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COLOUR CLASSES FOR r-GRAPHS 

BY 

E. J. COCKAYNE 

1. Introduction. By an r-graph G we mean a finite set V(G) of elements called 
vertices and a set E(G) of some of the r-subsets of V(G) called edges. This paper 
defines certain colour classes of r-graphs which connect the material of a variety 
of recent graph theoretic literature in that many existing results may be reformu­
lated as structural properties of the classes for some special cases of r-graphs. 
It is shown that the concepts of Ramsey Numbers, chromatic number and index 
may be defined in terms of these classes. These concepts and some of their properties 
are generalized. The final subsection compares two existing bounds for the chromatic 
number of a graph. 

We shall use the following notation. For any r-graph G, the subgraph (S) 
induced by the subset S of V(G) is the largest subgraph of G with vertex set S 
and the subgraph (F) generated by the subset F of E{G) is that graph for which 
V((F))=\JfeF{v: v ef} and E((F))=F. If the r-graph B contains a subgraph 
isomorphic to the r-graph A we write A<B or B>A. Kp (p>r) will denote the 

complete r-graph with/? vertices (i.e. with j l edges) and G-v will mean the r-graph 

obtained by deleting from G9 the vertex v and all edges incident with v. 

2. The colour classes. 

DEFINITION LetP^ ( / = 1 , . . . , 0 be any t properties associated with r-graphs. 
A vertex (Pl9 P 2 , . . . , P^-colouring of an r-graph G is a partition of V(G) into t 
subsets Sl9 S2,.. . ,St such that for each / = 1 , . . . , t, (S^ has property P^. An 
edge (Pl9 P 2 , . . . , PJ-colouring of G is similarly defined as a partition of E(G) 
into Fl9 F29.. . , Ft such that for each i '= l , . . . , t9 (Ft) has property Pt. Tr(Pl9 

P 2 , . . . 9Pt) and é'(Pl9P29... 9Pt) are those classes which contain all r-graphs 
having vertex (Pl9P29 . . . , Pt)-colourings and edge ( P 1 ? P 2 , . . . , P^-colourings 
respectively. 

We now give some additional notation. If M denotes the class of all r-graphs, 

then ^ ( P 1 , P 2 , . . . , P , ) = ^ ~ ^ ( P 1 , P 2 , . . . , A ) and J(Pl9P2,. . . ,Pt)=âl-
S(Pt9 P 2 , . . . , Pt). If Pi=P for all /= 1 , . . . , t we use the terms vertex and edge 

Prcolourings, ^(P*), ̂ (P*) , #(?*) and S{Pl) as abbreviations for (Pl9 P 2 , . . . , P,)-
colourings, etc. Finally we note the trivial fact that all these quantities are invariant 
under permutations of the subscripts 1, . . . , t. 
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3 Ramsey-type properties of r-graphs. Throughout this section Gl9 . . . , Gt will 
denote r-graphs and for each / = 1, . . . , t a graph G has property P{ if and only if 
G>Gi. 

THEOREM 1. i^(Pl9 P29 • . . , Pt) and é?(Pi> P^ • • •> Pt) are nonempty. 

Proof. Suppose that Gt has pt vertices ( / = 1 , . . . , t) and consider the r-graph 
Kx where A=]£Li(/*t—!)+!• Then in any vertex partition of Kx into Sl9 . . . , St 

some St contains at leastpt vertices and (Si)>Kp.>Gi. Hence Kk G ^ ^ , P2, . . . , 

PU-
Secondly suppose [x is greater than or equal to the Ramsey Number N(pl9 

p29 . . . ,pt;r) [1]. Then by Ramsey's theorem [2] if the edges of K^ are partitioned 
arbitrarily into Fl9... , Ft9 for at least one i in {1 , . . . , t} (Fi)>Kp.>Gi and 
K^ e ^(Pl9 P2, . . . , Pt). This proof as well as some simple properties of #(P1? 

P29 . . . , Pt) appeared in [3]. The properties are repeated below for completeness. 

DEFINITION. The Ramsey edge number N(Gl9 G2,. . . , Gt) is the smallest 

integer n such that Kn e <t?(Pl9 P2,. . . , Pt). 
We note that if G~KP. then the Ramsey edge number N(Gl9 G2, . . . , Gt) is 

the standard Ramsey number N(pl9p29 . . . ,pt; r). Some properties of the classes 
and Ramsey edge numbers follow: 

(i) I f /= l , i r ( i> 1 )=^ (P 1 )={G:G>G 1 } . 

(ii) G e S{PX9 P29. . . , Pt) and F<G=>Fe£(Pl9 P29. . . , Pt)9 (and similarly 
îorr{Pl9P%,...,Pi)). 

(iii) For each /= 1, . . . , t let an r-graph G have property Qt if and only if 
G > # , and suppose that G,>/ / , . Then V{Ql9 Q29 . . . , Qt)^r{Pl9P%9. . . ,P«), 
* ( 6 i , Ô2, • • • , QÙ^Vi, P*> • • • , Pt) and N(Hl9 H29 . . . , HÈ)<N(Gl9 G29. . . , 

(iv) Let G' be the r-graph obtained from G by removing a vertex of maximum 

degree. 

THEOREM 2. N(Gl9 G29. . . , Gt)<N(sl9 s29. . . , ^ ; r—1) + 1 w/zm? 

51 = JV(Gi, G2, . . . , Gt) 

52 = N(G19 Gl, . . . , G«) 

s, = N(Gl9 G2, . . . , GJ) 

#«d N(sl9 s29 . . . , st; r—1) is the standard Ramsey number. 
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Proof. This is a straightforward generalization of the proof of the recurrence 
inequality for Ramsey numbers [1, p. 41]. Let x be an element of the «-set S 
where n>N(sl9 s29... , st; r— 1)+1 and let Fl9 F29... , Ft be an arbitrary partition 
of the edges of the complete r-graph with vertex set S. This partition defines a 
partition El9... ,Et of the edges of Y, the complete (r— l)-graph whose vertex 
set is T=S—{x} as follows. An edge e of Y is in Et if and only if e U {x} is in Ft. 
Now \T\>N(sl9s29... 9st; r— 1) hence by Ramsey's theorem for some j in 
{1 , . . . , t}9 (Ej) contains a subgraph W which is isomorphic to the complete 
(r--l)-graph on Sj vertices. Without losing generality l e t ]=\ . Next consider the 
complete r-graph on V{W). Its edges are partitioned among Fl9... , Ft and since 
sx = N(G'l9 G 2 , . . . , Gt), either for some k in { 2 , . . . , t}9 (Fk)>Gk or (F1)>G'1. 
If the latter possibility occurs, the r-graph obtained by adjoining to G'x the r-edges 
formed by uniting each (r—l)-edge of Wwith {x}, has a subgraph isomorphic to 
G1 and by construction each of the adjoined r-edges is in Fx. Hence the augmented 
graph is a subgraph of (i^), showing that (FX)>GX. Thus in all cases for some i 
in { l , . . . , t}, (Fi)>Gi and the theorem is proved. 

When r = 2 , N(sl9s2, . . . , st; r—l)=^t
i Si^t+l and hence Theorem 2 specializes 

to 

N(Gl9 Ga,. . . , Gt) < N(G[, G2,. . . , Gt) 

+N(G19 G2\ . . . , Gt)+- • -+iY(Gl5 G2,. . . , G ( ) - r + 2 

The proof techniques of [4, Theorem 3] enable one to show that if 2 ^ " " ' *s 

even and at least one s{ is even, then the inequality (2) is strict. 
Setting Gi=G for each i=l9 . . . , t we obtain 

N(G*) < fiVCG*-1, G ' ) -*+2 

and this inequality is strict if both * and NiG*'1, G') are even. 

4. Generalized chromatic numbers. 

DEFINITION. The vertex (edge) P-chromatic number of an r-graph G, denoted 
by %p(G) (x'v(G))> is the least integer t such that G has a vertex (edge) P*-colouring. 

Equivalently %P{G) is the smallest integer t such that G e f ^ * ) . If r = 2 and 
P means totally disconnected, then %P{G) is the usual chromatic number and if a 
2-graph has property P if and only if it has no subgraph isomorphic to the graph 
with 3 vertices and 2 edges, then %P(G) is the chromatic index or line chromatic 
number of G. Several papers on particular P-chromatic numbers of 2-graphs have 
already appeared in the literature. (See [5] and [6].) 

4.1. In this section we establish an upper bound for #P(G) which generalizes a 
result of Szekeres and Wilf [7]. Let G be an r-graph, P be a hereditary property 
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(see [8, p. 96]) and for v e V(G) let SPP(v) be a family of subgraphs of G with the 
following properties: 

(SL)HG^P(V)^>VEV(H). 

(b) He£fP{v)^>H does not have property P but for all u e V(H), H—u has 
property P. 

(c) Hl9 H2 G t9
?p(v)=>H1, H2 have no common vertex except for v, i.e. V{H^) n 

V(H2)={v}. 
We define dP(v) to be the largest cardinality of all such classes £fP(v) and 

ôP(G) = min dP(v). 
veV(O) 

THEOREM 3. If P is a hereditary property then 

(3) Xp(G)<l+rnax<5P(G') . 
G'<G 

We note that if r=2 and P means no edge, then dP(v) is merely the degree of 
v EG and (3) reduces to the bound of Szekeres and Wilf: 

(4) %(G) < 1+ max min d{v) 
0'<0 veV(O') 

(d(v) here refers to the degree of v in G'). 

Proof. By removing successive vertices from G, if necessary, we can form a 
subgraph Gc such that %P(GC)=%P(G) but for any v e V(GC), %P(Gc-v)=%P(G)-1. 
Then for each v e V(GC), 

(5) dP(v)>Xp(G)-l. 

For suppose the contrary, i.e. 3 ueV(Gc) s.t. dP(u)<xP(G)—2. Let t=%P{G) 
and F1? F 2 , . . . , F ^ be a vertex P*_1-colouring of Gc—u. By definition each (Kt-) 
has property P. Therefore if each of the t—l subgraphs of Gc, (F,- U {u}) z = l , . . . , 
f—1, were without property P, then for each z= l , . . . , t— 1, ( ^ U {w}}>^ 
where we V{W^), W{ does not have property P but the removal of any vertex 
from Wi restores the property P. Then the family {W^. z= l , . . . , t— 1} satisfies 
(a), (b) and (c) above and hence dP{u)>t—\ contrary to hypothesis. We may 
therefore conclude that for some y in 1, . . . , t— 1, {V5 U {u}) has property P. But 
this implies that Vl9 V2, . . . , Vô_l9 Vj U {u}, Vj+1,. . . , F ^ i s a vertex P*-1-colour-
ing of Gc contrary to the definition of Gc. Hence (5) is true, i.e. for all v e Gc. 

Xr(G)<l+dP(v). 

Therefore XP(G) < 1 + ôP(Gc) < 1 + max ôP(G'). 
Q'<Q 
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4.2. Throughout this section, property P will mean no subgraph isomorphic 
to the r-graph H and we shall use the more convenient notation %H(G) rather than 
%P(G). The following properties are easily established. 

(i) Let Hl9 H29 G be r-graphs and H^H» Then XH^^XH^ 

(ii) Let H, Gl9 Gz be r-graphs and GX<G2. Then XH(GI)<XH(GÙ-

(iii) Let {x} be the smallest integer greater than or equal to x. Then for any 

'•*«.«>-&}• 
For the r-graph M, we define 

x(M) = max{«:M > Kn} 
and 

fiH(M) = max{|S|:S S V(M) and (S) > if}. 

THEOREM A. If G has p vertices then 

(6) W/W) £ to(G) £ { ^ ^ } + l. 

If r=2 and H=K2, then jSjy(G) is the point independence number /30 of G and 
À(H)=2. Thus (6) reduces to: 

(7) PIPO£X(G)£P-PO+I 

which are well known inequalities. (See [8, p. 128]). 

Proof. If Xii(G)=t, there is a partition Vl9 V29 . . . 9 Vt of V(G) such that no 
Vt>H. Then |F*|<M<?) for each i = l , . . . , / and/>=2Li l ^ ' M G ) . There­
fore XH(G)>P1PH(G). 

Let F be an r-graph with q vertices. Using properties (i), (ii) and (iii) of this 
section: 

(8) XH(F) <Ç XKMB) (F) <L xxx J*J = { ^ ^ j -

Finally let S be a maximal subset of V(G) such that (S) > # , i.e. |S| =PH{G). Denote 
by G-S the r-graph formed by deleting S and all edges incident with S from G. 
Then 

(9) XH(GS)^XH(G)-1. 

But |F(G-S)|=/>-/SH(G) and so applying (8) with F=G-S we obtain 

to(G_S) < [Ezhm 
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and then by (9) the required result 

4.3. In the preceding sections two known upper bounds for the standard 
chromatic number of a 2-graph have been mentioned. They are 

%{G) < 1+ max min d(v) 
G'>GveV(G') 

and 

X(G) < 1+P-A,(G). 
The following result shows that the first of these is the sharper bound. 

THEOREM 5. For any graph G 

max min d(v) < p—P0(G). 
G'<G veV(G') 

Proof. Let S be a set of P0(G) independent points of G and let G' be any subgraph 
of G. Either G' contains no vertex of S in which case G'<Kv_p {G) and 

min d(v) <>p-po(G)—l 
veV(G') 

or G' contains a vertex in S which has degree <p—^0(G) and therefore 

min d{v)<p-^{G). 
veV(G') 

Thus for all subgraphs G' of G, mmveV{G>) d(v)<p—(30(G). Hence 

max min d(v) < p-~P0(G) 
G'<G veV(G') 

as required. 
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