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Abstract. A compact Klein surface X is a compact surface with a dianalytic
structure. Such a surface is said to be q-hyperelliptic if it admits an involution �, that
is an order two automorphism, such that X= < � > has algebraic genus q. A Klein
surface of genus 1 and k boundary components is a k-bordered torus.
By means of NEC groups, q-hyperelliptic k-bordered tori are studied and a geo-

metrical description of their associated Teichmüller spaces is given.
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1. Introduction. Klein surfaces, introduced from a modern point of view by
Alling and Greenleaf [1], are surfaces endowed with a dianalytic structure. A com-
pact orientable Klein surface X with topological genus 1 and k � 1 boundary com-
ponents is a k-bordered torus. The surface X is said to be q-hyperelliptic if and only
if X admits an involution �, that is an order two automorphism, such that X= < � >
is an orbifold with algebraic genus q. In the particular cases q ¼ 0; 1, X is hyper-
elliptic and elliptic-hyperelliptic respectively.

Non-Euclidean crystallographic groups (NEC groups in short) where intro-
duced by Wilkie [16] and Macbeath [10], and they are an important tool in the study
of Klein surfaces since the results of Preston [14] and May [13]. Klein surfaces can be
seen as quotients of the hyperbolic plane under the action of an NEC group. In
particular, when X is a torus, then X ¼ D=� , where D denotes the hyperbolic plane
and � is a surface NEC group with signature:

�ð�Þ ¼ ð1;þ; ½�	; fð�Þ
k
gÞ; k � 1: ð1:1Þ

The surface X is q-hyperelliptic if and only if there exists an NEC group �1 with
� /2 �1 such that �1=� ¼ <�>. If k > 4q the group �1 is unique [2] and �1 is said
to be the q-hyperellipticity group. In this case the automorphism � is central in the
group Aut(X) and it is called the q-hyperelliptic involution. The q-hyperelliptic sur-
faces have been studied in [2], [3], [5], and [8].

The aim of this work is the geometrical study of the Teichmüller space of q-
hyperelliptic tori by means of fundamental regions of NEC groups. This technique
was used in [6] and for the Moduli space of Riemann surfaces in [7].

In the next Section we give the necessary preliminaries about NEC groups and
Klein surfaces. In Section 3 the signature of the q-hyperelliptic group �1 is obtained.
As a result �1 may belong to one of four different classes. Afterwards we construct
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fundamental regions R with all right angles for groups belonging to the above clas-
ses. The parameters (lengths of the sides in R) can be taken as coordinates in the
Teichmüller space of q-hyperelliptic tori. It is done in Section 4.

2. Preliminaries on NEC groups. An NEC group � is a discrete subgroup of
isometries of the hyperbolic plane D, including reversing-orientation elements, with
compact quotient X ¼ D=� .

Each NEC group � is given a signature [10]

�ð�Þ ¼ ðg;�; ½m1; . . . ;mr	; fðni1; . . . ; nisiÞ; i ¼ 1; . . . ; kgÞ; ð2:1Þ

where g;mi; nij are integers verifying g � 0, mi � 2, nij � 2. g is the topological
genus of X. The sign determines the orientability of X. The numbers mi are the
proper periods corresponding to cone points in X. The brackets ðni1; . . . ; nisi Þ are the
period-cycles. The number k of period-cycles is equal to the number of boundary
components of X . Numbers nij are the periods of the period-cycle ðni1; . . . ; nisiÞ also
called link-periods, corresponding to corner points in the boundary of X. The num-
ber p ¼ 	gþ k� 1 , where 	 ¼ 1 or 2 if the sign of �ð�Þ is ‘�’ or ‘+’ respectively, is
called the algebraic genus of X.

The signature determines a presentation [10] of �:
Generators
xi i ¼ 1; . . . ; r;
ei i ¼ 1; . . . ; k;
ci;j i ¼ 1; . . . ; r; j ¼ 0; . . . ; si;
ai; bi i ¼ 1; . . . ; g; (if � has sign ‘+’);
di i ¼ 1; . . . ; g: (if � has sign ‘�’).
Relations:
xmi

i ¼ 1; i ¼ 1; . . . ; r;

c2i;j�1 ¼ c2i;j ¼ ðci;j�1ci;jÞ
ni;j ¼ 1; i ¼ 1; . . . ; k; j ¼ 1; . . . ; si;

e�1i ci;0eici;si ¼ 1; i ¼ 1; . . . ; k;

Qr
i¼1

xi
Qk
i¼1

ei
Qg
i¼1

ðaibia
�1
i b�1i Þ ¼ 1; i ¼ 1; . . . ; g; (if � has sign ‘+’);

Qr
i¼1

xi
Qk
i¼1

ei
Qg
i¼1

d 2
i ¼ 1; i ¼ 1; . . . ; g; (if � has sign ‘-’);

The isometries xi are elliptic, ei; ai; bi are hyperbolic, ci;j are reflections and di are
glide reflections.

Wilkie in [16] found a fundamental region RW from which he obtained the
algebraic structure of NEC groups. The region RW is called a canonical region or
Wilkie region.

For an NEC group � with signature as (2.1) the region RW is a hyperbolic
polygon with sides labelled in anticlockwise order as follows

"1; �10; . . . ; �1s1 ; "
0

1; . . . ; "k; �k0; . . . ; �ksk ; "
0

k; �1; 

0

1; �
0

1; 
1; . . . ; �g; 

0

g; �
0

g; 
g;

if sign ‘+’, or
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"1; �10; . . . ; �1s1 ; "
0

1; . . . ; "k; �k0; . . . ; �ksk ; "
0

k; �1; �
�
1; . . . ; �g; �

�
g;

if sign ‘�’, where

eið"
0

iÞ ¼ "i; cið�iÞ ¼ �i; aið�
0

iÞ ¼ �i; bið

0

iÞ ¼ 
i; dið�
�
i Þ ¼ �i:

Let us denote by < s1; s2 > the angle between two consecutive sides. In RW we
have

< "i; �i >¼< �i; "
0

>¼ �=2;

and the sum of the remaining angles (accidental cycle) is 2�: Without a loss of gen-
erality we may suppose RW is a convex polygon.

Every NEC group � with signature (2.1) has associated to it a fundamental
region whose area �ð�Þ, called the area of the group (see [15]), is:

�ð�Þ ¼ 2�

�
	gþ k� 2þ

Xr

i¼1

ð1�
1

mi
Þ þ

1

2

Xk
i¼1

Xsi
j¼1

ð1�
1

ni;j
Þ

�
ð2:2Þ

An NEC group with signature (2.1) actually exists if and only if the right hand side
of (2.2) is greater than 0 (see [17]).

If � is a subgroup of an NEC group � 0 of finite index N, then � is also an NEC
group and the following Riemann-Hurwitz formula holds:

�ð�Þ ¼ N�ð� 0Þ: ð2:3Þ

Let X be a Klein surface of topological genus g with k boundary components. Then
by [14] there exists an NEC group � with signature

�ð�Þ ¼ ðg;�; ½�	; ð�Þ; . . .k ; ð�Þ
� �

Þ ð2:4Þ

such that X ¼ D=�, where the sign is ‘‘+’’ if X is orientable and ‘‘�’’ if not. An
NEC group with signature (2.4) is called a surface group.

For each automorphism group G of a surface X ¼ D=� of algebraic genus p > 2
there exists an NEC group � 0 such that G ¼ � 0=� where � � � 0 � NG; and NG

denotes the normalizer of � in the group G, the full group of isometries of D [13].
We give two previous results from [2] in Proposition 2.1 for future reference.

Proposition 2.1. (a) The Klein surface X ¼ D=� is q-hyperelliptic if and only if
there exists an NEC group �1 with algebraic genus q such that � /2 �1.

(b) Let X be a q-hyperelliptic Klein surface of algebraic genus p � 2 such that
p > 4qþ 1. Then the group �1 is unique and the automorphism �; < � >¼ �1=�; is
central in AutðXÞ.

In our case the algebraic genus of q-hyperelliptic tori is kþ 1 so that the
inequality in Proposition 2.1 (b) becomes k > 4q.
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3. The signature of the q-hyperellipticity group �1. Let � be a surface NEC group
with signature (1.1) and let �1 be an NEC group with � /2 �1. Then the signature of
�1 is [2]:

�ð�1Þ ¼ ðg;�; ½2r	; ð2s1Þ; . . .; ð2sn Þ
� �

Þ; ð3:1Þ

where si are even and q ¼ 	gþ n� 1. We have denoted by 2r½ 	 the set of proper
periods 2; . . .r ; 2½ 	, and in a similar way the link periods in the period-cycles.

Our first task is to look for the possible values for g; r; n and si in (3.1). This is
done by means of (2.3). Let m be the number of non empty period-cycles in (3.1).

Proposition 3.1. The actual values for g; r and m in (3.1) are given in the
following table:

Case g 	 r m
I 0 2 0 0
II 0 2 0 1
III 0 2 0 2
IV 0 2 1 0
V 0 2 1 1
VI 0 2 2 0
VII 0 2 2 1
VIII 0 2 3 0
IX 0 2 4 0
X 1 1 0 0
XI 1 1 0 1
XII 1 1 1 0
XIII 1 1 2 0
XIV 1 2 0 0
XV 2 1 0 0

Proof. From (2.3) we have

k ¼ 2

�
	gþ n� 2þ

r

2
þ
1

4

Xn

i¼1
si

�
: ð3:2Þ

The number of non-empty period-cycles is m and so

k � 2ðn�mÞ þ
1

2

Xn

i¼1
si;

or, equivalently,

�2m � k� 2n�
1

4

Xn

i¼1
si: ð3:3Þ

From (3.2) we obtain

k� 2n�
1

2

Xn

i¼1
si ¼ 2	g� 4þ r; ð3:4Þ
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and from (3.3) and (3.4)

2m � 4� ð2	gþ rÞ:

Giving numeric values to g and r and taking account of the sign in the signature we
obtain the entries of the table. &

We are interested in the case when the group of the q-hyperellipticity is unique.
As we saw in the previous section, k must be greater than 4q; from now on we
always suppose that this condition holds.

Theorem 3.2. Let X ¼ D=� be a k-bordered torus, k > 4q. Then X is q-hyper-
elliptic if and only if there exists a unique NEC group �1 with algebraic genus q, such
that � /2 �1 and the signature of �1 is one of the following four signatures:

(1) 0;þ; ½�	; �ð Þ
q; ð22ðk�2qþ2ÞÞ

� �� �
;

(2) 0;þ; ½�	; �ð Þ
q�1; ð2s1Þ; 2s2ð Þ

� �� �
; where s1 þ s2 ¼ 2ðk� 2qþ 2Þ, s1 and s2 are

even;

(3) 0;þ; ½24	; fð�Þg
� �

; where q ¼ 0, k ¼ 2;

(4) 1;�; ½�	; �ð Þ
q�1; ð22ðk�2qþ2ÞÞ

� �� �
:

Proof. First of all let us observe from (3.2) that if m ¼ 0 (every period-cycle is
empty) then

k ¼ 2ðq� 1Þ þ r;

and in this case k > 4q if and only if r > 2qþ 2. From Proposition 3.1 we have
r � 4, then m 6¼ 0 except for the case IX.

Now we may discard a lot of cases in Proposition 3.1. The available ones are the
cases II, III, V, VII, IX and XI. Each case gives us a possible signature for �1 and
for each one we must study the existence of an epimorphism

�1 : �1�!Z2 ¼ f1; yg;

with ker �1 ¼ �:
In order to construct such an epimorphism let us observe that since ker �1 must

be an orientable surface group ([4, Chapter 2]),
(a) consecutive reflections in a period-cycle cannot have the same image by �1,
(b) non orientable words (words in the generators of �1 � �) cannot belong to

ker �1, and
(c) the image by �1 of every elliptic generator must have order two.

Case II: �ð�1Þ ¼ ð0;þ; ½�	; ð�Þ
n�1; ð2sÞ

� �
Þ:

Since �1 has algebraic genus q then n� 1 ¼ q. From (3.2) we have
k ¼ 2ðn� 2þ s

4Þ; therefore s ¼ 2ðk� 2qþ 2Þ.
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To define �1, we see (a) implies

�1ðcqþ1;2jÞ ¼ y; j ¼ 0; . . . ; k� 2qþ 2

�1ðcqþ1;2jþ1Þ ¼ 1; j ¼ 0; . . . ; k� 2qþ 1:

Thus we obtain k� 2qþ 2 empty period-cycles in ker �1: The remaining 2ðq� 1Þ
must be obtained from the empty period-cycles of �1: C1; . . . ;Cq. Then q� 1
reflections from the set fc1;0; . . . ; cq;0g will be in ker �1, and for each one �1ðeiÞ ¼ 1.
Let us define

�1ðci;0Þ ¼ �1ðeiÞ ¼ 1;

for i ¼ 1; . . . ; q� 1; and �1ðcq;0Þ ¼ 1. To complete the epimorphism there still are
two images to determine: �1ðeqÞ and �1ðeqþ1Þ:

From the canonical relation e1 � � � eqþ1 ¼ 1, we have

�1ðeqÞ ¼ �1ðeqþ1Þ;

and, by (b), �1ðeqÞ ¼ 1; otherwise eqcq;0 would be a non-orientable word in ker �1.
Then

�1 : �1 �! Z2

ei �! 1 i ¼ 1; . . . ; qþ 1;
ci;0 �! 1 i ¼ 1; . . . ; q� 1;
cq;0 �! y

cqþ1;2j �! y
cqþ1;2jþ1 �! 1

Furthermore, by construction, �1 is unique up to automorphisms of �1:

Case III: �ð�1Þ ¼ ð0;þ; ½�	; fð�Þ
q�1; ð2s1 Þ; ð2s2ÞgÞ, with s1 and s2 even.

From (3.2) we have

k ¼ 2

�
q� 1þ

s1 þ s2
4

�
¼ 2ðq� 1Þ þ

s1 þ s2
2

;

and hence

s1 þ s2 ¼ 2ðk� 2qþ 2Þ:

Reasoning as in Case II we obtain the epimorphism �1 (unique up to Autð�1Þ)
defined as follows:

�1 : �1 �! Z2

ei �! 1 i ¼ 1; . . . ; qþ 1;
ci;0 �! 1 i ¼ 1; . . . ; q� 1;
ci;j �! y i ¼ q; qþ 1; j even;
ci;j �! 1 i ¼ q; qþ 1; j odd:
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Case V: �ð�1Þ ¼ ð0;þ; ½2	; fð�Þ
q; ð2sÞgÞ:

From the relation (3.2) we obtain

k ¼ 2ðq� 1þ
1

2
þ

s

2
Þ ¼ 2q� 1þ

s

2
;

and hence

s ¼ 2ðk� 2qþ 2Þ:

But the number of period-cycles in ker �1 is

2lþ ðk� 2qþ 1Þ;

where l ¼ #fci;0 : �1ðci;0Þ ¼ 1; i ¼ 1; . . . ; qg: This number never equals k. So this case
must be discarded.

Case VII: �ð�1Þ ¼ ð0;þ; ½2; 2	; fð�Þ
q; ð2sÞgÞ:

Every epimorphism �1 : �1�!Z2 such that ker �1 is a surface group must
satisfy

�1ðx1Þ ¼ �1ðx2Þ ¼ �1ðci;jÞ ¼ y;

for some ci;j 2 �1: Then ker �1 is non-orientable, and this case must also be dis-
carded.

Case IX: �ð�1Þ ¼ ð0;þ; ½24	; fð�ÞgÞ:
In this case the epimorphism �1 : �1�!Z2 such that ker �1 is a torus with two

boundaries is defined by

�1 : �1 �! Z2

xi �! y i ¼ 1; . . . ; 4; ðseeðcÞÞ
e1 �! 1
c1 �! 1

is unique up to Autð�1Þ:

Case XI: �ð�1Þ ¼ ð1;�; ½�	; fð�Þ
q�1; ð2sÞgÞ:

From (3.2) k ¼ 2ðq� 1Þ þ s
2 : So that s ¼ 2ðk� 2qþ 2Þ and reasoning as in Case

II, the epimorphism �1 is defined by

�1 : �1 �! Z2

di �! y
ei �! 1 i ¼ 1; . . . ; q;
ci;0 �! 1 i ¼ 1; . . . ; q� 1;
cq;2j �! y
cq;2jþ1 �! 1

q-HYPERELLIPTIC k-BORDERED TORI 349

https://doi.org/10.1017/S0017089501030142 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501030142


4. Dimension of the Teichmüller space. In this Section we study the Teichmüller
space associated to q-hyperelliptic k-bordered tori.

Let G be the full group of isometries of the hyperbolic plane D. Given an NEC
group � let us denote by Rð�;GÞ the set of monomorphisms r : ��!G such that
rð�Þ is a discrete group and the quotient D=rð�Þ is compact. Two elements
r1; r2 2 Rð�;GÞ are equivalent, r1 � r2, if and only if there exists an element g 2 G

satisfying r1ðlÞ ¼ g r2ðlÞ g�1; for every l 2 � The quotient space T ð�;GÞ ¼
Rð�;GÞ= �; the Teichmüller space of �, is homeomorphic to a cell with dimension
dð�Þ. If � is a Fuchsian group with (NEC) signature ðg;þ; ½m1; . . . :mr	; f�gÞ it is well
known that dð�Þ ¼ 6gþ 2r� 6. It is proved in [15] that if � is a proper NEC group
then dð�Þ ¼ dð�þ

Þ

2 :
The Teichmüller modular group Mð�Þ of � is the quotient Autð�Þ=Innð�Þ [11],

where Autð�Þ is the full group of automorphisms of � and we denote by Innð�Þ the
inner automorphisms.

Now let � be an NEC group with signature ð1;þ; ½�	; fð�Þ
k
gÞ and X ¼ D=� . Let

� an automorphism of order two such that X= < � >¼ X1 has algebraic genus q and
let �1 be an NEC group such that X1 ¼ D=�1. We have seen in the previous section
that if k > 4q the group �1 has a signature of four possible types. So we divide the
q-hyperelliptic k-bordered tori into four classes according to whether the quotient
by the q-hyperelliptic involution is:

(1) a sphere with corner points in a single connected boundary component;
(2) a sphere with corner points in two connected boundary components;
(3) a disc with four cone points;
(4) a non-orientable surface.

Hence the Teichmüller space

T q ¼ f½r	 2 T : D=rð�Þ is a q-hyperelliptic k-bordered torus; k > 4qg

becomes divided into four subspaces corresponding to the above classes:

T q ¼ T
1
q [ T

2
q [ T

3
q [ T

4
q:

From [9] we have for i ¼ 1; 3 and 4,

T
i
q ¼

[
�2Mð�Þ

�ð
[

i�2�ð�;�1;�1=�Þ

i��ðT ð�1;GÞÞÞ; ð4:1Þ

where �1 is the (unique) NEC group of the q-hyperellipticity of X, �ð�;�1;�1=�Þ is
the family of equivalence classes of surjections � : �1�!Z2 with ker� ¼ � modulo
the action of Autð�1Þ and AutðZ2Þ and i�� is the induced isometry by the inclusion
i� : ker ��!�1 :

i�� : T ð�1Þ ,! T ð�Þ
½�	 �! ½� i�	

where � 2 Rð�;GÞ:
In the class (2), we have a family of q-hyperellipticity groups, that will be

denoted by � s1;s2
1 ; with signature as in Theorem 3.2(2). Then, T 2

q is decomposed as
follows:
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T
2
q ¼

[
s1þs2¼2ðk�2qþ2Þ

T
s1;s2
q ;

where T s1;s2
q has the same expression as in (4.1), changing �1 to �s1;s2

1 :
In all cases, the families �ð�;� i

1;�
i
1=�Þ, i ¼ 1; 3 and 4; and �ð�;� s1;s2

1 ;�s1;s2
1 =�Þ

have a single element, as was shown in the proof of Theorem 3.2. There, we con-
structed the unique class of epimorphisms

� : �1�!Z2; ker� ¼ �; for all q-hyperellipticity groups �1

(see Cases II, III, IX and XI).
So the conditions of Maclachlan’s method [12, Lemma 3] hold. Thus, we may

conclude that T i
q is a submanifold of T ð�Þ of dimension dð�1Þ ¼ 2k� q� 1: We

have proved the following Theorem.

Theorem 4.1. The subspace of the Teichmüller space associated to each class of q-
hyperelliptic k-bordered tori, with k > 4q, is a submanifold of dimension 2k� qþ 1.

5. Geometrical description of T . The abstract concept of Teichmüller space T ð�Þ
of an NEC group � can be interpreted by means of fundamental regions. As we
have seen two elements r1; r2 2 Rð�Þ belong to the same class in T ð�Þ if and only if
there exists g 2 G such that

r1ð�Þ ¼ g r2ð�Þ g
�1; for all � 2 �:

Equivalently, the fundamental regions of the NEC groups r1ð�Þ and r2ð�Þ are
congruent, that is, there exists an isometry g 2 G which transforms one of them on
the other one. For this reason we can associate to each class in T ð�Þ a normalized
fundamental region R such that the number of parameters involved in the con-
struction of R equals dðT ð�ÞÞ, the dimension of the Teichmüller space.

Let R1 be a fundamental region of the q-hyperellipticity group �1. The canoni-
cal epimorphism �1 : �1�!�1=� gives us a way to obtain a fundamental region R of
� from two copies of R1: Our goal in this section will be the description of the
necessary parameters in the construction of R1: To do this we will transform a
canonical Wilkie region RW into a right-angled fundamental region by a cutting and
pasting procedure.

Description of T 1
q. Let �1 be the q-hyperellipticity group with signature

ð0;þ; ½�	; fð�Þ
q; ð22ðk�2qþ2ÞÞgÞ;

and let RW be a Wilkie region of �1 (see Figure 1).
Let us consider the following geodesics in RW: let li be the common orthogonal

to �i and �qþ1;0; ði ¼ 1; . . . ; qÞ. Every side �i is divided by li in two pieces,
�i ¼ �1i [ �2i , and �qþ1;0 is divided by the li in qþ 1 pieces:

�qþ1;0 ¼ �0 [ . . . [ �q:
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Let us denote RW by Rqþ1 and define transformations Qli by the following rule:
cut in Riþ1 by li the polygon which contains the side "0i and paste this side with "i via
ei to obtain Ri:

Then the region

R� ¼ Ql1 � � �Qlq ðRWÞ

is a right-angled fundamental region of �1 with 2kþ 4 sides:

. . . ; fi�1ð� i�1Þ; fi�1ðliÞ; fi�1ð�
�
i Þ; fiðliÞ; . . .|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i¼1;...;q

; fqð�qÞ [ �qþ1;s; �qþ1;s�1; . . . ; �qþ1;1; ð5:1Þ

where s ¼ 2ðk� 2qþ 2Þ and

f0 ¼ id;

fi ¼ e1 � � � ei;

��
i ¼ eið�

2
i Þ [ �1i ; i ¼ 1; . . . ; q:

The pairs of identified sides in R� are ðli; fiðliÞÞ; i ¼ 1; . . . ; q:

Figure 1. RW.
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Then we have constructed a hyperbolic right-angled polygon R� having 2kþ 4
sides and the 2kþ 1 consecutive sides with the following lengths:

�qþ1;s�3
�� ��; . . . ; �qþ1;1

�� ��; . . . ; � i�1

�� ��; lij j; fi�1ð�
�
i Þ

�� ��; fiðliÞ
�� ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i¼0;...;q

: ð5:2Þ

Since fi�1ð�
�
i Þ

�� �� ¼ �i
�� �� and fiðliÞ

�� �� ¼ lij j then we have the following free lengths

l1j j; . . . ; lq
�� ��; ðq orthogonal linesÞ

�1
�� ��; . . . ; �q

�� ��; ðq empty boundariesÞ

�qþ1;1
�� ��; . . . ; �qþ1;s�3

�� ��; ðs� 3 sides of the non-empty ðqþ 1Þ-boundaryÞ

�0
�� ��; . . . ; �q�1

��� ���; ðq pieces in that �qþ1;0 becomes dividedÞ:

Then, there are 2k� qþ 1 lengths and this number equals the dimension of T 1
q:

Description of T s1;s2
q . Let �1 be the q-hyperellipticity group with signature

ð0;þ; ½�	; fð�Þ
q�1; ð2s1 Þ; ð2s2 ÞgÞ;

where s1; s2; are even positive integers such that s1 þ s2 ¼ 2ðk� 2qþ 2Þ; and let RW

be a Wilkie region of �1. To convert RW in a right-angled polygon, let us consider

Figure 2. Qlq ðRWÞ.
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the geodesics: li; ði ¼ 1; . . . ; q� 1Þ as in the description of T 1
q, and lq the common

orthogonal to �q;0 and �qþ1;0:
Then the region

R� ¼ Ql1 � � �Qlq ðRWÞ

is a right-angled fundamental region of �1 with 2kþ 4 sides. The perimeter of R�;
and the 2kþ 1 lengths of consecutive sides in R� are the same as (5.1) and (5.2),
changing s to s2, and fq�1ð�

�
q Þ to fq�1ð�

�
q;0Þ [ fqð�q;1Þ; . . . ; fqð�q;s1Þ:

The involved lengths are:

l1j j; . . . ; lq
�� ��; ðq orthogonal linesÞ

�1
�� ��; . . . ; �q�1

�� ��; ðq� 1 empty boundariesÞ

�q;0
�� ��; . . . ; �q;s1

�� ��; ðs1 þ 1 sides of the non-empty q-boundaryÞ

�0
�� ��; . . . ; �q�1

��� ���; ðq pieces in that �qþ1;0 becomes dividedÞ

�qþ1;1
�� ��; . . . ; �qþ1;s2�3

�� ��; ðs2 � 3 sides of the non-empty ðqþ 1Þ-boundaryÞ

Description of T 3
q. Let �1 be the q-hyperellipticity group with signature

ð0;þ; ½24	; fð�ÞgÞ;

and let RW be a Wilkie region of �1 (see Figure 3). The side-pairings are ð�0i; �iÞ via
the canonical generators xi; i ¼ 1; . . . ; 4; and ð"01; "1Þ via ei:

To convert RW in a right-angled polygon let us consider the orthogonal lines li
from the vertex Xi to �1; i ¼ 1; . . . ; 4: These geodesic segments divide �1 in five pie-
ces � i; i ¼ 0; . . . ; 4: Denote RW by R4; and define the transformations Qli ;
i ¼ 1; . . . ; 4; as follows: cut in Ri the polygon which contains the side �0i and paste it
with �i via xi to obtain Ri�1:

Figure 3.
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Then R� ¼ Ql1 � . . . �Ql4 ðRWÞ is a right-angled octagon with the following
sides:

��
5 [ ��

1 ; l
�
1; �

�
2 ; l

�
2; �

�
3 ; l

�
3; �

�
4 ; l

�
4;

where

l�i ¼ fiðliÞ [ fi�1ðliÞ;

��
i ¼ fið� iÞ;

fi ¼ x1i;

f0 ¼ id:

The polygon R� is completely determined by five lengths:

2 l1j j; . . . ; 2 l4j j; �1
�� ��;

where lij j is the distance between the boundary and the cone point Xi, and �1
�� �� is the

distance between l1 and l2.

Description of T 4
q. Let �1 be the q-hyperellipticity group with signature

ð1;�; ½�	; fð�Þ
q�1; ð22ðk�2qþ2ÞÞgÞ;

and let RW be a Wilkie region of �1 (see Figure 5).
Let d be the glide reflection which transforms �0 in �: The axis of d is the geodesic

joining the middle points of � and �0. Let P; Q; and S be the vertices between the pair
of sides ð"0q; �Þ; ð�

0; "1Þ and ð�; �0Þ: Let us consider the following segments: " (respec-
tively "0Þ the orthogonal to the axis of d from P (respectively QÞ (see Figure 6). Then,
d2 is a hyperbolic transformation satisfying d 2ð�0Þ ¼ �:

We are going to convert RW in a fundamental region of �1 in which the side-
pairings involves the hyperbolic transformation d 2: To do it, let us consider the
geodesic m orthogonal to the axis of d which contains the vertex S; and the hyper-
bolic triangles T1 and T2 (see Figure 4). Then, the region

Figure 4. R�.
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bRR ¼ R� ðT1 [ T2Þ [ dðT2Þ [ d�1ðT1Þ

is a fundamental region of �1 that follows the pattern of identifications of R in T
1
q

(see Figure 7).
Then, we transform bRR into a right-angled region as we did for R in T

1
q; obtain-

ing in the same way the set of necessary lengths for its construction.

Figure 5.

Figure 6.
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