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Abstract We characterize quasi-Kähler manifolds whose curvature tensor associated to the canonical
Hermitian connection satisfies the first Bianchi identity. This condition is related to the third Gray iden-
tity and in the almost-Kähler case implies the integrability. Our main tool is the existence of generalized
holomorphic frames previously introduced by the second author. By using such frames we also give a
simpler and shorter proof of a theorem of Goldberg. Furthermore, we study almost-Hermitian struc-
tures having the curvature tensor associated to the canonical Hermitian connection equal to zero. We
show some explicit examples of quasi-Kähler structures on the Iwasawa manifold having the Hermitian
curvature vanishing and the Riemann curvature tensor satisfying the second Gray identity.
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1. Introduction

Quasi-Kähler and almost-Kähler manifolds are special classes of almost-Hermitian man-
ifolds and can be considered as natural generalizations of Kähler manifolds to the con-
text of almost-symplectic and symplectic manifolds. It is well known that if (M, ω) is
an (almost-)symplectic manifold, then there always exists an almost-complex structure J

compatible with ω. Furthermore, the choice of such an almost-complex structure is unique
up to homotopy. Hence, quasi-Kähler and almost-Kähler structures can be considered as
a tool to study (almost-)symplectic manifolds.

The interplay between the integrability of almost-Hermitian structures and the cur-
vature has been largely studied in recent years (see, for example, [2,11] and references
therein). One of the most important results in this topic is due to Goldberg. Indeed,
Goldberg [9] proved that if the Riemann curvature tensor of an almost-Kähler metric g

satisfies the first Gray condition, i.e. if it commutes with the almost-complex structure,
then g is a Kähler metric. Gray’s conditions were introduced in [10] and consist of some
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formulae involving the curvature tensor of an almost-Hermitian metric and the associ-
ated almost-complex structure. The Goldberg Theorem has been further generalized to
the following formula:

s∗ − s = ‖∇ω‖2, (1.1)

where s and s∗ are the scalar curvature and the ∗-scalar curvature associated to an
almost-Kähler structure (g, J, ω), respectively (see, for example, [2]). The classical proof
of this result is based on the Weitzenböck decomposition.

Another important curvature tensor in almost-Hermitian geometry is the Hermitian
curvature tensor R̃. This tensor is defined as the curvature of the unique Hermitian
connection ∇̃, whose torsion has (1, 1)-part vanishing.

In [5] de Bartolomeis and Tomassini proved that a quasi-Kähler manifold always admits
a special complex frame. This result has been improved in [16] by introducing generalized
normal holomorphic frames. Such frames have been further taken into account in [17]
to prove that if the holomorphic bisectional curvature associated to an almost-Kähler
metric g and the holomorphic bisectional curvature associated to the canonical connection
coincide, then g is a Kähler metric. This result is not trivial, since the Hermitian curvature
tensor does not necessarily satisfy the first Bianchi identity.

As a first result of this paper we give a new proof of (1.1). Our proof is elementary and
makes use not of the Weitzenböck decomposition, but only of the existence of generalized
normal holomorphic frames. Sections 3 and 4 are dedicated to the study of the Hermitian
curvature tensor in quasi-Kähler and almost-Kähler manifolds. We show that in the
quasi-Kähler case this curvature tensor satisfies the first Bianchi identity if and only if
the curvature of g satisfies both the third Gray condition and another special identity
involving the derivative of the Nijenhuis tensor, as follows.

Theorem 1.1. Let (M, g, J, ω) be a quasi-Kähler manifold. The Hermitian curvature
tensor R̃ satisfies the first Bianchi identity

S
X,Y,Z

R̃(X, Y, Z, ·) = 0 for every X, Y, Z ∈ Γ (TM) (1.2)

if and only if the following conditions hold:

(i) the curvature tensor R associated to g satisfies the third Gray identity

R(Z̄1, Z2, Z3, Z4) = 0 for every Z1, Z2, Z3, Z4 ∈ Γ (T 1,0M);

(ii) we have
R(Z1, Z2, Z̄3, Z̄4) = 1

4F (Z̄3, Z1, Z2, Z̄4)

for every Z1, Z2, Z3, Z4 ∈ Γ (T 1,0M), where F is the tensor

F (X, Y, Z, W ) := g((∇XN)(Y, Z), W ),

∇ is the Levi-Cività connection of g and N denotes the Nijenhuis tensor.

The previous theorem allows us to prove the following.
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Corollary 1.2. Let (M, g, J, ω) be an almost-Kähler manifold. Assume that the Her-
mitian curvature tensor associated to (g, J) satisfies the first Bianchi identity (1.2). Then
(M, g, J, ω) is a Kähler manifold.

In § 4 we study almost-Hermitian manifolds whose Hermitian curvature tensor vanishes.
By Corollary 1.2 this condition forces a four-dimensional quasi-Kähler structure to be
Kähler. In higher dimensions things work differently, even in the compact case. We show
that it is possible to construct examples of strictly quasi-Kähler nilmanifolds having
Hermitian curvature equal to zero.

The study of the tensor R̃ is also related to a conjecture of Donaldson’s. Indeed, R̃

has recently been taken into account by Tosatti et al . in [14] to study a conjecture of
Donaldson’s stated in [6]. More precisely, they proved that if (M, ω) is a symplectic
manifold, J is an almost-complex structure tamed by ω and R(g, J) denotes the tensor

Rij̄kl̄(g, J) := R̃j

ikl̄
+ 4Nr

l̄j̄N̄
i
r̄k̄, (1.3)

where g is the metric associated to (ω, J) and N is the Nijenhuis tensor of J . Then the
condition R(g, J) � 0 implies that Donaldson’s conjecture holds.

It is important to observe that in the examples described in § 4 the tensor R(g, J)
vanishes.

Notation

Given a differential manifold M , TM denotes its tangent bundle. If a vector bundle
F is fixed, then Γ (F ) denotes the vector space of the relative smooth sections. If Zi is a
complex vector field on a manifold M , then we usually write Zı̄ instead of Z̄i. The cyclic
sum is denoted by the symbol S.

2. Review

2.1. Almost-Hermitian manifolds

Let M be a 2n-dimensional manifold. An almost-complex structure on M is an endo-
morphism J of TM satisfying J2 = − Id. An almost-complex structure J is said to be
integrable if the Nijenhuis tensor

N(X, Y ) := [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X, Y ] for X, Y ∈ Γ (TM)

vanishes everywhere. In view of the celebrated Newlander–Nirenberg Theorem [12], J

is integrable if and only if it is induced by a system of holomorphic coordinates. Any
almost-complex structure on M induces a natural splitting of the complexified tangent
bundle into

TM ⊗ C = T 1,0M ⊕ T 0,1M,

where T 1,0M and T 0,1M are the eigenspaces to i and −i, respectively. Consequently, the
vector bundle ∧pM ⊗ C of complex p-forms on M splits as

∧pM ⊗ C =
⊕

r+s=p

∧r,sM.
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Since
d(Γ (∧r,sM)) ⊆ Γ (∧r+2,s−1M ⊕ ∧r+1,sM ⊕ ∧r,s+1M ⊕ ∧r−1,s+2M),

the exterior derivative splits as

d = A + ∂ + ∂̄ + Ā.

It is well known that J is integrable if and only if A = 0. Furthermore, it can be useful
to observe that the Nijenhuis tensor satisfies

N(Z1, Z2) ∈ Γ (T 0,1M), N(Z1, Z̄2) = 0 (2.1)

for every Z1, Z2 ∈ Γ (T 1,0M). A Riemannian metric g on (M, J) is said to be J-Hermitian
if it is preserved by J . In this case the pair (g, J) is called an almost-Hermitian structure.
Any almost-Hermitian structure (g, J) induces a natural almost-symplectic structure
ω(· , ·) := g(J · , ·).

Definition 2.1. The triple (g, J, ω) is called

(i) a quasi-Kähler structure if ∂̄ω = (dω)1,2 = 0,

(ii) an almost-Kähler structure if dω = 0.

On the other hand, if ω is a non-degenerate 2-form on an almost-complex manifold
(M, J), then we say that J is tamed by ω if

ω(X, JX) > 0 for all X 	= 0.

In this case we can define a Riemannian metric g by

g(X, Y ) := 1
2 (ω(X, JY ) + ω(Y, JX)).

The following lemma will be useful in the remainder of the paper (see, for example,
[13,16]).

Lemma 2.2. Let (M, g, J, ω) be an almost-Hermitian manifold and let ∇ be the Levi-
Cività connection associated to g. Then the following facts hold:

(i) the form ω is quasi-Kähler if and only if

∇Z̄1
Z2 ∈ Γ (T 1,0M) for all Z1, Z2 ∈ Γ (T 1,0M); (2.2)

(ii) the form ω is almost-Kähler if and only if it is quasi-Kähler and the Nijenhuis
tensor of J satisfies

g(∇Z1Z2, Z3) = 1
4g(N(Z2, Z3), Z1) for all Z1, Z2, Z3 ∈ Γ (T 1,0M). (2.3)

Proof. It is well known that for an almost-Hermitian structure (g, J, ω) the following
fundamental relation holds:

2g((∇XJ)Y, Z) = dω(X, JY, JZ) − dω(X, Y, Z) + g(N(Y, Z), JX) (2.4)

for every X, Y, Z ∈ Γ (TM). Items (i) and (ii) can be obtained just by considering the
complex extension of (2.4). �
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2.2. The canonical connection

A linear connection on an almost-Hermitian manifold (M, g, J) is called Hermitian
if it preserves g and J . Any almost-Hermitian manifold admits a canonical Hermitian
connection ∇̃, which is characterized by the following properties:

∇̃g = 0, ∇̃J = 0, Tor(∇̃)1,1 = 0,

where Tor(∇̃)1,1 denotes the (1, 1)-part of the torsion of ∇̃. In the special case of a
quasi-Kähler structure, ∇̃ is given by

∇̃ = ∇ − 1
2J∇J,

where ∇ is the Levi-Cività connection of g (see, for example, [8]). We will call ∇̃ simply
the canonical connection. The connection ∇̃ induces the Hermitian curvature tensor

R̃(X, Y, Z, W ) = g(∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z, W ).

Since ∇̃ preserves g, one has

R̃(X, Y, Z, W ) = −R̃(Y, X, Z, W ) = −R̃(X, Y, W, Z).

Note that since ∇̃ has torsion, in general R̃ does not satisfy the first Bianchi identity
(1.2). Moreover, in general we do not have R̃(X, Y, Z, W ) = R̃(Z, W, X, Y ).

2.3. The Gray conditions

In [10] Gray considered some special classes of almost-Hermitian manifolds character-
ized by some identities involving the curvature tensor.

Definition 2.3. Let (M, g, J) be an almost-Hermitian manifold and let R be the
curvature tensor of g. Then R is said to satisfy

(i) the first Gray identity (G1) if R(Z1, Z2, · , ·) = 0,

(ii) the second Gray identity (G2) if R(Z1, Z2, Z3, Z4) = R(Z̄1, Z2, Z3, Z4) = 0,

(iii) the third Gray identity (G3) if R(Z̄1, Z2, Z3, Z4) = 0,

for every Z1, Z2, Z3, Z4 ∈ Γ (T 1,0M).

Clearly, one has that
(G1) =⇒ (G2) =⇒ (G3)

and that the curvature tensor of a Kähler manifold satisfies (G1). Furthermore, in view of
a theorem of Goldberg [9], any almost-Kähler manifold whose curvature tensor satisfies
(G1) is a genuine Kähler manifold. The same cannot be claimed for the condition (G2).
Indeed, in d > 6 there exist examples of compact strictly almost-Kähler manifolds whose
curvature tensor satisfies (G2) [4]. In dimension 4 there is a different behaviour, since we
have the following theorem due to Apostolov et al .

Theorem 2.4 (Apostolov et al . [3, Theorem 2]). In dimension 4 there is no
compact strictly almost-Kähler manifold whose curvature tensor satisfies (G3).
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2.4. Generalized normal holomorphic frames

Let (M, g, J, ω) be a 2n-dimensional almost-Hermitian manifold. Denote by ∇ the Levi-
Cività connection associated to the metric g, by R the curvature tensors associated to ∇
and by N the Nijenhuis tensor of J .

Definition 2.5. Let o be an arbitrary point in M . A generalized normal holomor-
phic frame (GNHF) around o is a local (1, 0)-complex frame {Z1, . . . , Zn} satisfying the
following properties for every i, j, k = 1, . . . , n:

(i) ∇iZj̄(o) = 0;

(ii) ∇iZj(o) is of type (0, 1);

(iii) gij̄(o) = δij , dgij̄(o) = 0;

(iv) ∇i∇j̄Zk(o) = 0.

We recall the following result.

Theorem 2.6 (Vezzoni [16, Theorem 1]). The following facts are equivalent:

(i) ω is a quasi-Kähler form;

(ii) any point o in M admits a generalized normal holomorphic frame.

The following lemma, the proof of which is similar to that of [17, Theorem 3.3], will
be useful in the remainder of the paper.

Lemma 2.7. Let F be the smooth tensor on M defined by

F (X, Y, Z, W ) := g((∇XN)(Y, Z), W ) for X, Y, Z, W ∈ Γ (TM).

Consider an arbitrary point o of M and let {Z1, . . . , Zn} be a GNHF around o. Then

Fı̄jkl̄(o) = 4g([Zj , Zk],∇ı̄Zl̄)(o)

for every i, j, k, l = 1, . . . , n.

The next result is a slight improvement of [17, Theorem 3.3] and can be viewed as a
corollary of Lemma 2.7.

Theorem 2.8. Let (M, g, J, ω) be a quasi-Kähler manifold and assume that the Nijen-
huis tensor of J satisfies

S
X,Y,Z

∇XN(Y, Z) = 0 for all X, Y, Z ∈ Γ (TM). (2.5)

Then J is integrable.
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Proof. Let o ∈ M and let {Z1, . . . , Zn} be a GNHF around o. By (2.1) we have

Nik̄(o) = 0, Nik(o) ∈ T 0,1
o M for every i, k = 1, . . . , n.

Furthermore, by the properties of the GNHF, we have

S
ı̄,j,k

(∇ı̄N)(Zj , Zk)(o) = ∇ı̄(N(Zj , Zk))(o).

Hence, Equation (2.5) implies (∇ı̄N)jk = 0, which, in view of Lemma 2.7, is equivalent
to N = 0. �

A direct computation gives the following.

Proposition 2.9. The components of the curvature tensor with respect to a GNHF
{Z1, . . . , Zn} around a point o can be written as

Rij̄kl̄(o) = −g(∇j̄∇iZk, Zl̄)(o),

Rı̄jkl(o) = g(∇ı̄∇jZk, Zl)(o),

Rı̄j̄kl(o) = −g(∇[Zı̄,Zj̄]Zk, Zl)(o),

Rijkl(o) = g(∇i∇jZk, Zl)(o) − g(∇j∇iZk, Zl)(o).

2.5. Proof of (1.1)

The aim of this section is to give an alternative proof of (1.1) without using the
Weitzenböck decomposition.

Proof of (1.1). Let (M, g, J, ω) be an almost-Kähler manifold. First, we recall the
definition of the ∗-Ricci tensor and the ∗-scalar curvature

r∗(X, Y ) :=
2n∑
i=1

R(JX, JXi, Xi, Y ), s∗ :=
2n∑
i=1

r∗(Xi, Xi),

where {X1, . . . , X2n} is an arbitrary orthonormal frame on M . It is easy to see that in
complex coordinates the scalar curvature and the ∗-scalar curvature can be written as

s = 2
n∑

i,j=1

{Rij̄jı̄ − Rijı̄j̄}, s∗ = 2
n∑

i,j=1

{Rij̄jı̄ + Rijı̄j̄},

where {Z1, . . . , Zn} is an arbitrary unitary (1, 0)-frame on M . In particular,

s∗ − s = 4
n∑

i,j=1

Rijı̄j̄

and (1.1) can be rewritten as

n∑
i,j=1

Rijı̄j̄ = 1
4‖∇ω‖2.
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Fix an arbitrary point o of M and let {Z1, . . . , Zn} be a GNHF around o. Since ∇iZj(o) ∈
T 0,1

o M , we have Nij(o) = −4[Zi, Zj ](o); hence, at o (2.3) reads as

g([Zi, Zj ], Zl)(o) = −g(∇lZi, Zj)(o).

Since {Z1, . . . , Zn} is a unitary frame we have

[Zi, Zj ](o) = −
n∑

l=1

Γ j̄
li(o)Zl̄(o),

where Γ j̄
li := g(∇lZi, Zj). Furthermore, we have

Rijı̄j̄(o) = −g(∇[Zi,Zj ]Zı̄, Zj̄)(o)

=
n∑

l=1

Γ j̄
lig(∇l̄Zı̄, Zj̄)(o)

=
n∑

l=1

Γ j̄
li(o)Γ

j

l̄ı̄
(o)

=
n∑

l=1

|Γ j̄
li|2(o).

Hence,
n∑

i,j=1

Rijı̄j̄(o) =
n∑

l,i,j=1

|Γ j̄
li|2(o)

and the claim follows since (∇Zω)(X, Y ) = 1
2g(N(X, Y ), JZ). �

Condition (1.1) is related to the subspace W4 described in [15, p. 372] (see also [7],
where W4 = C4). Indeed, by using [15, Lemma 4.5, p. 371] it is easy to see that the
projection RW4 of R to W4 is given by

RW4 =
(s − s∗)

16n(n − 1)
=

1
4n(n − 1)

n∑
i,j=1

Rijı̄j̄ =
1

16n(n − 1)
‖∇ω‖2.

3. The first Bianchi identity for the Hermitian curvature

In this section we shall prove Theorem 1.1 and its corollary (Corollary 1.2).
Let ∇̃ be the canonical connection associated to a quasi-Kähler structure (g, J, ω) on

a 2n-dimensional manifold M . We have the following.

Lemma 3.1. Let Z1, Z2 be two arbitrary (1, 0)-vector fields on M . Then

∇̃Z1Z2 ∈ Γ (T 1,0M), ∇̃Z̄1
Z2 = ∇Z̄1

Z2 ∈ Γ (T 1,0M).

Proof. It is sufficient to consider the definition of ∇̃ and to apply Lemma 2.2. �

As a direct consequence of Lemma 3.1 we have the following.
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Proposition 3.2. Let {Z1, . . . , Zn} be an arbitrary (1, 0)-frame on M and let R̃ be
the Hermitian curvature tensor of M . Then

(i) R̃ijkl̄ = Rijkl̄,

(ii) R̃ı̄j̄kl = R̃ijkl = R̃ij̄kl = 0.

Lemma 3.3. Let o be an arbitrary point of M and let {Z1, . . . , Zn} be a GNHF
around o. Then

∇̃iZj(o) = 0, ∇̃ı̄Zj(o) = 0 for any i, j = 1, . . . , n,

i.e. the canonical connection acts on generalized normal holomorphic frames in quasi-
Kähler manifolds as the Levi-Cività connection acts on normal holomorphic frames in
Kähler manifolds.

Proof. Let {Z1, . . . , Zn} be a GNHF around o. Since ∇iZj(o) ∈ T 0,1
o M , we have

∇̃iZj(o) = 1
2{∇iZj − J∇iJZj}(o)

= 1
2∇iZj(o) − i 1

2J∇iZj(o)

= 1
2∇iZj(o) − 1

2∇iZj(o)

= 0.

Moreover, since ∇ı̄Zj(o) = 0, we have

∇̃ı̄Zj(o) = 1
2{∇ı̄Zj − J∇ı̄JZj}(o) = 1

2∇ı̄Zj(o) − i 1
2J∇ı̄Zj(o) = 0

and the claim follows. �

We have the following.

Proposition 3.4. The components of the Hermitian curvature tensor R̃ with respect
to a GNHF {Z1, . . . , Zn} around a point o can be written as

(i) R̃ij̄kl̄(o) = Rij̄kl̄(o) − g(∇iZk,∇j̄Zl̄)(o),

(ii) R̃ijkl̄(o) = Rijkl̄(o),

(iii) R̃ı̄j̄kl(o) = R̃ijkl(o) = R̃ij̄kl(o) = 0.

Proof. Items (ii) and (iii) come from Proposition 3.2. The proof of the first identity
can be obtained as follows.

By definition of R̃ and the equation [Zi, Zj̄](o) = 0 we have

R̃ij̄kl̄(o) = g(∇̃i∇̃j̄Zk − ∇̃j̄∇̃iZk − ∇̃[Zi,Zj̄]Zk, Zl̄)(o)

= g(∇̃i∇̃j̄Zk − ∇̃j̄∇̃iZk, Zl̄)(o).
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Applying Lemmas 3.1 and 3.3, we get

R̃ij̄kl̄(o) = g(∇̃i∇̃j̄Zk − ∇̃j̄∇̃iZk, Zl̄)(o)

= g(∇̃i∇j̄Zk, Zl̄)(o) − g(∇̃j̄∇̃iZk, Zl̄)(o)

= Zig(∇j̄Zk, Zl̄)(o) − g(∇j̄Zk, ∇̃iZl̄)(o) − Zj̄g(∇̃iZk, Zl̄)(o) + g(∇̃iZk, ∇̃j̄Zl̄)(o)

= Zig(∇j̄Zk, Zl̄)(o) − Zj̄g(∇̃iZk, Zl̄)(o).

Finally, taking into account Lemma 2.2 and the fact that ∇ and ∇̃ preserve g, we obtain

R̃ij̄kl̄(o) = Zig(∇j̄Zk, Zl̄)(o) − Zj̄g(∇̃iZk, Zl̄)(o)

= g(∇i∇j̄Zk, Zl̄)(o) + g(∇j̄Zk,∇iZl̄)(o) − Zj̄Zigkl̄(o) + Zj̄g(Zk, ∇̃iZl̄)(o)

= −Zj̄Zigkl̄(o) + Zj̄g(Zk, ∇̃iZl̄)(o)

= −Zj̄g(∇iZk, Zl̄)(o) − Zj̄g(Zk,∇iZl̄)(o) − Zj̄g(Zk,∇iZl̄)(o)

= −g(∇j̄∇iZk, Zl̄)(o) − g(∇iZk,∇j̄Zl̄)(o)
− g(∇j̄Zk,∇iZl̄)(o) − g(Zk,∇j̄∇iZl̄)(o)

= Rij̄kl̄(o) − g(∇iZk,∇j̄Zl̄)(o),

i.e.
R̃ij̄kl̄(o) = Rij̄kl̄(o) − g(∇iZk,∇j̄Zl̄)(o),

and the claim follows. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let o ∈ M be an arbitrary point and let {Z1, . . . , Zn} be a
GNHF around o. By Proposition 3.4 we have

S
i,j,k

R̃ijkl(o) = S
i,j,k

R̃ijkl̄(o) = 0.

Moreover,
S

i,j̄,k
R̃ij̄kl(o) = Rkij̄l(o). (3.1)

Furthermore,

S
i,j̄,k

R̃ij̄kl̄(o) = R̃ij̄kl̄(o) + R̃kij̄l̄(o) + R̃j̄kil̄(o)

= R̃ij̄kl̄(o) + R̃j̄kil̄(o)

= Rij̄kl̄(o) + Rj̄kil̄(o) − g(∇iZk,∇j̄Zl̄)(o) + g(∇kZi,∇j̄Zl̄)(o)

= −Rkij̄l̄(o) − g([Zi, Zk],∇j̄Zl̄)(o),

i.e.
S

i,j̄,k
R̃ij̄kl̄(o) = Rikj̄l̄(o) − g([Zi, Zk],∇j̄Zl̄)(o). (3.2)
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Hence, the Hermitian curvature R̃ satisfies the first Bianchi identity at o if and only if
the following equations hold:

Rkij̄l(o) = 0, (3.3)

Rikj̄l̄(o) − g([Zi, Zk],∇j̄Zl̄)(o) = 0. (3.4)

Equation (3.3) is the third Gray condition, while, in view of Lemma 2.7, Equation (3.4)
is satisfied if and only if

R(Z1, Z2, Z̄3, Z̄4) = 1
4g((∇Z̄3

N)(Z1, Z2), Z̄4)

for every Z1, Z2, Z3, Z4 ∈ Γ (T 1,0M). �

Now we can prove Corollary 1.2.

Proof of Corollary 1.2. Assume that (M, g, J, ω) is an almost-Kähler manifold and
let R̃ be the Hermitian curvature of (g, J). Fix an arbitrary point o of M , consider a
GNHF {Z1, . . . , Zn} around o and assume that R̃ satisfies the first Bianchi identity. Then,
in view of Theorem 1.1, we have

0 = Rikj̄l̄(o) − g([Zi, Zk],∇j̄Zl̄)(o) = −g(∇[Zi,Zk]Zj̄, Zl̄)(o) − g([Zi, Zk],∇j̄Zl̄)(o),

i.e.

g(∇[Zi,Zk]Zj̄, Zl̄)(o) = −g([Zi, Zk],∇j̄Zl̄)(o). (3.5)

In particular,

g([Zi, Zk],∇j̄Zl̄)(o) = −g([Zi, Zk],∇l̄Zj̄)(o),

i.e. g([Zi, Zk],∇j̄Zl̄)(o) is skew-symmetric with respect to the indexes j̄, l̄. In view of
(2.3) we have

g(∇[Zi,Zk]Zj̄, Zl̄)(o) = 1
4g(Nj̄l̄, [Zi, Zk])(o)

= −g([Zj̄, Zl̄], [Zi, Zk])(o)

= −2g([Zi, Zk],∇j̄Zl̄)(o).

Hence, Equation (3.5) implies

g([Zi, Zk],∇j̄Zl̄)(o) = 0,

which forces J to be integrable. �
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4. The condition R̃ = 0 in quasi-Kähler manifolds

In this section we investigate the case R̃ = 0. We start by considering the following
preliminary results.

Lemma 4.1. Let (M, g, J, ω) be a quasi-Kähler manifold. Then the following are
equivalent:

(i) the curvature tensor of the canonical connection associated to (g, J) vanishes;

(ii) every o ∈ M admits an open neighbourhood U and a complex unitary (1, 0)-frame
{Z1, . . . , Zn} on U such that

∇iZj ∈ Γ (T 0,1U), ∇ı̄Zj = 0, i, j = 1, . . . , n.

Proof. The condition R̃ = 0 is equivalent to require that every point o of M admits
an open neighbourhood U equipped with a complex unitary (1, 0)-frame {Z1, . . . , Zn}
such that

∇̃iZj = 0, ∇̃ı̄Zj = 0, i, j = 1, . . . , n. (4.1)

Since

∇̃iZj = 0 = 1
2∇iZj − 1

2J∇iJZj = 1
2∇iZj − 1

2 i J∇iZj

and

∇̃ı̄Zj = 0 = 1
2∇ı̄Zj − 1

2J∇ı̄JZj = 1
2∇ı̄Zj − 1

2 i J∇ı̄Zj ,

(4.1) is equivalent to the requirement that ∇iZj ,∇ı̄Zj ∈ Γ (T 0,1U) for every i, j =
1, . . . , n. Moreover, since M is quasi-Kähler, the mixed derivatives ∇ı̄Zj are of type
(1, 0). Hence ∇ı̄Zj = 0, as required. �

Remark 4.2. Note that the second item of the previous lemma in particular implies
that if g is an R̃-flat quasi-Kähler metric, then we can always find a local unitary
(1, 0)-coframe {ζ1, . . . , ζn} such that

∂ζi = ∂̄ζi = 0, i = 1, . . . , n.

We recall that a four-dimensional quasi-Kähler manifold is always almost-Kähler.
Hence, in view of Theorem 1.1, if a four-dimensional quasi-Kähler manifold has R̃ = 0,
then it is Kähler. In higher dimensions things work differently.

Theorem 4.3. There exists a quasi-Kähler structure (g0, J0, ω0) on the Iwasawa man-
ifold with the following properties:

(i) the Hermitian curvature of (g0, J0) vanishes;

(ii) the Riemann curvature of g0 satisfies the second Gray identity (G2).
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Proof. Let G be the complex Heisenberg group

G :=

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 z1 z2

0 1 z3

0 0 1

⎞
⎟⎠ : zi ∈ C, i = 1, 2, 3

⎫⎪⎬
⎪⎭

and let M be the compact manifold M = G/Γ , where Γ is the co-compact lattice of
G formed by the matrices with integral entries. Then M is the Iwasawa manifold. It is
well known that M admits a global frame B = {X1, X2, X3, X4, X5, X6} satisfying the
following structure equations:

[X1, X2] = X3, [X4, X5] = −X3, [X2, X4] = X6, [X5, X1] = X6.

Let J0 be the almost-complex structure defined on the basis B by

J0X1 = X4, J0X2 = X5, J0X3 = X6,

J0X4 = −X1, J0X5 = −X2, J0X6 = −X3,

let g0 be the J0-almost-Hermitian metric

g0 =
6∑

i=1

αi ⊗ αi,

and let
ω0 := α1 ∧ α4 + α2 ∧ α5 + α3 ∧ α6,

where {α1, . . . , α6} is the dual frame of B. Then (g0, J0, ω0) is a quasi-Kähler structure
on M .

The almost-complex structure J0 induces the (1, 0)-frame

Z1 = X1 − i X4, Z2 = X2 − i X5, Z3 = X3 − i X6.

Clearly,
[Z1, Z2] = 2Z3̄, [Z1̄, Z2̄] = 2Z3

and all other brackets involving the vectors of the frame vanish. Furthermore, a direct
computation gives ∇ı̄Zj = 0 for i, j = 1, 2, 3 and

∇1Z1 = 0, ∇2Z1 = −Z3̄, ∇3Z1 = Z2̄,

∇1Z2 = Z3̄, ∇2Z2 = 0, ∇3Z2 = Z1̄,

∇1Z3 = −Z2̄, ∇2Z3 = Z1̄, ∇3Z3 = 0,

where ∇ is the Levi-Cività connection associated to g0. Hence, ∇iZj ∈ Γ (T 0,1M) and
in view of Lemma 4.1 the Hermitian curvature tensor of (g0, J0) vanishes. Furthermore,
a straightforward application of our formulae yields that the curvature tensor associated
to g0 satisfies the second Gray identity. �

https://doi.org/10.1017/S0013091509000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000157


670 A. J. Di Scala and L. Vezzoni

Remark 4.4. The almost-Hermitian structure J0 described in the proof of the above
theorem corresponds to the almost-complex structure denoted by J3 [1].

The Iwasawa manifold is (in some fashion) the unique example of a six-dimensional
non-Kähler almost-complex nilmanifold admitting a quasi-Kähler R̃-flat metric. More
precisely we have the following.

Theorem 4.5. Let (G, J) be a six-dimensional Lie group equipped with a left-invariant
non-integrable almost-complex structure admitting a J-compatible quasi-Kähler metric g

with vanishing Hermitian curvature tensor. Then the Lie algebra of G endowed with the
almost-complex structure induced by J is isomorphic as complex Lie algebra to the one
of the complex Heisenberg group equipped with the almost-complex structure induced
by J0.

Proof. Let g be the Lie algebra of G. In view of Lemma 4.1 there exists a complex
(1, 0)-frame {Z1, Z2, Z3} on g such that

[Zi, Zj ] =
3∑

k=1

Ak̄
ijZk̄, [Zi, Zj̄] = 0, i, j = 1, 2, 3.

Since J is by hypothesis non-integrable, there exists at least a bracket different from zero.
We may assume that

[Z1, Z2] 	= 0.

Now we observe that A3̄
12 	= 0. Indeed, if by contradiction A3̄

12 = 0, then

[Z1, Z2] = A1̄
12Z1̄ + A2̄

12Z2̄

and, by the Jacobi identity,

0 = [[Z1, Z2], Z1̄] = −A2̄
12[Z1̄, Z2̄],

0 = [[Z1, Z2], Z2̄] = −A1̄
12[Z1̄, Z2̄],

which implies [Z1, Z2] = 0. Hence, A3̄
12 has to be different from zero and, consequently,

W1 := Z1, W2 = Z2, W3 :=
1

A3
1̄2̄

(Z3 − A1
1̄2̄Z1 − A2

1̄2̄Z2)

is a (1, 0)-frame on (g, J). Such a frame satisfies

[W1, W2] = W3̄.

Finally, again using the Jacobi identity, we get

0 = [[W1, W2], W1̄] = −[W2̄, W3̄],

0 = [[W1, W2], W2̄] = −[W1̄, W3̄],

i.e.
[W2, W3] = [W1, W3] = 0,

which ends the proof. �
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It is possible to find some non-equivalent quasi-Kähler structures on the Iwasawa man-
ifold having R̃ = 0. For instance, we have the following example.

Example 4.6. It easy to show that the Iwasawa manifold M admits a global coframe
{α1, . . . , α6} satisfying the following structure equations:

dα1 = dα3 = −α1 ∧ α2 + α4 ∧ α5 − α2 ∧ α3 + α5 ∧ α6,

dα2 = dα5 = 0,

dα4 = dα6 = −α2 ∧ α4 + α1 ∧ α5 − α3 ∧ α5 + α2 ∧ α6.

Let {X1, . . . , X6} be the frame dual to {α1, . . . , α6} and consider the almost-complex
structure J on M defined on {X1, . . . , X6} by

JX1 = X4, JX2 = X5, JX3 = X6,

JX4 = −X1, JX5 = −X2, JX6 = −X3.

Let
ω := α1 ∧ α4 + α2 ∧ α5 + α3 ∧ α6;

a direct computation then gives that ω is a ∂̄-closed form compatible with J . The basis
{X1, . . . X6} induces the complex (1, 0)-frame

Z1 = X1 − i X4, Z2 = X2 − i X5, Z3 = X3 − i X6.

One easily obtains

[Z1, Z2] = 2(Z1̄ + Z3̄), [Z2, Z3] = 2(Z1̄ + Z3̄), [Z1, Z3] = 0.

Since [Zi, Zj̄] = 0 and (g, J, ω) is a quasi-Kähler structure, in view of Lemma 2.2 we have

∇ı̄Zj = 0,

where ∇ is the Levi-Cività connection associated to the metric g. Furthermore, a direct
computation gives

∇1Z1 = −2Z2̄, ∇2Z1 = −2Z3̄, ∇3Z1 = 0,

∇1Z2 = 2Z1̄, ∇2Z2 = 0, ∇3Z2 = −2Z3̄,

∇1Z3 = 2Z1̄, ∇2Z3 = 2Z1̄, ∇3Z3 = 2Z2̄;

hence,
∇iZj ∈ Γ (T 0,1M) for every i, j = 1, 2, 3.

By Lemma 4.1 we obtain that the Hermitian curvature tensor of g vanishes. Also in
this case, a straightforward computation gives that the curvature tensor of the metric g

satisfies the second Gray identity (G2).

Remark 4.7. In the quasi-Kähler case, the condition R̃ = 0 implies that the tensor
R(g, J) described by (1.3) vanishes. Hence, it is very natural to take into account the
following problem.
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Does there exist a symplectic form ω′ on the Iwasawa manifold taming the
almost-complex structure J0 and such that the pair (ω′, J0) induces an R̃-flat
quasi-Kähler structure on M?

(This problem was suggested us by Valentino Tosatti.) The answer is negative. In order to
show this, we fix a quasi-Kähler R̃-flat metric g on the Iwasawa manifold M compatible
with J0. Then we can find a global unitary (1, 0)-coframe {ζ1, ζ2, ζ3} such that

dζ1 = dζ2 = 0, dζ3 = −ζ1̄ ∧ ζ2̄. (4.2)

Assume that there exists a symplectic structure ω′ taming J0 and such that the pair
(ω′, J0) induces the metric g. Then one necessarily has

ω′ = ω + β + β̄,

where ω is the quasi-Kähler form associated to g and β is a complex form of type (2, 0).
The equation dω′ = 0 can be written in terms of ω and β as

Aω + ∂β = 0,

∂̄β + Aβ̄ = 0.

We can write β = aζ12 + bζ23 + cζ13, where a, b, c are smooth functions on M . Taking
into account Equations (4.2), one has

∂̄β =
3∑

r=1

ζr̄(a)ζ12r̄ + ζr̄(b)ζ23r̄ + ζr̄(c)ζ13r̄,

Aβ̄ = b̄ζ122̄ + c̄ζ121̄.

Hence, the equation ∂̄β + Aβ̄ = 0 readily implies that b and c are holomorphic functions
on M and that the map a satisfies

ζ1̄(a) = c̄, ζ2̄(a) = b̄, ζ3̄(a) = 0.

Since M is compact, b and c have to be constant. In particular, one has ∂∂̄a = 0 and,
consequently, a has to be constant. Since the components of β are constant, one has
∂β = ∂̄β = 0 and this condition contradicts the equation Aω + ∂β = 0.

In view of Remark 4.2 we require that a quasi-Kähler metric g locally admits a complex
unitary (1, 0)-frame {ζ1, . . . , ζn} satisfying

∂ζi = ∂̄ζi = 0, i = 1, . . . , n.

This is less strict than requiring that the Hermitian curvature tensor of g vanishes. Hence,
it is rather natural to wonder if an almost-Kähler structure can admit such a coframe.
The answer is negative, since we have the following result.
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Proposition 4.8. Let (M, g, J, ω) be an almost-Kähler manifold. Assume that M

admits a global unitary (1, 0)-coframe {ζ1, . . . , ζn} satisfying

∂ζi = ∂̄ζi = 0, i = 1, . . . , n.

Then M is Kähler.

Proof. Assume that such a coframe exists and let {Z1, . . . , Zn} be the dual frame.
Then we have

[Zi, Zj̄] = 0, [Zi, Zj ] ∈ Γ (T 0,1M), i, j = 1, . . . , n.

In particular, we can write

[Zi, Zj ] =
n∑

k=1

Ak̄
ijZk̄

and the Nijenhuis tensor of J satisfies

N(Zi, Zj) = −4
n∑

k=1

Ak̄
ijZk̄.

Now we recall that the Nijenhuis tensor of an almost-Kähler manifold always satisfies

S
X,Y,Z

g(N(X, Y ), Z) = 0.

This formula in our case reads

Ak̄
ij + Aj̄

ki + Aı̄
jk = 0, 1 � i, j, k � n. (4.3)

Since the brackets of the form [Zi, Zj̄] vanish, the Jacobi identity in terms of Zis reads

[[Zi, Zj ], Zr̄] = 0, 1 � i, j, r � n,

i.e.

0 = [[Zi, Zj ], Zr̄] =
n∑

k=1

[Ak̄
ijZk̄, Zr̄] = −

n∑
k=1

Zr̄(Ak̄
ij)Zk̄ +

n∑
k,s=1

Ak̄
ijĀ

s̄
krZs.

In particular, one has
n∑

k=1

Ak̄
ijĀ

s̄
kr = 0, 1 � i, j, s, r � n. (4.4)

Using Equations (4.3) and (4.4), we get

0 =
n∑

k=1

Ak̄
ijĀ

j̄
ki = −

n∑
k=1

{Ak̄
ijĀ

k̄
ij − Ak̄

ijĀ
ı̄
kj} = −

n∑
k=1

|Ak̄
ij |2

which forces (M, g, J, ω) to be a Kähler manifold. �
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