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THE SPECTRA OF TOEPLITZ OPERATORS WITH
UNIMODULAR SYMBOLS

by TAKAHIKO NAKAZI*
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The spectrum o{Tt) of a Toeplitz operator 7̂  on the open unit disc D for a unimodular symbol <j> is studied
and many sufficient conditions for a(Tt) c 3D or c(T^) = D are given. In particular if $ is a unimodular
function in H°° + C, then o(Tt) c 3D or a(T^) = D.
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1. Introduction

Let IF be the Lebesgue space on the unit circle 3D and let Hp be the corresponding
Hardy space for 0 < p < oo. The Toeplitz operator 7^ with symbol <j> in L°° is the
operator on H2 defined by T^x — P(<px) for x in H2, where P is the orthogonal
projection of L2 onto H2.

In this paper we study the spectrum a{T^) of a Toeplitz operator 7^. It is known that
tr(7^) is always connected. This is a hard and deep result due to H. Widom (cf. [2,
Corollary 7.46]). If 0 is a continuous function on 9£>, CT(7^) consists of the range of <f>
together with those points not in the range of <j) that have a nonzero index with respect
to <t> (cf. [2, Corollary 7.28]). If <f> is a real-valued function in L°°, CT(T^) = [ess inf (f>,
ess sup 0] (cf. [2, Theorem 7.20]) and if 4> is a function in H°°, CT(7^,) = the closure of
<f)(D) (cf. [2, Theorem 7.21]). In particular, we are interested in the spectrum CT(T^) of a
Toeplitz operator 7̂  when 0 is a unimodular function in L°°. M. Lee and D. Sarason
[6], and R. G. Douglas and D. Sarason [3] have considered CT(T^) when (j> is a quotient
of two inner functions. Under some conditions, they showed that ff(7^) = D [6]. In this
paper, we consider such a problem when (f> is an arbitrary unimodular function.
Theorem 1 in [6] is a corollary of (2) of Theorem 2 in this paper. For a real-valued
function s in L°°, s denotes the harmonic conjugate with s(0) = 0. Our main tool is the
following theorem [1].

Widom and Devinatz's Theorem. Let cp be a unimodular function in L°°. Then the
following (l)-(3) are equivalent.
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(1) T# is invertible.

(2) <f> has the form: (j> = e" where t is a real-valued function in L1 such that
inf{||t - s - a\\x; s e L~ and a e R) < n/2.

(3) <f> has the form: (/> = g\g2/\g\g2\ where both g} and gtj"1 are in H°°, and both g2 and
g2

l are in Up>1 W with Re g2 bounded away from 0 on dD.

In this paper, we give sufficient conditions for ff(7^) c 3D or o{T$) = D, using
inf ||t — 5 — all,,,, in Section 1 and g/\g\ in Section 2. Throughout this paper, for a
function space X on dD, we let XR = {Ref; f e X), where Ref is a real part of/. C
denotes a set of continuous functions on 3D and so CR is a set of all real valued
continuous functions on dD.

2. Sufficient conditions using inf \\t — s — aW^

Lemma 1. Let (f> be unimodular in L°° and A = a + ib in D. Then k& o(T$) if and only
if<f> has the form <j> = e" where t is a real-valued function in L1 such that

inf{||t + vx-s- all^ ; 5 e L~ and a e R} < n/2

and vx = arctan {(a sin t — b cos t)/(l — (a cos t + b sin £))}.

Proof. We will first show the "if" part. There exists a function sx in L°° such that
(1 - A<£)/|1 - A0| = eUx and HsJL < TI/2 because |A| < 1. Then

1 - (a cos t + fr sin t) asmt-bcost
+ l

Since |acost + fcsint| < |A| < 1, H^IL < 7t/2. Hence \\vx - s^^ < n and tan^ =
a.e. and so vx = sA a.e.. Therefore

and by Widom and Devinatz's Theorem in the Introduction T^_x is invertible because
inf{||t + vx - s - alU ; s e L^ and a e R] < n/2. Conversely if X # aij^), by Widom
and Devinatz's Theorem there exists a real-valued function tx such that
(<f> - k)/\<j> -k\= e"1 and inf{||tA - s - a^ ; s e L~ and a € R] < TI/2. AS in the proof
of the "if" part, there exists sx such that (1 - A<£)/|1 - k<}>\ = e"x. Moreover <\> = e" and
sx = vx if t = tx — sx. This implies the "only if" part.

Theorem 1. Let <f> be a unimodular function in L°°.
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(1) If <j> = e" and t is a real-valued function in Ll such that inf{||r — s — all,,,,; s e L™
and a e R) = 0, then a(T^) c 3D.

(2) If in f{ | | t - s - alloo ; s e L™ and aeR}>n for any t e L R with (f> = e", then
= D.

(3) Ifa(T^) = D, then inf{||t - aW^ ; a e R) > n for any t e LR with <f> = e".

Proof. (1) If k — a + ib e D and vx = arctan {(as'mt — bcost)/1 — (acost + bsint)},
then HfjiHoo < n/2 and hence inf{||t + vx -s— aW^ ; s e L™ and a e R) < n/2 because
infiWt-s-aWn ; s e l " and aeR) = 0. By Lemma 1, k^a{T^) and hence
<x(7;) C 3D.

(2) If X e D and k^a{T^), then by Lemma 1 inf{||t + vx - s - a\\x ; s e L~ and
a e R] < n/2. Since Halloo < 7t/2, inf{||t — s - a\\x ; s e L " and a e /?} < jr. This implies
(2).

(3) (3) is a result of a theorem of A. Brown and P. R. Halmos (cf. [2, Corollary
7.19]).

Corollary 1. Suppose <f> = e" and t is a real-valued function which satisfies one of
the following (i)-(iii), then a{T^) c 3D.

(i) t = u + v where u G L~ and v e CR.

(ii) t = u + v where u 6 L~ and v is in the norm closure of

(iii) t = u + v where u e L~ and v = so qfor s e CR and an inner function q.

Proof. If v 6 CR, then v is in the norm closure of H~ and so (i) is a result of (ii).
If v e H^, then v = s + a for s e H^ and a e R, and hence a simple computation
implies (ii). If s is a real-valued polynomial of z and z, then t> = s o q belongs to Hf for
an inner function q. Thus (iii) is a result of (ii).

Corollary 2. Let Qt be a non-constant inner function, at& D and b} e D for

1 < j < max(n, m). Suppose <l> = qxq2 where qt = flU&J ~ aMl ~ *JQJ)
 and & =

L hQj)- Then ff(T«) ^ d D 'fand only if" = m-

Proof. If n = m, put u = 2 J^U l o8 K1 ~ ^GyVO - bfa)\, then u e Lf and
<̂  = Q1Q2 = «ca for some constant a. (1) of Theorem 1 implies the corollary. Suppose
ff(T0)c3D. If n>m, then tf> = qxqr = <j>x <f>2 where <£, = f l ^ + . p - a,Q,IQ, - a,),
4>2 = aLe&, a is a constant and M = 2 ^ ^ , l og | ( l - a ,Q 7 ) / ( l -6 , e y ) | . Therefore
Tj, = T^T^, and both T^ and 7^ are invertible. This contradicts the fact that 7^ is not
invertible.
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3. Sufficient conditions using g/\g\ for g in Hp

Theorem 2. Let (f> be a unimodular function in L°°.

(1) If<f> = g/\g\ where both g and g~l are in H°°, then a(J^) c 3D.

(2) If<f> ^ g/\g\for any g in \Jp>i/2 H" whose inverse is in \Jp>l/2 H", then CT(T^) = D.

Proof. (1) This is a corollary of (1) of Corollary 1. But we will give another proof.
If <p = g/\g\ where both g and g~l are in H°°, put h = gl/2, then 0 = h/h and both h
and h~x are in H°°. For any k e D, (f> — k = (l/ft)(l — kh/h)h and hence

This implies that T^_x is invertible by Widom and Devinatz's Theorem.
(2) For any k e D, 1 - k<f> = (/>oi where \<f>0\ = 1 a.e., and both I and i~l are in H°°.

Hence

<t><l>Qt a n d <j>0-l = k<j>0(j>.

Since ||^0 - ^H ,̂ = |A| < 1, by Widom and Devinatz's Theorem T^ is invertible and
^0 = h/\h\ for some h e H" and a > 1. If 7̂ _A is invertible, then 7 ^ is invertible and
hence 4>4>O = k/\k\ for some k e Hb and b > 1. Therefore ^ = (j>0<j><f>0 = hk/\hk\ and both
hk and (fife)"1 belong to H" for some p > 1/2. This implies (2).

Corollary 3. If4> = g/|g| where g e ! % „ H" and g~l $ flp>./2 ^P- then c{TJ) = D.

Proof. If <f> = h/\h\ for some h in r\p>i/2^P whose inverse is in n,>i/2^P> *nen
<j> = \k\/k with fc = l/h. Hence kg is non-negative a.e. on 3D and fc# e Hl/2. By [7],
g = ch for some positive constant c and g~] e n,»i/2 ^P- Now (2) of Theorem 2 implies
the corollary.

Corollary 4. Lef g> *e a non-constant inner function, at e D onrf fy e D /or
< j <max(n, m). Suppose </> = g,g2 w/iere ?, = FIJ=i(2; - «/)/(! - ^Cy) and q2 =
UiQ) ~ b})/(l - bjQj). Then a{T^) = D if and only ifn # m.

Proof. By Corollary 2, it is enough to show the "if" part. If n > m, then by the
proof of Corollary 2 <f> = <j>2<l>2 and so <j> = <t>i(g/\g\) where both g and g~l are in H°°,
and <f>t is a non-constant inner function. If <f> = h/\h\ for some h in C\p>j/2H

P whose
inverse is in np>i/2^'>' 4>\9n~* *s a non-negative function in H1'2. By [7], this contradicts
that <f)l is non-constant. Thus (2) of Theorem 2 implies that CT(I^) = D. When n < m,
by a similar method we can show that ff(T^) = D.

Now using (2) of Theorem 2, we will give a proof of Theorem 1 in [6]. For each
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inner function q, sing q denotes the subset of 3D on which q can not be analytically
extended.

Corollary 5 ([6]). If (f> = ijift where q} and q2 are inner functions with sing qx ^
sing q2, then a{T^) = D.

Proof. By (2) of Theorem 2, it is enough to show that <f> = qtq2 ^ g/\g\ for any g
in r\p>\pHP whose inverse is in C\f>i/2^P- ^ e m a y assume that sing <j, $ z0 € sing q2.
There exists a constant X e D such that q = (q2 — X)/{\ - Xq2) is a Blaschke product
with sing q = sing q2 by [5, p. 176]. Then qxq2 = qxqk/\k\ where k = (1 — Ag2)

2. Since
both k and fc~' are in H°°, we may assume that q2 is a Blaschke product. If qxq2 =f/\f\
qxq2 = g/\g\ where fg = 1 a.e., f e Hl/2 and g e Hxn, then q^fl1 ̂  0 a e - a n d ^ 1 / ^ 0
a.e.. Since qifl2<7 > 0 a.e., g e H1'2 and z0 ^ sing q,, by [4] there exists an open arc J
such that z0 e J and q2g can be continued analytically from D across J. The zeros of q2

cannot cluster at any point of J. This contradicts that z0 e sing q2. Thus q,q2 satisfies
the condition of (2) of Theorem 2, and hence a{T^) = D.

Corollary 6. Let qx and q2 be inner functions, and %E be a characteristic function of
a measurable set E in 3D. If <p = qtq2(2xE — 1) and there exists an open arc J in E such
that (sing q2) n J ^ 0 and (sing qx) D J = 0, or (sing qt) n J / 0 a/irf (sing q2) n J = 0,

= D.

Proof. As in Corollary 5, we may assume that q2 is a Blaschke product. If
<t> = W&XE ~ 1) =f/\f\ = M/0 where /<? = 1 a.e., / e if1/2 and g e Hl'\ then
QAIQXE ~ l)ff - 0 a e - a n ^ 92?I(2ZE — 1 ) / ̂  0 a e - If there exists an open arc J in £
such that (sing q2)nj^0 and (sing q}) D J = 0, then

9ift(2xE - 1)0 = q,g20 > 0 a.e. on J.

Now as in Corollary 5, we can get a contradiction and hence ff(7^) = D.

Let qa = exp{—a(l +z) / ( l — z)} for a > 0 and suppose b is a Blaschke product with
sing b = {1}. Put (/>„ = <jab. Theorem 4 in [6] shows that if 0a belongs to H°° + C for all
a > 0, then ff(T^) = D. This is a corollary of Corollary 7.

Corollary 7. 7/"</»a belongs to H°° + C for some a > 0, fAe/i ff(7^) = D/or 0 < c < a.
is invertible or <r(T^) c 3D, fAen ff(T^) = D for arbitrary c > 0 WI7/I c ^ a.

Proof. By Theorem 2 in [8], $0 = qe*u+5) where 4 is inner, and u and t> are in CR.
For 0 < c < a, (j>c = qa-cqe*-u^ and so by (2) of Theorem 2 ff(T^) = D. For if
qa-cqeKu+s> = 0/I0I for some g in LU1/2 H' with h = g~x € U,>1/2 #"> t h e n ^ q e * ^ > 0
a.e. and so hkqa_cq > 0 a.e. where fc = e"

B+p+i(ll+0). Since both k and /c~' belong to
rip<oo H*' hkqa_cq is a non-negative function in H1/2 and so by [7], hkqa_eq is constant.
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This contradicts the fact that qa_cq is not constant. Therefore (2) of Theorem 2 shows
that ff(7ic) = D for 0 < c < a. If 7^ is invertible, it is known that q is constant. In fact,
we can show it as in the above proof. If q is constant, then for c > 0 with c^a

4>c = & = qB.cqab = qa_ce*-"^.

By the first part of this theorem, we may assume that c> a. However, in this case we
can show it as in case 0 < c < a.

4. Remark

If <r(7 )̂ c 3D, then ff(7^) = J for some closed arc J in 3D because cr(T )̂ is connected
by a theorem of H. Widom (cf. [2, Corollary 7.46]). Then, if the essential range R((t>)
of <p is disconnected, by a theorem of A. Brown and P. R. Halmos (cf. [2, Corollary
7.19]), then a{T^) % 3D. Hence if a(T^) c 3D, R((f>) is connected and so
/?(</>) = J = CT(T^) by the theorem of A. Brown and P. R. Halmos. If <t> = ae",
inf{||t - 5IU ; s e L~} = 0 and J?(0) = 3D, then CT(T0) = 3D by (1) of Theorem 1. For a
unimodular function <f> in C, by Theorem 1 it is easy to see that o{T$) c 3D if and only
if <j> = e'° for some v e CR. For a unimodular function <£ in H°° + C, by [8, Theorem
2] and Theorem 1 it is easy to see that a{T^) c 3D if and only if <t> = e'<-u+v) for some
u, v € CR. In fact, by [8, Theorem 2], Theorems 1 and 2, a{T^) c 3D or CT(T^) = D for a
unimodular function <j> in H°° + C.

In Corollary 3, we can not change the condition: g'1 ^Ur>i/2^P t o 0~' ^Up>i^(>

even if g e H°°. For example, put g = l + z then a{Tt) ^ D. If <f> = (1 + q)"/|l + q|"
where 4 is a non-constant inner function and 2 < a < 00, then by Corollary 3
a(7;) = D because ( l + q f e i f 0 0 and (1 + 3)"" ^Up>i/2HP- W e c a n s h o w a m o r e

general theorem than Corollary 6, that is, for a symbol <f) = q^i^o where <f>0 is a
unimodular step function. Let <f> be an arbitrary unimodular function in L°°, then by [8]
<f> = QiQ2eK"+S> where both qx and q2 are Blaschke products and u, v e CR. If sing qx ^
sing q2, then by the proof of Corollary 5 it is easy to see that (f> ^ g/\g\ for any g in
fWi/2H" whose inverse is in C\?>xrl H". Thus by Theorem 2 CT(T^) = D.
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