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ON PRIMITIVE SOLVABLE LINEAR GROUPS
C. R. B. WRIGHT

1. Introduction. Let V be a vector space over the field K. A group G of
K-linear transformations of V onto itself is primaitive in case no proper non-
trivial subspace of V is G-invariant and V cannot be written as a direct sum
of proper subspaces permuted among themselves by G. Equivalently, G is
primitive on V in case G is irreducible and is not induced from a proper
subgroup.

Suprunenko showed [3, Theorem 12, p. 28] that the n-dimensional general
linear group GL (#, K) has a solvable primitive subgroup only if

(1) there is a divisor, m, of # such that K has an extension field of degree m
containing a primitive p-th root of 1 for each prime p dividing n/m.

The main result of this note is the converse fact.

TaEOREM 1. If the field K and positive integer n satisfy (1), then GL(n, K)
contains a solvable primitive subgroup.

In [3, Chapter 1, p. 28], Suprunenko states that in Chapter 2 he will prove
Theorem 1 in case K is algebraically closed and # is odd. The argument
given in [3, Section 11.4] is somewhat mysterious, but does apparently lead
to the result claimed. The restriction on 7 is never specifically imposed,
although it is tacitly used in the construction of the group I' [3, p. 48], since
for even # it is not enough to find symplectic groups; they must be orthogonal
as well. It seems easier to produce a direct argument for general K and # than
to try to disentangle the cross references and notation of [3] and build upon
the special case it handles.

The outline of this argument is based on the treatment in [3] and consists
of dealing with one prime-power factor of # at a time, using facts about
finite symplectic and orthogonal groups and then pasting the results for the
factors together. The prime 2 causes a certain amount of trouble at various
stages and must sometimes be handled separately. (It appears that Supru-
nenko, in considering only symplectic groups, has overlooked one of the points
at which 2 behaves differently from the odd primes.)

Notation is fairly standard. If K is a field, K is the direct sum of # copies
of K and M (#n, K) is the ring of » X # matrices over K. If SC M (n, K),
then [.S] is the subspace of M (z, K) spanned by S. For every choice of z and K
we denote the centre of GL (%, K) by Z and the identity by I.
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2. Somefinite solvable irreducible linear groups. The proof of Theorem 3
in the next section hinges upon the existence of solvable irreducible subgroups
of the symplectic groups Sp,(q) for ¢ an odd prime-power and certain ortho-
gonal groups O3, (¢) for g a power of 2. In this section we establish this existence
by a method which handles both cases at once. For ¢ odd or a power of 4 there
is a somewhat more transparent construction (see [3, p. 48]) which consists
of taking the wreath product of a 2-dimensional group with an #z-cycle. The
construction below, however, has the virtue of providing groups for all cases.
(For background on symplectic and orthogonal groups see [2, sections I1.9
and I1.10].)

THEOREM 2. Let q be a prime-power and let n be a natural number. If ¢* = 3,
then GL (27, q) contains an irreducible solvable subgroup which is symplectic if
q is odd and preserves the form xy1 + ...+ %y, if ¢ is even. If ¢* = 5, the
subgroup can be chosen to be metacyclic.

Proof. Since Sp2(3) = SL(2, 3), a solvable group, the result is correct if
¢* = 3. Ilf n =1 and ¢ = 4, a subgroup of order 5 in SL(2, 4) is irreducible
and leaves xyy; invariant.

Suppose that ¢ = n = 2. Let

0 010 1 0 01 0010
B=)0 011}, N=]0 1 1 0f, J=]0 0 0 1
1100 01 00 1 0 00
0100 1000 0100

in GL(4, 2). One can check that J2 = I, B"INB = N-!, JBJ = B~! and
JNJ = N7, and that the group (B, N,J) is an irreducible subgroup of
GL (4, 2) of order 36 leaving x;y; 4+ x2y, invariant.

From now on suppose that ¢* = 5. Let V be GF (¢*) viewed as an n-dimen-
sional space over GF(g). Let Z be a Singer cycle of GF (¢") over GF (g) (see
[2, p. 187]). For X in GL(#, ¢) let X* = (X*)~. Let

zZ 0
W =
0 z*
in GL (2%, ¢) acting on V @ V. One can check that

W[ S I ’],

—-I 0 l_—I 0
so that W is symplectic, and

L)
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so that, since (Z*Y)!- (ZX) = Y*- X, W preserves x1y1 + . . . + %,n.
Now Z has order ¢* — 1 and acts irreducibly on V. Since Z and its transpose
Z' have the same invariant factor, Z! = P~1ZP for some P in GL (%, q). Let

0o P
R = .
—P* 0

A routine check shows that R-!WR = W~! and that R is symplectic and

sends x1y1 + ...+ x,9, to its negative. Let G = (W, R). Then G is meta-

cyclic and is symplectic or orthogonal accordingly as ¢ is odd or even.
Suppose that Z~! = Q~'ZQ for some Q in GL (%, ¢). Then

Q€ N(Z)) = (Z)-(B),

where B~1ZB = Z? (see [2, p. 187]). So Z=! = B~ZB' for some 7 with
0 = ¢ < n, and thus ¢" — 1, the order of Z, divides ¢* 4+ 1. Easy calculation
shows that ¢" = 4, contrary to assumption. Hence Z=! and Z are not con-
jugate in GL (n, ¢), so that Z* and Z are not either.

Viewed as a (W)-module, V @ V has the obvious irreducible submodules
V@O0 and 0P V, which we have just shown are inequivalent. By the
Jordan-Hélder Theorem these must be the only two W-submodules. Since R
interchanges them, G acts irreducibly on V @ V, as desired.

3. The case » = p°. This section uses the groups just constructed to help
produce primitive solvable subgroups of GL(g, K) for ¢ = p¢ a prime-power.

THEOREM 3. Let p be a prime and let ¢ = p°. Let K be a field which contains a
primitive p-th root of 1. If ¢ = 2, suppose that —1 is a sum of two squares. Then
GL(q, K) contains solvable subgroups B and W such that

(@) Z< B W,

(b) [B] = M(g, K),

(c) B/Z is a chief factor of W of order g2,

(d) B = Cw(B/2).

Proof. Suppose first that ¢ > 2. Let e be a primitive p-th root of 1 in K.
Let E be the subgroup of GL(p, K) generated by the matrices a and b, where

001 0 ... 0] 1
001 ...0 € 0
e2
a = and b =
. 0
0 00 ... 1 .
(1 0 0 ... 0] i N

ThenjE is extraspecial of order p® generated by elements of order p, with
la, 8] = el. Let X be the Kronecker product X = E® ... ® E =< GL(g, K).
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Then X is extraspecial of order p?*tl = ¢?.p with derived group (el) =
XN Z.Let B= XZ. Then [B] = [X].

We now show that [X] = M (g, K), from which () will follow. Suppose
that 0 = Y L1 x;k; is a K-dependence relation among elements xi, . .., %, of
X lying in different cosets of X’. Then m = 2 and xwxs~! ¢ Z(X), so that
1 5 [x1x271, y] for some v in X and hence [x1, ] # [xs, ¥]. Then

0= 3’—1<Z xiki>y - Z xikifx1, y]

i= i=1

yields a shorter dependence relation than the given one. It follows that
dimg ([X]) = [X : X'] = p?¢ = ¢, 50 [X] = M(q, K).

Using [2, Sitze 111.13.7 and I11.13.8 and Bemerkungen 13.9], it is not hard
to see that the group of automorphisms of X fixing X M Z is isomorphic to
the group of GF(p)-linear transformations of X/X’ leaving invariant the
bilinear form f and quadratic form g defined by

[x,9] = €@ and «? = @,

This group is Sps.(p) if p is odd and is the orthogonal group of degree 2¢
leaving invariant x1y1 + ... + x.y. if p = 2. In either case, by Theorem 2,
X has a solvable group G of automorphisms acting irreducibly on X/X’ and
centralizing X’. By linearity, G extends to a group (which we also call G)
of K-algebra automorphisms of [X].

Now [X] = [B] = M(q, K), a central simple K-algebra. By [1, Theorem
7.2c], every automorphism of [B] is inner. Hence G is a group of inner auto-
morphisms of M (g, K) normalizing B and acting irreducibly on B/Z. Let
H/Z = G, with H £ GL(g, K), and let W = HB. Then B/Z is a chief factor
of W of order ¢?, as claimed in (c), and W is solvable. Moreover, Cw (B/Z) =
B Cy(B/Z) = B+-Z = B. This completes the proof in case ¢ > 2.

Now suppose that ¢ = 2 and that —1 = a? + 82 for some « and 8 in K.

Let
ER 0 —1
a = b = ,
| B —a (1 0
o B+1 -8  a+1
x = and y = .
| 8—1 —a o — 1 B
Then a? = b* = (ab)? = —1, so that {a, b) is quaternion of order 8, x2 = —21,
y2 = —2], (xy)* = 8] and x~lax = b, x " Wx = —a, ylax = —a, y~lbx = ab.

Let B = {a¢,b)Z and W = B({x,y). Then W/Z =S, and the conditions
(a)—(d) are easy to verify. The proof of Theorem 3 is complete.

Some condition on K is needed if ¢ = 2. To see this, let K be an arbitrary
ordered field and suppose that G is a primitive solvable subgroup of GL (2, K)
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for which Z is a maximal abelian normal subgroup. Let B/Z be a chief factor
of G. (Since G/Z is finite, such a factor certainly exists.) It is not hard to see
that [B/Z| divides 4, and since B is non-abelian, B/Z is a 4-group. Say
B = (a, b)Z with a? = af, b? = BI and (eb)? = I, with «, 8, v in K. Since
la,d] # I, [a,b] = —I, and v = —apB. At least one of @, 8 and v is negative.
Unless all three are, B/Z contains a proper normal subgroup of G/Z. Thus
each of @, 8 and v is negative. Easy calculation shows that for some x, y, 2, %, v

and w in K
x y u ]
a = and b = ,
z —x w —u

with x2 4+ y2 = a, #? + vw = B. Then

xu + yw *
ab = ,
* 20 + xu
and so x# + yw = —zv — xu. Then

0

2xuyv + ylvw + yz0?
= 2vuys + y1(8 — u?) + v2(a — x%)
= —(yu — wx)* + 8 + v,

a non-positive element since « and 3 are negative. Thusv =y = (yu — vx) = 0,
a contradiction to x? + yz = a < 0.

4. General » and the proof of Theorem 1. This section puts together
primitive subgroups of GL(g, K) for the prime-powers ¢ dividing » to get a
primitive subgroup of GL (z, K) which is the direct product of the pieces.

It is not true in general that if G and H are primitive subgroups of GL (z, K)
and GL(m, K), respectively, then G ® H is a primitive subgroup of
GL (nm, K). For example, if K is the real field and both G and H are the
multiplicative complex field viewed as embedded in GL(2, K), then G and H
are primitive (see Theorem 6) but G ® H is notirreducible, let alone primitive.
So the proof of Theorem 4 must make use not only of the primitivity of the
factors but also of some of the special properties noted in Theorem 3.

THuEOREM 4. Let qy, . . ., ¢, be powers of distinct primes and let n = ¢y . . . ¢,
Suppose that for 1 =1,...,t, GL(qs K) contains subgroups B; and W,
satisfying

(@) Z<B; Q W,

(b) [Bi] = M(Qir K)v and

(c) Bi/Z is a chief factor of W, of order q*.
Then W =W1Q ... W, is a primitive subgroup of GL (u, K).

If B, = Cw;(Bi/Z) for each i, then B = Cw(B/Z) and Z is o« maximal
abelian normal subgroup of W.
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Proof. Let B=B;®...® B, By (@) and (b), Z<B W and
[B] = M (n, K). Moreover, by (c), B/Z is abelian and has By/Z,...,B,/Z

as its W-chief factors. Since ¢y, ..., g, are relatively prime, by the Jordan-
Holder Theorem the only W-normal subgroups between Z and B are of form
B;®...Q B,

Let V = K" viewed naturally as a KW-module. Since [W] = M (n, K), Wis
irreducible on V. Suppose that V = V@ ... V; is a decomposition of V
into blocks of imprimitivity for W with 2 = 2. Let Y be the kernel of the per-
mutation representation of W on the set of blocks. Then Z < BN YV < W.
Since V = BV, B is transitive. Thus B/B M Y is a transitive abelian group
and so [B: BM Y] = k. But [B: BN Y] is a product of factors ¢;2, by the
paragraph above. Since # = k- dim V; and # is not divisible by ¢,?, we have
a contradiction. It follows that W is primitive on V.

Now suppose that B; = Cy,;(B;/Z) for each 7. Then

Cw(B/Z) = Cyi(B1/2) @ ... ® Cw,(B,/Z) = B.

If U is an abelian normal subgroup of W with Z < U, then since each non-
trivial group B; ® ... ® B; is non-abelian, UM B = Z and

U= Cy(B/Z) = B,
so U = Z.

THEOREM 5. Let n be a positive integer. Suppose that the field K contains a
primitive p-th root of 1 for each prime divisor p of n and that —1 is a sum of
two squares in K if n = 2(mod 4). Then GL (n,K) contains a primitive solvable
subgroup with Z as a maximal abelian normal subgroup.

Proof. This follows from the last two theorems.

Although Theorem 1 loses its content if K is finite, Theorem 5 does not,
and we get the following fact.

COROLLARY. Let g be a prime-power and n a positive integer. Suppose that n
divides some power of ¢ — 1. Then GL (n, q) contains a primitive solvable sub-
group with Z as maximal abelian normal subgroup.

To prove Theorem 1 we need an elementary fact which seems to have been
repeatedly used without mention in [3].

THEOREM 6. Let K be a field and let K’ be an extension of K of finite degree m.
View GL(n/m, K') as a subgroup of GL(n, K). If G is a primitive subgroup
of GL(n/m, K') which contains its centre, Z', then G is a primitive subgroup of
GL(#n, K).

Proof. Let V = (K')™ = K* Suppose that V=7, @D... DV, is a
decomposition into K-subspaces permuted by G. Then Z’ also permutes
Vi,...,V, and for each s, K'V, has the form V,@...@® V,. Since the
K’-subspaces K’V are permuted by G and G acts primitivelyon V, V = K'V,.
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For0#a € K',aVi € {Vy, ..., V,}. Thus

t
V=KUYV = Z aVy = @01171
i=

a€K’
for some a4, . .., a, independent in K’ over K, with a; = 1. Let
b=a1+ ...+ a,.
Then b # 0, and 6V, = a,;V; for some j. Hence,
b —=a)ViCa;ViN E,jaiVl =0,

and so b = a;and ¢ = 1, as desired.
We can now prove Theorem 1.

Proof of Theorem 1. By Theorem 6 we need only find a divisor, 7, of » and
an extension K’ of degree m over K such that GL (#/m, K’) contains a primi-
tive solvable group. By hypothesis there exist m and K’ such that K’ contains
a primitive p-th root of 1 for each prime p dividing #/m. By Theorem 5,
GL(n/m, K’') contains a primitive solvable group except perhaps if
n/m = 2(mod 4) and —1 is not a sum of two squares in K’. But in that case K’
has an extension K'’ of degree 2 obtained by adjoining a root of x? + 1, and
GL (n/2m, K'") contains a primitive solvable group, as desired.

As a final note, the primitive groups produced above are absolutely irre-
ducible. This follows from the fact that they are generated by certain fixed
finite sets of matrices in a finite extension of the prime field of K. If K’ is
an extension of K and G is one of our primitive subgroups of GL (#, K), then
G is an irreducible subgroup of GL (%, K’) and, moreover, G - Z’ is primitive.
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