STAR CLUSTER SIMULATIONS: THE STATE OF THE ART
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Abstract. This paper concentrates on four key tools for performing star cluster simulations developed
during tbe last decade which are sufficient to handle all the relevant dynamical aspects. First we discuss
briefly the Hermite integration scheme which is simple to use and highly efficient for advancing the
single particles. The main numerical challenge is in dealing with weakly and strongly perturbed hard
binaries. A new treatment of the classical Kustaanheimo-Stiefel two-body regularization has proved
to be more accurate for studying binaries than previous algorithms based on divided differences or
Hermite integration. This formulation employs a Taylor series expansion combined with the Stumpff
functions, still with one force evaluation per step, which gives exact solutions for unperturbed motion
and is at least comparable to the polynomial methods for large perturbations. Strong interactions
between hard binaries and single stars or other binaries are studied by chain regularization which
ensures a non-biased outcome for chaotic motions. A new semi-analytical stability criterion for
hierarchical systems has been adopted and the long-term effects on the inner binary are now treated
by averaging techniques for cases of interest. These modifications describe consistent changes of
.the orbital variables due to large Kozai cycles and tidal dissipation. The range of astrophysical
processes which can now be considered by N-body simulations include tidal capture, circularization,
mass transfer by Roche-lobe overflow as well as physical collisions, where the masses and radii of
individual stars are modelled by synthetic stellar evolution.
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1. Introduction

The study of self-gravitational N -body systems by direct integration poses many
technical challenges which must be addressed. However, progress during the last
decade now enables such problems to be tackled with confidence. In this personal
review of recent developments, we concentrate on four main numerical tools which
appear to be sufficient for the task in hand. The corresponding algorithms may be
summarized under the following headings:

¢ Hermite integration

o Two-body regularization
¢ Chain regularization

¢ Hierarchical systems

These topics are discussed briefly in the subsequent sections, together with
an outline of current applications. Given adequate tools, a massive effort is still
required in order to develop an efficient star cluster simulation code but these
aspects are beyond the scope of the present contribution.

2. Hermite Scheme

Although the Hermite integration scheme was developed for the special-purpose
HARP computer (Makino 1991), it is also proving highly effective for standard
workstations as well as conventional supercomputers. Since coding is now some-
what simpler than for the traditional divided difference formulation (Ahmad and
Cohen 1973, Aarseth 1985), it should be considered the method of choice for direct
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N-body simulations. It may also be remarked that Hermite integration is actually
more accurate than divided differences for the same order.

The main idea is again to employ a fourth-order force polynomial but now the
two first terms are evaluated by explicit summation over all N particles, thereby
enabling two corrector terms to be formed. At first sight it may seem rather expen-
sive to extend the full summation to the force derivative since this also requires
prediction of velocities. However, simplicity as well as increased accuracy combine
to outweigh the drawback of extra operations, particularly if block-step predictions
are introduced. We expand a Taylor series for the force F and its first derivative
F(U) for each particle up to the third derivative about the reference time ¢ as

F = Fo+Ft+ 1IFP2 + LIFP)P, 1
FO = ) + FPi + LFP)2, )
Substituting FE,Z) from (2) into (1) and simplifying then yields the third derivative
corrector
6
F§) = (2(Fo —F) + (F) + FD)o) . ®

Similarly, substituting (3) into (1) gives the second derivative corrector
2 1 ' 2
F{) = (=3(Fo - F) - (2F{) + F)t) . @

Using Fp and F(()l) evaluated at the beginning of a time-step, the coordinates and
velocities are first predicted to order F{1) for all particles. Following determination
of the new F and F(1) by summation over all the contributions, the two higher
derivatives are obtained by (3) and (4). This gives rise to corrector terms for
coordinates and velocities given by

Ar; = LFPatt + LFYAS,
Avi = WFPAR + LFO A 5)

Given the high-order derivatives, individual time-steps can now be assigned in the
usual way from some suitable convergence criterion.,

The overheads of predicting N coordinates and velocities at each time-step can
be reduced considerably by adopting so-called hierarchical time-steps (McMillan
1986), where the indicated values are truncated to be factor 2 commensurate. The
apparent inefficiency of just a few particles sharing the same (small) step and yet
requiring one full prediction is compensated by having a distribution of discrete
levels (typically 16 for N ~ 10*) such that the number of predictions is significantly
reduced with respect to the continuous case (say by factor of 100). This scheme
is particularly suitable for the special-purpose HARP computers but lends itself
equally well to other architectures, including parallel supercomputers (Spurzem
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1998). Somewhat surprisingly, the workstation code NBODY6 which is based on
the Ahmad-Cohen (1973) neighbour scheme (Makino and Aarseth 1992, Aarseth
1994) is in fact slightly faster and more stable than the older NBODY5 code for
N = 1000 single particles and the same number of steps.

3. Two-Body Regularization

The early 1970’s saw the introduction of the Kustaanheimo-Stiefel (1965) regu-
larization for treating close encounters and hard binaries in /V-body simulations
(Bettis and Szebehely 1972, Aarseth 1972) and the elegant KS method has proved
to be very resilient. However, even a regularized two-body solution is subject
to small but systematic errors when studied over long times. In order to avoid
this undesirable feature, the concept of energy stabilization has been tried for weak
perturbations (Aarseth 1985). Although this procedure ensures that the orbit is con-
strained to have the correct energy arising from the perturbation, the corresponding
angular momentum is no longer conserved so well.

The subsequent exploitation of adiabatic invariance (Mikkola and Aarseth 1996)
by the so-called slow-down principle tends to alleviate this imperfection since now
one KS orbit may represent a number of physical periods by augmenting the
perturbation itself and neglecting short-period effects. As for the earlier claim
that a time-symmetric KS method would be superior (Funato et al. 1996), it now
appears that the requirement of variable time-steps for perturbed orbits cannot be
accommodated (Kokubo et al. 1998). So far there is no evidence that the resulting
eccentricities of cluster binaries studied by the stabilization scheme cannot be
trusted, especially bearing in mind that the long-term evolution of most binaries
is predominantly subject to discrete changes of a random nature. The case of
long-lived hierarchical systems deserves special consideration, however, but here
additional effects should also be considered, as discussed in a subsequent section.

An alternative KS regularization scheme has been presented recently (Mikkola
and Aarseth 1998) which achieves a high accuracy without extra cost. This new
approach is based on the idea of a truncated Taylor series, where additional correc-
tion terms represent the neglected higher orders and which yields exact solutions
in the unperturbed case. The new algorithm is again of Hermite type and will be
outlined in the following.

First, coordinates and velocities of the perturbers are predicted in the usual way
(i.e. to first order), whereas the regularized coordinates and velocities (U, U’) are
predicted to highest order. Here U®), U®) include the modified Stumpff (1962)
functions

é.(2) = n! i —(—_—i, (6)
= (n+ 2k)!

where the argument is related to the time-step by z = — %hAr2 and h is the specific
binding energy. These coefficients only deviate slightly from unity and a twelfth-
order expansion (re-evaluated every step) appears sufficient. After transforming
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the physical coordinates and velocities to global values, the predictor cycle is com-
pleted by evaluating the perturbing acceleration F as well as its explicit derivative
F.

Because of the insufficient accuracy of the predicted deviation from unperturbed
motion at the end of a step, the corrector cycle employs an iteration. Setting
Q=-— %h, the basic equation of motion takes the familiar form

U® = QU + IrLTF, N

where £(U) is a4 x 3 linear matrix and » = U - U is the separation. We express
the new KS acceleration and its derivative (where F/ = rF) at the start of a step as

UP = —QU, + 12, ®)
UP = —up+ £, ©)

where féz) = %rQ, with Q = LTF, is the perturbed force contribution evaluated
after the previous predictor cycle.

The two next Taylor series terms are constructed from the Hermite scheme.
Using the current value of h (and ), predicted to fourth order, we form the new
perturbative functions at the end of the step

£ = (Q - QU + 1rq, (10)
£3) = (Q - QU - QU + 1+'Q + 1rq, an

from which the corrector derivatives f((,") ) f((,s) are recovered by the Hermite rule
(Makino 1991).

The expressions for Ug‘) and U(()S) are readily formed in analogy with Egs. (8)
and (9) which yield

Ul = —ul? + 17, (12)

Uf) = —oUf) + 1. (3

From Egs. (8) - (13), the provisional solution for U, U’ is then obtained by the
general expression (cf. Mikkola and Aarseth 1998), which contains the Stumpff
functions. The treatment of the energy remains the same as for standard Hermite
based on ' = —U’.Q and the physical time is obtained from integrating ¢’ = U-U
which also involves Stumpff functions. Substituting for U(?), we write the second
derivative as

oM =0U.-Q-f®.Q-U'-q. (14)

The two corrector terms constructed from Q' and Q(2) are added to the predicted
value without any Stumpff functions to yield an improved solution for Q at the
start of the next iteration or at the end point.
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Subsequent iterations repeat the procedure above, starting from Eq. (10) without
re-evaluating the physical perturbation and its derivative. Thus the new values of
Egs. (10) and (11) are based on the improved solution for U, U’ and 7, 7/, as well as
the new Q2. In the present treatment, one iteration yields a significant improvement
for modest perturbations and experience so far indicates that this may also be
sufficient for strong interactions because of the shortening of the stepsize Ar (cf.
Aarseth 1994).

The corrector cycle ends by specifying new derivatives for use in the next
prediction, as well as saving the perturbative derivatives (10) and (11) required for
the Hermite scheme. This is completed by re-initializing Eqs. (8) and (9) at the
end point, substituting £(2), £() as well as the iterated values of €’ and Q®. It
is advantageous to employ the corrected values of » and 7' for this purpose; the
re-evaluation of £(2) and £(3) is fast and also benefits the final quantities U(® and
UG to be used in the next prediction. A more accurate expression of the fourth
KS derivative at the end of the interval is obtained by including the next order by

U™ = Ul + uPAr, (15)
and similarly for the third derivative of the energy,
Q® =l + Q®War. (16)

The above scheme has been implemented in the state of the art codes NBODY 4
and NBODY6 and has proved itself in large-scale simulations. Accuracy tests ob-
tained by a toy code shows that high accuracy can be obtained with 30 steps per
orbit for relatively weak perturbations, which is about half that required by the old
stabilization scheme. A significant part of this gain is due to the modifications by
the Stumpff coefficients, although the basic Taylor series (or Encke-type) formu-
lation is also considerably more accurate than the standard method. The number
of operations for a typical step is not much larger in the new method, including
the overhead for the Stumpff functions and one iteration in the cotrector. Hence
the computational effort is less for typical calculations, although this depends on
the actual number of perturbers. Finally, we remark that the Stumpff method also
includes the slow-down scheme in exactly the same way as before.

4. Chain Regularization

The concept of chain regularization is simple, yet the mathematical formulation is
quite technical and this has acted as an impediment to wider usage. However, it
enables new types of problems to be studied and is therefore worth the extra effort.
The basic idea is a generalization of three-body regularization (Aarseth and Zare
1974) which treats two perturbed KS solutions with respect to a common reference
body, where each two-body solution is described by regular equations. Thus an
extension to four participating bodies merely introduces one more perturbed KS
solution, although the formalism is somewhat different (Mikkola and Aarseth
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1990). Once the step from three to four particles has been mastered, the general
case becomes feasible (Mikkola and Aarseth 1993).

The essential feature of chain regularization is that dominant interactions along
the chain itself are treated as perturbed KS solutions and all the other attractions
are included as perturbations. Hence it becomes imperative to select the chain
vectors in such a manner as to minimize the perturbations. Since we are dealing
with dynamical interactions, the chain vectors need to be redrawn in response to
changing configurations. Fortuitously, all the relevant decision-making constitute a
minor overhead here since the integration is carried out by the high-order Bulirsch-
Stoer (1966) scheme and a certain elasticity is tolerated as regards switching to
more favourable chain vectors.

The equations of motion are derived from a regularized Hamiltonian of the form

I =g(H - E), amn

where H is expressed in terms of the coordinates and momenta and F is the
internal system energy. Here the function g is given by the corresponding time
transformation

dt = gdr (18)

and choosing the inverse Lagrangian energy (L = T + @) ensures regular solutions
for any chain separation Ry.

The treatment begins by selecting a compact subsystem of three or four particles;
i.e. so-called B + § or B + B type. External perturbers are chosen in analogy with
the KS implementation and the internal integration includes any perturbation effect
which also tends to change the total energy according to its separate equation of
motion. At the same time, the c.m. motions are advanced by the standard Hermite
scheme with due attention to the slightly modified form of the corresponding
acceleration which requires a differential correction. ,

The analogy with KS does not hold in one important respect since the chain
membership may change before termination occurs. Thus an initial subsystem of
four members may lose one member due to ejection, or an approaching perturber -
a single particle or binary - may be added. Alternatively, the membership may also
change through physical collision. All the relevant corrections and re-initializations
are performed in situ. Hence the use of chain variables is also highly beneficial
for the evaluation of nearly singular quantities. Chain termination usually occurs
when a binary becomes well separated from one or two other members in which
case the binary is accepted for KS treatment, whereas the remaining membership
is initialized by the Hermite scheme or even as a second KS system. The actual
decision-making also takes into account the cluster environment and is therefore
quite involved.

Cluster simulations of primordial binaries frequently involve interactions of
two binaries where the size of one is much less than the other. In such cases even
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the powerful chain method becomes prohibitive because the shortest period is a
small fraction of the local crossing time. Fortunately the principle of slow-down
applied to weakly perturbed KS binaries can also be employed here (Mikkola
and Aarseth 1996). This permits a consistent study of binaries with arbitrarily
short periods which would otherwise have to be treated as inert systems. The
implementation itself differs from the KS case since here we adjust the slow-down
factor continuously according to the maximum apocentre perturbation exerted by
the other chain members, rather than choosing an appropriate discrete level (factor
of 2) at each apocentre passage.

Since the strong interactions studied by the chain method are usually of short
duration, the simulation code only allows one such case to be considered at a time
for technical reasons. However, there is provision for studying one triple as well
as one quadruple system by unperturbed three-body (Aarseth and Zare 1974) and
chain (Mikkola and Aarseth 1990) regularization. Given a few hundred critical
events in a typical cluster simulation, the latter procedures are usually not needed
but this may change with the addition of more primordial binaries.

5. Hierarchical Systems

The Solar neighbourhood contains many examples of multiple systems where the
inner component of a binary is itself a binary, and levels of higher multiplicity also
exist. Likewise, hard binaries in star clusters may acquire an outer component with
sufficiently small eccentricity to be stable over many orbits. Hierarchical triples
may be formed by the classical three-body capture mechanism in which the binary
itself acts mainly as a point-mass. However, in clusters with significant binary
populations such systems are more likely to form in strong interactions between two
binaries since this involves two-body encounters. The second formation process
was already identified in scattering experiments with colliding binaries which
yielded a high percentage of positive outcomes (Mikkola 1983). Thus one way for
such triples to become stable requires the impact parameter to exceed some critical
value and yet be sufficiently small for the weakest binary to be disrupted, but other
processes are also favoured, including exchange.

Given a newly formed hierarchical triple, the question of long-term stability
naturally arises. Depending on the period ratio, the direct calculation of a perturbed
inner binary can be quite time-consuming even with KS regularization. However,
since the corresponding semi-major axis may not be subject to any secular effects
it becomes possible to adopt the centre-of-mass approximation and thereby only
neglect cyclical changes of the eccentricity. Various empirical criteria have been
obtained by fitting the results of systematic three-body calculations for a restricted
set of parameters (Harrington 1977, Eggleton and Kiseleva 1995). Based on these
results, the so-called merger procedure has been employed for some time (Aarseth
1985). Thus provided the stability condition is satisfied, the inner binary is replaced
by its combined mass to facilitate KS treatment of the outer orbit.

A more rigorous approach based on correspondence with the chaos boundary
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in the binary-tides problem (Mardling 1995) has yielded a semi-analytical stability
criterion which holds for quite large mass ratios and arbitrary outer eccentricities
(Mardling and Aarseth 1998). Here the critical outer pericentre distance is given
in terms of the inner semi-major axis, a@;,, by

(1 + eout) ]2/5 @
"“(1 _:‘_"”“eom)l/z iny

where ¢t = ms/(mq + my) is the outer mass ratio, e,,; is the corresponding
eccentricity and C ~ 2.8 is determined empirically. This criterion is only valid
for coplanar prograde motion and still ignores a weak dependence on the inner
eccentricity. However, the general case of inclined orbits exhibit increased stability
so that Eq. (19) represents an upper limit. Further tests suggests an inclination
correction factor f = 1 — 0.3¢/180 (with ¢ in degrees) which has been adopted in
practical simulations,; this is also in qualitative agreement with the original stability
condition for retrograde orbits (Harrington 1972). The merger treatment is only
allowed while the pericentre condition is satisfied, after which the inner binary is
re-initialized.

A further refinement is included when the outer component itself is a binary. In
the case of a B 4+ B configuration, the smallest binary plays the role of the outer
body in a triple. Since the comresponding chaos boundary is not very sensitive to a
second extended object (Mardling 1991), we adopt an additional correction factor
f1 = f + 0.1min(ain/az, a2/ ain), with a; representing the second semi-major
axis. We also mention here that even double hierarchies may be formed, where
a system of type B + S or B + B itself acquires an outer bound component.
Such configurations do occur occasionally and procedures have therefore been
developed for their special treatment.

The criterion (19) above is concerned with long-term stability and hence the
absence of escape. However, it is also of interest to consider the possibility of
exchange between the outer component and one member of the inner binary.
According to classical developments (Zare 1977, Szebehely and Zare 1977), the
critical value for exchange in a coplanar prograde triple is given by

2 . _ G fA(p)g(p)
(" Beric = 2(mq + mz + m3)’

where ¢ is the angular momentum and the functions f(p), g(p) are expressed in
terms of the masses, with p determined by iteration from a fifth-order algebraic
equation for the collinear equilibrium points. Numerical tests show that the chaos
boundary given by Eq. (19) lies above the exchange boundary when the masses
are comparable and the latter only begins to overlap above ¢,.: ~ 5. Application
of the exchange criterion is therefore less useful in practical calculations. We also
note that once an exchange occurs the final evolution will inevitably lead to escape.

The long-term evolution of a hierarchical triple is characterized by cyclic os-
cillations of the inner eccentricity where the amplitude depends on the inclination.

Ry = C (14 gou) (19)

(20)
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The so-called Kozai effect (Kozai 1962) has received much attention recently in
connection with external planetary systems but there is also an early example from
N-body simulations (van Albada 1968) which points to the relevance for star clus-
ters. Various analytical tools have been employed in order to model this process
in some detail, including tidal dissipation for high eccentricities (Mardling and
Aarseth 1999). Among the useful quantities which can be calculated theoretically
(Heggie 1995) are the time-scale for a complete oscillation, Tk, as well as its
maximum value, €,,4.

Since the time-scale for the Kozai cycle is usually much greater than the Kepler
period, the merger scheme for hierarchical triples lends itself particularly well to a
semi-analytical treatment. At present only systems with e, > 0.8 are considered
since smaller amplitudes are less likely to result in tidal activity. We have used a
double averaging procedure (Eggleton 1997, Mardling and Eggleton 1998) to
calculate the evolution of such systems in terms of the inner Runge-Lenz vector
and angular momentum vector. Thus some examples show that inclinations near
90° may induce tidal circularization even if oblateness effects are included. Clearly
further developments of this experimental approach is needed in order to improve
the modelling of these complicated processes.

6. Astrophysical Applications

The realistic simulation of star cluster dynamics requires a variety of astrophysical
processes to be considered. In particular, the implementation of consistent stellar
evolution enables the study of mass loss and finite-size effects. This is an ongoing
project which has been outlined elsewhere (Aarseth 1996) and now employs an
improved description of Roche mass transfer and physical collisions (Tout et al.
1997). Particular emphasis has been devoted to the modelling of chaotic motions
and tidal circularization which form a link between an initial binary distribution
and the Roche stage (Mardling and Aarseth 1999). In particular, it is found that very
high eccentricities (e > 0.999) are produced in stable hierarchies or by exchange
and these in turn lead to orbital shrinkage by tidal dissipation. Primordial binaries
also leave an imprint in the form of high-velocity escapers. At the same time, more
general cluster simulations have yielded much insight into dynamical evolution
(McMillan et al. 1992, Aarseth and Heggie 1998, Portegies Zwart et al. 1998),
The modelling of synthetic stellar evolution is based on fast look-up tables
for the radius, luminosity and type as a function of the initial mass and age (cf.
Tout et al. 1997). Instantaneous mass loss due to stellar winds or supernovae
explosions are adopted for the advanced stages. An energy-conserving integration
scheme is preserved by including relevant corrections and re-initializations. The
standard open cluster model includes 10* single stars with 5% primordial hard
binaries. Once the most massive single stars have evolved, the binaries dominate the
mass segregation and increase their central abundance significantly with increased
disruption probability. Even so, the original binary population is not depleted
preferentially such that there is always an energy source which prevents core
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Fig. 1. Logarithmic plot of single stars and binaries as functions of time in Myr.

collapse. This behaviour is illustrated well in the figure which displays the bound
membership.

In conclusion, the algorithms presented above have proved highly efficient for
star cluster simulations. Hopefully these numerical tools will also play a part in
future efforts involving more powerful hardware.
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