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ON PRIMITIVE SOLVABLE LINEAR GROUPS 

C. R. B. WRIGHT 

1. Introduction. Let F be a vector space over the field K. A group G of 
i£-linear transformations of V onto itself is primitive in case no proper non-
trivial subspace of V is G-invariant and V cannot be written as a direct sum 
of proper subspaces permuted among themselves by G. Equivalently, G is 
primitive on V in case G is irreducible and is not induced from a proper 
subgroup. 

Suprunenko showed [3, Theorem 12, p. 28] that the ^-dimensional general 
linear group GL(n, K) has a solvable primitive subgroup only if 

(1) there is a divisor, m, of n such that K has an extension field of degree m 
containing a primitive p-th root of 1 for each prime p dividing n/m. 

The main result of this note is the converse fact. 

THEOREM 1. If the field K and positive integer n satisfy (1), then GL(n, K) 
contains a solvable primitive subgroup. 

In [3, Chapter 1, p. 28], Suprunenko states that in Chapter 2 he will prove 
Theorem 1 in case K is algebraically closed and n is odd. The argument 
given in [3, Section 11.4] is somewhat mysterious, but does apparently lead 
to the result claimed. The restriction on n is never specifically imposed, 
although it is tacitly used in the construction of the group T [3, p. 48], since 
for even n it is not enough to find symplectic groups; they must be orthogonal 
as well. It seems easier to produce a direct argument for general K and n than 
to try to disentangle the cross references and notation of [3] and build upon 
the special case it handles. 

The outline of this argument is based on the treatment in [3] and consists 
of dealing with one prime-power factor of n at a time, using facts about 
finite symplectic and orthogonal groups and then pasting the results for the 
factors together. The prime 2 causes a certain amount of trouble at various 
stages and must sometimes be handled separately. (It appears that Supru­
nenko, in considering only symplectic groups, has overlooked one of the points 
at which 2 behaves differently from the odd primes.) 

Notation is fairly standard. If K is a field, Kn is the direct sum of n copies 
of K and M(n, K) is the ring of n X n matrices over K. If 5 C M(n, K), 
then [S] is the subspace of M (n, K) spanned by S. For every choice of n and K 
we denote the centre of GL(w, K) by Z and the identity by I . 
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2. Some finite solvable irreducible linear groups. The proof of Theorem 3 
in the next section hinges upon the existence of solvable irreducible subgroups 
of the symplectic groups Sp2w(g) for q an odd prime-power and certain ortho­
gonal groups 02n(q) for q a power of 2. In this section we establish this existence 
by a method which handles both cases at once. For q odd or a power of 4 there 
is a somewhat more transparent construction (see [3, p. 48]) which consists 
of taking the wreath product of a 2-dimensional group with an w-cycle. The 
construction below, however, has the virtue of providing groups for all cases. 
(For background on symplectic and orthogonal groups see [2, sections 11.9 
and 11.10].) 

THEOREM 2. Let qbe a prime-power and let n be a natural number. If qn ^ 3, 
then GL(2?z, q) contains an irreducible solvable subgroup which is symplectic if 
q is odd and preserves the form Xiyi + . . . + ocnyn if q is even. If qn ^ 5, the 
subgroup can be chosen to be metacyclic. 

Proof. Since Sp2(3) = SL(2, 3), a solvable group, the result is correct if 
qn — 3. If n = 1 and q = 4, a subgroup of order 5 in SL(2, 4) is irreducible 
and leaves Xiyi invariant. 

Suppose that q = n = 2. Let 

B = 
0 0 1 o" 
0 0 1 1 , N=\ 
1 1 0 0 
0 1 0 0 

1 0 0 r 0 1 1 0 > J=\ 
0 1 0 0 
1 0 0 0 

0 0 1 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 

in GL(4, 2). One can check that J2 = J, B^NB = N'1, JBJ = B'1 and 
JNJ = N-1, and that the group (B, N, J) is an irreducible subgroup of 
GL(4, 2) of order 36 leaving Xiyt + xiy2 invariant. 

From now on suppose that qn ^ 5. Let V be GF(g") viewed as an «-dimen­
sional space over GF(g). Let Z be a Singer cycle of GF(g") over GF(g) (see 
[2, p. 187]). For X in GL(», q) let X* = (X')'1. Let 

W = 
Z 0 

0 Z*_ 

in GL(2w, q) acting on 7 © V, One can check that 

W 
r o i" 

• w = 
0 I~\ 

\_-I 0_ _-i oj 
so that W is symplectic, and 

W'• 

X 

Y 

ZX 

Z*Y 
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so that, since (Z*Y)1 • (ZX) = Yl - X, W preserves xiyi + . . . + xnyn. 
Now Z has order qn — 1 and acts irreducibly on V. Since Z and its transpose 

Zl have the same invariant factor, Zl — P~lZP for some P in GL(«, g). Let 

i? = 
0 P 

-P* 0 

A routine check shows that R~lWR = W~l and that R is symplectic and 
sends %iyi + . . . + xnyn to its negative. Let G = (W, R). Then G is meta-
cyclic and is symplectic or orthogonal accordingly as q is odd or even. 

Suppose that Z~l = Q~XZQ for some Q in GL(n, g). Then 

Ç € N((Z)) = <Z> • <J3>f 

where B~lZB = Z« (see [2, p. 187]). So Z ' 1 = B~iZBi for some i with 
0 S i < n, and thus qn — 1, the order of Z, divides g* + 1. Easy calculation 
shows that qn :§ 4, contrary to assumption. Hence Z - 1 and Z are not con­
jugate in GL(w, g), so that Z* and Z are not either. 

Viewed as a (TF)-module, V © V has the obvious irreducible submodules 
V © 0 and 0 © F, which we have just shown are inequivalent. By the 
Jordan-Holder Theorem these must be the only two "W^-submodules. Since R 
interchanges them, G acts irreducibly on F © F, as desired. 

3. The case n = pe. This section uses the groups just constructed to help 
produce primitive solvable subgroups of GL(g, K) for q = pe a prime-power. 

THEOREM 3. Let p be a prime and let q — pe. Let K be afield which contains a 
primitive p-th root of 1. If q = 2, suppose that —lis a sum of two squares. Then 
GL(g, K) contains solvable subgroups B and W such that 

(a) Z < B <3 W, 
(b) [B] = M (a, K), 
(c) B/Z is a chief factor of W of order q2

} 

(d) B = CW(B/Z). 

Proof. Suppose first that q > 2. Let e be a primitive p-th root of 1 in K. 
Let E be the subgroup of GL(£, K) generated by the matrices a and ô, where 

0 
0 1 0 . . o" 
0 0 1 . . 0 

and b = 

0 0 0 . . 1 
1 0 0 . • o_ 

TherTiï is extraspecial of order pz generated by elements of order p, with 
[a, b] = el. Let X be the Kronecker product X = E ® . . . ® E S GLfo, K). 
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Then X is extraspecial of order p2e+1 = q2 • p with derived group (el) = 
XnZ.LetB = XZ. Then [B] = [X], 

We now show that [X] = M(q, K), from which (b) will follow. Suppose 
that 0 = 2X=ixtki is a independence relation among elements Xi, . . . , xm of 
X lying in different cosets of X'. Then m ^ 2 and Xi^"1 $ Z(X) , so that 
1 ^ [xix2

_1, y] for some y in X and hence [xi, 3;] ?̂  [x2, y]. Then 

( w \ m 

yields a shorter dependence relation than the given one. It follows that 
d i i M [ Z ] ) ^ [X : X'] = p*' = ff»f so [X] = M(2> X) . 

Using [2, Sâtze III.13.7 and III.13.8 and Bemerkungen 13.9], it is not hard 
to see that the group of automorphisms of X fixing X P\ Z is isomorphic to 
the group of GF(£)-linear transformations of X/Xr leaving invariant the 
bilinear form / and quadratic form g defined by 

[x,y] enx.V) a n d xp = C.QW 

This group is Sp2e(^) if p is odd and is the orthogonal group of degree 2e 
leaving invariant x ^ i + . . . + xeye if p = 2. In either case, by Theorem 2, 
X has a solvable group G of automorphisms acting irreducibly on X/Xf and 
centralizing X'. By linearity, G extends to a group (which we also call G) 
of i^-algebra automorphisms of [X]. 

Now [X] = [B] = M(q, K), a central simple i£-algebra. By [1, Theorem 
7.2c], every automorphism of [B] is inner. Hence G is a group of inner auto­
morphisms of M(q, K) normalizing B and acting irreducibly on B/Z. Let 
H/Z = G, with H ^ GL(q, K), and let W = HB. Then B/Z is a chief factor 
of W oi order q2, as claimed in (c), and W is solvable. Moreover, CW(B/Z) — 
B • CH(B/Z) = B • Z = B. This completes the proof in case q > 2. 

Now suppose that q = 2 and that —1 = a2 + /32 for some a and /3 in X. 

Let 
a P~ 

a = 
j — a__ 

a 0 + 1 ] 
x = 

j - 1 — « j 

and 3> 

Then a2 = b2 = (ab)2 = —i", so that (a, &) is quaternion of order 8, x2 = —27, 

[0 - 1 

[i o_ » 

["-/? a + 1*1 

[« - 1 0 J 

— 27, (xj*)3 = 8 / and x~ lax &, x~lbx — —a, y~lax = -a, y~lbx = a&. 
Let 5 = <a, 6)Z and W = 5(x, 3/). Then TF/Z ^ 5 4 and the conditions 
(a)-(d) are easy to verify. The proof of Theorem 3 is complete. 

Some condition on K is needed if q = 2. To see this, let K be an arbitrary 
ordered field and suppose that G is a primitive solvable subgroup of GL(2, K) 
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for which Z is a maximal abelian normal subgroup. Let B/Z be a chief factor 
of G. (Since G/Z is finite, such a factor certainly exists.) It is not hard to see 
that \B/Z\ divides 4, and since B is non-abelian, B/Z is a 4-group. Say 
B = (a, b)Z with a2 = a/, 62 = 01 and (a&)2 = 7I , with a, 0, 7 in K. Since 
[a, &] 7^ 7, [a, 6] = — 7, and 7 = —a/3. At least one of a, /? and 7 is negative. 
Unless all three are, B/Z contains a proper normal subgroup of G/Z. Thus 
each of a, 0 and 7 is negative. Easy calculation shows that for some x, y, 2, u, v 
and w in K 

z —x 

and Z> = 

w —u 

with x2 + yz = a, w2 + vw = /3. Then 

xu + yw 
afr = 

zv + x^ 

and so xu + 3>w -2W #«. Then 

0 = 2xuyv + y2vw + 3>ZZJ2 

= 2x^y + 3>2(/3 — -w2) + z>2(a — x2) 
= — {yu — vx)2 + 3̂ 2/3 + v2ay 

a non-positive element since a and 0 are negative. Thus v = y = (yw — iw) = 0, 
a contradiction to x2 + yz = a < 0. 

4. General « and the proof of Theorem 1. This section puts together 
primitive subgroups of GL(g, K) for the prime-powers q dividing n to get a 
primitive subgroup of GL(n, K) which is the direct product of the pieces. 

It is not true in general that if G and H are primitive subgroups of GL («, K) 
and GL(w, K) , respectively, then G®H is a primitive subgroup of 
GL(nm, K). For example, if K is the real field and both G and H are the 
multiplicative complex field viewed as embedded in GL(2, K), then G and H 
are primitive (see Theorem 6) but G ® H is not irreducible, let alone primitive. 
So the proof of Theorem 4 must make use not only of the primitivity of the 
factors but also of some of the special properties noted in Theorem 3. 

THEOREM 4. Let #i, . . . , qt be powers of distinct primes and letn = qi. . . qt. 
Suppose that for i = 1, . . . , /, GL(qu K) contains subgroups Bt and Wi 
satisfying 

(a) Z < Bt < Wt, 
(b) [ 5 J = M(quK),and 
(c) Bi/Z is a chief factor of Wt of order qt

2. 
Then W = W\ ® . . . ® Wt is a primitive subgroup of GL(u, K). 

If Bt — CWi(Bi/Z) for each i, then B = CW(B/Z) and Z is a maximal 
abelian normal subgroup of W. 
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Proof. Let B = Bx ® . . . ® Bt. By (a) and (b), Z < B <\ W and 
[B] = M{n, K). Moreover, by (c), B/Z is abelian and has Bx/Z, . . . , Bt/Z 
as its W-chief factors. Since gi, . . . , qt are relatively prime, by the Jordan-
Holder Theorem the only W-normal subgroups between Z and B are of form 
Bt ® . . . ® Bj. 

Let V = Kn viewed naturally as a KW-module. Since [W] = ikf(n, K), W is 
irreducible on V. Suppose that V = Vi 0 . . . 0 Vk is a decomposition of V 
into blocks of imprimitivity for W with & ̂  2. Let F be the kernel of the per­
mutation representation of W on the set of blocks. Then Z g B C\ Y < W. 
Since V = BVi, B is transitive. Thus B/B C\ Y is a transitive abelian group 
and so [B ; B C\ Y] = k. But [B : B C\ Y] is a product of factors g*2, by the 
paragraph above. Since n = k - dim Fi and n is not divisible by qt

2, we have 
a contradiction. It follows that W is primitive on V. 

Now suppose that Bt = CWi (Bf/Z) for each i. Then 

CW(B/Z) = CWl(B!/Z) ® . . . ® CWl(Bt/Z) = B. 

If C7 is an abelian normal subgroup of W with Z S Uy then since each non-
trivial group J5* ® . . . ® 5y is non-abelian, UC\ B = Z and 

[/ g ^ ( 5 / Z ) = B, 
so U = Z. 

THEOREM 5. Let n be a positive integer. Suppose that the field K contains a 
primitive p-th root of 1 for each prime divisor p of n and that — 1 is a sum of 
two squares in K if n = 2 (mod 4). Then GL (n,K) contains a primitive solvable 
subgroup with Z as a maximal abelian normal subgroup. 

Proof. This follows from the last two theorems. 

Although Theorem 1 loses its content if K is finite, Theorem 5 does not, 
and we get the following fact. 

COROLLARY. Let q be a prime-power and n a positive integer. Suppose that n 
divides some power of q — 1. Then GL(w, q) contains a primitive solvable sub­
group with Z as maximal abelian normal subgroup. 

To prove Theorem 1 we need an elementary fact which seems to have been 
repeatedly used without mention in [3]. 

THEOREM 6. Let K be afield and let Kr be an extension of K of finite degree m. 
View GL(n/m, K') as a subgroup of GL(^, K). If G is a primitive subgroup 
of GL(n/m, K') which contains its centre, Z!, then G is a primitive subgroup of 
GL (n,K). 

Proof. Let V = {K')n'm = Kn. Suppose that V = 7i © . . . 0 Vt is a 
decomposition into X-subspaces permuted by G. Then Zr also permutes 
Vi, . . . f Vu and for each s, K'VS has the form Vt 0 . . . 0 Vj. Since the 
if'-subspaces Kr Vs are permuted by G and G acts primitively on V, V = Kf V\. 
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For 0 3* a 6 K', aVx 6 {Vi, . . . , 7 ,}. Thus 

for some ai, . . . , at independent in K! over K, with ai = 1. Let 

b = ai + . . . + at. 

Then b j£ 0, and 6Fi = a^Fi for some j . Hence, 

(6 - aj)Vi C a ,7 i H E a ^ i = 0, 

and sob = dj and J = 1, as desired. 

We can now prove Theorem 1. 

Proof of Theorem 1. By Theorem 6 we need only find a divisor, m, of n and 
an extension K! of degree m over K such that GL(«/w, K') contains a primi­
tive solvable group. By hypothesis there exist m and K! such that K! contains 
a primitive p-\h root of 1 for each prime p dividing n/m. By Theorem 5, 
GL (n/m, Kf) contains a primitive solvable group except perhaps if 
n/m = 2 (mod 4) and — 1 is not a sum of two squares in Kf. But in that case K' 
has an extension K" of degree 2 obtained by adjoining a root of x2 + 1, and 
GL(«/2w, JK7 ') contains a primitive solvable group, as desired. 

As a final note, the primitive groups produced above are absolutely irre­
ducible. This follows from the fact that they are generated by certain fixed 
finite sets of matrices in a finite extension of the prime field of K. If K' is 
an extension of K and G is one of our primitive subgroups of GL(n, K), then 
G is an irreducible subgroup of GL(n, K') and, moreover, G • Z' is primitive. 
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