fuchsian group with (NEC) signature (g, +, [my, ....m,], {—}) it is well
known that d(A) = 6g + 2r — 6. It is proved in [15] that if A is a proper NEC group
then d(A) =447

The Teichmiiller modular group M(A) of A is the quotient Aut(A)/Inn(A) [11],
where Aut(A) is the full group of automorphisms of A and we denote by Inn(A) the
inner automorphisms.

Now let I be an NEC group with signature (1, 4+, [<], {(—)*}) and X = D/TI". Let
¢ an automorphism of order two such that X/ < ¢ >= X has algebraic genus ¢ and
let I} be an NEC group such that X; = D/I";. We have seen in the previous section
that if k£ > 4¢ the group I'| has a signature of four possible types. So we divide the
g-hyperelliptic k-bordered tori into four classes according to whether the quotient
by the g-hyperelliptic involution is:

(1) a sphere with corner points in a single connected boundary component;

(2) a sphere with corner points in two connected boundary components;

(3) a disc with four cone points;

(4) a non-orientable surface.

Hence the Teichmdiller space
T,=1lrleT: D/r(I') is a g-hyperelliptic k-bordered torus, k > 44}
becomes divided into four subspaces corresponding to the above classes:

_ 7l 2 3 4
T,=T,UT?UT UT.

From [9] we have for i =1, 3 and 4,

To= |J & |J 5@Td.9). (4.1)
aeM(I)  ize®(I,T),T1/T)
where I'y is the (unique) NEC group of the g-hyperellipticity of X, &(I", I'1, I'1/I") is
the family of equivalence classes of surjections ¢ : I'j—> Z, with ker ¢ = I" modulo
the action of Aut(I") and Aut(Z,) and i is the induced isometry by the inclusion
ig : ker¢p—1I" :
() <= 1)
21— [riy]

N
l¢.

where t € R(I', G).

In the class (2), we have a family of g-hyperellipticity groups, that will be
denoted by I'{'", with signature as in Theorem 3.2(2). Then, 7 3 is decomposed as
follows:
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2 _ U 51,82
T‘I - Tq ’

s1+5:=2(k—2¢g+2)

where 77" has the same expression as in (4.1), changing I'; to I'/"*.

In all cases, the families &(I", I}, I /I'), i = 1,3 and 4, and &(I", I'|"*, I'{"**/I")
have a single element, as was shown in the proof of Theorem 3.2. There, we con-
structed the unique class of epimorphisms

¢:I''—2Z,, ker¢p =1, for all g-hyperellipticity groups I'|

(see Cases II, III, IX and XI).

So the conditions of Maclachlan’s method [12, Lemma 3] hold. Thus, we may
conclude that 7 ; is a submanifold of 7(I") of dimension d(I'|) =2k —qg—1. We
have proved the following Theorem.

THEOREM 4.1. The subspace of the Teichmiiller space associated to each class of q-
hyperelliptic k-bordered tori, with k > 4q, is a submanifold of dimension 2k — q + 1.

5. Geometrical description of 7. The abstract concept of Teichmiiller space 7 (1)
of an NEC group I" can be interpreted by means of fundamental regions. As we
have seen two elements ry, r, € R(I") belong to the same class in 7([') if and only if
there exists g € G such that

r(y)=gr(y)g ", forallyeT.

Equivalently, the fundamental regions of the NEC groups r(I") and r,(I") are
congruent, that is, there exists an isometry g € G which transforms one of them on
the other one. For this reason we can associate to each class in 7 (I") a normalized
fundamental region R such that the number of parameters involved in the con-
struction of R equals d(7(I)), the dimension of the Teichmiiller space.

Let R; be a fundamental region of the g-hyperellipticity group I';. The canoni-
cal epimorphism 6, : I'y—>I";/I" gives us a way to obtain a fundamental region R of
I" from two copies of R;. Our goal in this section will be the description of the
necessary parameters in the construction of R;. To do this we will transform a
canonical Wilkie region Ry into a right-angled fundamental region by a cutting and
pasting procedure.

Description of T ;. Let I'} be the g-hyperellipticity group with signature

(0’ +, [_]’ {(_)(]’ (22(k—2q+2))})’

and let Ry be a Wilkie region of I'; (see Figure 1).

Let us consider the following geodesics in Ryy: let 4; be the common orthogonal
to y; and yu410,(i=1,...,¢9). Every side y; is divided by 4; in two pieces,
yi =y Uy?, and Yg+1,0 1s divided by the 4; in ¢ + 1 pieces:

Yq+1,0 =Y U... U?L].
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Figure 1. Ry.

Let us denote Ry by R, and define transformations Q,, by the following rule:
cut in Riy1 by /; the polygon which contains the side ¢/ and paste this side with ¢; via
¢; to obtain R;.

Then the region

R =Q; ---0;,(Rw)

is a right-angled fundamental region of I'; with 2k + 4 sides:

s Jia @i )s Sim1 (), ficA (V) Ji(R)s - s JgP ) Y Vartiss Varts—1s - -5 Vgrr1, - (5:1)
i=1,...q

where s = 2(k — 2¢ + 2) and

Jo=1a,
ﬁ:el"'eis

y;k:e,-(ylg)in],izl,...,q.

The pairs of identified sides in R* are (4;, fi(4)), i=1,...,q.
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Then we have constructed a hyperbolic right-angled polygon R* having 2k + 4
sides and the 2k + 1 consecutive sides with the following lengths:

o T | 12l | i )]s 1/ - (5.2)

i=0,....q

|Vq+l,s—3i’ <o [ Vg1l

’

Since |fi-1(y7)| = || and | fi(4)| = |4 then we have the following free lengths

[21l, .oy |Aq)s (g orthogonal lines)

[vils - |7l (¢ empty boundaries)

[Vgri1]s - [Var15-3], (s — 3 sides of the non-empty (¢ + 1)-boundary)
[l -, ‘)74171 , (¢ pieces in that y,41 0 becomes divided).

Then, there are 2k — ¢ 4+ 1 lengths and this number equals the dimension of 7 (1]
Description of T ‘;"SZ. Let I'} be the g-hyperellipticity group with signature
O, + [1 AL @, @),

where 51, 57, are even positive integers such that s; + s, = 2(k — 2¢ + 2); and let Ry
be a Wilkie region of I';. To convert Ry in a right-angled polygon, let us consider

& }/q+1,s

64(774)8(2) 7q

Figure 2. Q; (Rw).
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the geodesics: 4;, (i=1,...,¢ — 1) as in the description of ’T;, and 4, the common
orthogonal to y, o and y,110.
Then the region

R =0, -+ Qi,(Rw)

is a right-angled fundamental region of I} with 2k + 4 sides. The perimeter of R*,
and the 2k + 1 lengths of consecutive sides in R* are the same as (5.1) and (5.2),

changing s to s2, and fi1 (1) 10 f-1(¥0) UfoWa)s -+ foeVgs)):
The involved lengths are:

121l o) |Aq), (¢ orthogonal lines)

|)/1 N \J/q_l , (¢ — 1 empty boundaries)

[Yaols - [Yas |- (51 + 1 sides of the non-empty g-boundary)

|)70 seees [V ) (¢ pieces in that y,410 becomes divided)

[Vas11]s - [Var1.-3],  (s2 — 3 sides of the non-empty (¢ + 1)-boundary)

Description of TZ. Let I'} be the g-hyperellipticity group with signature
(0’ +7 [24]7 {(_)})a

and let Ry be a Wilkie region of I'; (see Figure 3). The side-pairings are (&, §;) via
the canonical generators x;, i = 1,...,4; and (¢}, &) via e;.

To convert Ry in a right-angled polygon let us consider the orthogonal lines 4;
from the vertex X; to y;, i =1, ..., 4. These geodesic segments divide y; in five pie-
ces y;, i=0,...,4. Denote Ry by R4, and define the transformations Q,,,
i=1,...,4, as follows: cut in R; the polygon which contains the side §; and paste it
with §; via x; to obtain R;_;.

=V, V91,97, 97,
Figure 3.
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Figure 4. R*.
Then R*=Q;, 0...00,,(Rw) is a right-angled octagon with the following
sides:
Vs UVE AL V3 400 V3 450 Vi A
where

i = fi(A) U fimi(Ap),

V,‘* = fi¥),
Jfi=x1i,
fo=1id.

The polygon R* is completely determined by five lengths:

2|i]|5 L ] 2|i4|7 ?1 )

where |4;| is the distance between the boundary and the cone point X, and |71 | is the
distance between A, and 4.

Description of T;. Let I'} be the g-hyperellipticity group with signature
(L = [FL A @2y,

and let Ry be a Wilkie region of I'; (see Figure 5).

Let d be the glide reflection which transforms &’ in 8. The axis of d is the geodesic
joining the middle points of § and §'. Let P, Q, and S be the vertices between the pair
of sides (8;1, d), (8, &1) and (8, §). Let us consider the following segments: ¢ (respec-
tively &’) the orthogonal to the axis of d from P (respectively Q) (see Figure 6). Then,
d? is a hyperbolic transformation satisfying d>(¢') = ¢.

We are going to convert Ry in a fundamental region of I'} in which the side-
pairings involves the hyperbolic transformation 4. To do it, let us consider the
geodesic m orthogonal to the axis of d which contains the vertex S, and the hyper-
bolic triangles 7T, and T, (see Figure 4). Then, the region
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5’
s=2(k-2q+?2)
Figure 5.
R=R—(T'UT)UdT>)Ud \(T))

is a fundamental region of I'; that follows the pattern of identifications of R in T}I
(see Figure 7). R

Then, we transform R into a right-angled region as we did for R in T:{, obtain-
ing in the same way the set of necessary lengths for its construction.

S ax;:s of d

Figure 6.
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