J. Appl. Prob. 47, 668-679 (2010)
Printed in England
© Applied Probability Trust 2010

CONVERGENCE RATE OF EXTREMES FOR
THE GENERAL ERROR DISTRIBUTION

PENG ZUOXIANG:,* Southwest University
SARALEES NADARAIJAH,** University of Manchester
LIN FUMING,*** Sichuan University of Science and Engineering

Abstract

Let {X,, n > 1} be an independent, identically distributed random sequence with each
X, having the general error distribution. In this paper we derive the exact uniform
convergence rate of the distribution of the maximum to its extreme value limit.
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1. Introduction

Let {X,, n > 1} be a sequence of independent, identically distributed random variables with
common distribution function F'(x). Let M,, = max;<x<, Xi denote the partial maximum of
{X,, n > 1}. Suppose that there exist constants a, > 0 and b, € R, and a nondegenerate
distribution G (x) such that

lim P(M,, < au,x +b,) = lim F"(a,x +b,) = G(x) (1.1
n—o00 n—oo
for all continuity points of G. Then G must belong to one of the following three classes:

Class I (Gumbel) :  A(x) = exp{—e™*}, x eR;

O .f Oa
Class II (Fréchet) :  ®y4(x) = _ 1 t= for some o > 0;

exp{—x~%} ifx >0,
exp{—(—x)*} ifx <O,
1 ifx >0,

Class III (Weibull) : W, (x) = { for some o > 0.

We say that F is in the domain of attraction of G if (1.1) holds. We denote such a fact by
F € D(G). Criteria for F € D(G) and the choice of norming constants, a, and b,, can be
found in Leadbetter et al. (1983) and Resnick (1987).

One interesting problem in extreme value theory is the convergence rate of F"(a,x + b;,) to
any one of the extreme value distributions. There are penultimate and ultimate approximations.
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For penultimate approximations of F” (a,x +b,,), see Anderson (1971), Cohen (1982b), Gomes
(1984), Gomes and de Haan (1999), Kaufmann (2000), and Reiss (1989). For the uniform
convergence rate of F"(a,x + b,) to its extreme value limit, A (x), Hall and Wellner (1979)
showed that the convergence rate is proportional to 1/n if F is exponential. For the normal
distribution, Hall (1979) proved the following result:

Cl n Cc2
—— <sup [P (anx +by) — AX)| < ——
ogn

logn g 1
for n > ng, where constants 0 < ¢; < ¢, ®(x) denotes the normal distribution function, and
the norming constants a, and b, are given by

2nbﬁ exp{b,%} =n?, ap =b;". (1.2)

n

Hall (1979) showed that 1/ log n is the best convergence rate for the maxima of normal random
variables. Castro (1987) proved a similar result for the gamma distribution. For related work
on the uniform convergence rate of extremes, see Smith (1982), Cohen (1982a), Falk (1986),
and Kaufmann (1995). For work using second-order conditions, see Balkema and de Haan
(1990) and de Haan and Resnick (1996). For the rate of convergence of intermediate order
statistics, see Cheng et al. (1997). For the convergence rate of the maximum of stationary
normal sequences, see Rootzén (1983).

Our interest in this paper is to consider the uniform convergence rate of (1.1) when X,
follows the general error distribution (GED). The GED being a generalization of the normal
distribution is one of the most widely applied (if not the most applied) distributions in statistics.
The probability density function of the GED is given by

vexp{—(1/2)|x/A|"}

, eR,
W21 T (1)) *

F'(x) =

with parameter v > 0, where A = (2_2/“I‘(1/v)/1*(3/1)))1/2 and I'(-) denotes the gamma
function (cf. Nelson (1991, p. 352)). The GED is standard normal if v = 2. Peng et al. (2009)
studied the tail behavior of the GED and the limiting behavior of its partial maximum. In order
to obtain the uniform convergence rate of extremes from the GED, we cite some results from
Peng et al. (2009).

In the sequel, let {X,,, n > 1} be a sequence of independent, identically distributed random
variables with common distribution ¥ ~ GED(v). As before, let M, denote the partial
maximum of {X,, n > 1}. Peng et al. (2009) proved that

lim P(M, < anx + By) = lim F"(otnx + Bn) = Ax)

n—oo

forv > 1 and all x € R, where

21/
oy = —v(logn)l—l/” (1.3)
and Ao — 1
8, = 21/%(ogm)\/? — v—1)/v)loglogn + log{ZF(l/v)}]. (1.4)

v(logn)l-1/v
It follows from Peng ef al. (2009) that

1—F(x) :c(x)exp{— ’ &dt}
A

f@
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for v > 1 and sufficiently large x, where

exp{—1/2}

_ —1 1—
m asx — 00, f(f) =207 AVt v,

c(x) >
and
g(t) =142 — v 'A%

Noting that f'(r) — 0O and g(t) — 1 ast — oo, and by Proposition 1.1(a) and Corollary 1.7
of Resnick (1987), we can choose the norming constants a, and b, in such a way that b,, is the
solution of the equation

v

1 b
1/vq1—v v—1 n
2V <_v>b" exp{ 20 } =n (1.5)

an = f(by) =20~ AVb) 0. (1.6)

with

Note that, for the normal distribution, A = 1, (1.5) and (1.6) reduce to (1.2). We prove that
the best uniform convergence rate of F" (a,x + b,) to its extreme value limit is proportional to
1/1og n. However, for F”(at,x 4 B,), the convergence rate is no better than (log log n)?/logn
even though «, /a, — 1 and (8, — b,)/a, — 0 asn — oo.

This paper is organized as follows. In Section 2 we provide the main results, with their
proofs deferred to Section 4. Some auxiliary results are given in Section 3.

2. Main results

We provide two main results. Theorem 2.1 shows that the uniform convergence rate of
F™"(ayx + by) to its limit is of the order of O (1/logn). Theorem 2.2 shows that the pointwise
convergence rate of F™ (a,x + f,) to its limit is of the order of O ((loglogn)?/logn).

Theorem 2.1. Let {X,,, n > 1} denote a sequence of independent, identically distributed
random variables with common distribution F ~ GED(v) and parameter v > 1. Then there
exist absolute constants 0 < c1(v) < c2(v) such that

O up [F (@nx + by) — AG)| < 22
logn R logn

for n > 2, where b, and a,, are defined by (1.5) and (1.6), respectively.
Theorem 2.2. Let o, and B, be defined by (1.3) and (1.4), respectively. Then

(v—1)3 (loglog n)?

F"(anx + fn) — A(x) ~ exp{—e "}e ™" 3
2v logn

for large n.

3. Auxiliary results

We will use the following properties of the GED distribution (cf. Equations (6) and (7) of
Hall (1979, p. 434)).
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Proposition 3.1. Let F denote the distribution function of GED(v) withv > 1. For x > 0, we

have y 1
- U)\.U_ - xU
1 _F(X)ZT/U)X ”exp{—m}—rv(x) 3.1
27]/U}\‘U71 v 2 — 1
A expy — a 1— Mk”xﬂ’ + sy (x), (3.2)
T (1/v) 200 v
where 1-1/05 201
27T v =1) L, xV
0 v —
<ry(x) < ) X expy =
and

2—1/vq3v—1 —DQv -1 v
0 < sy(x) < 2 * w-DEv )x1_3” exp{— al }

v2I'(1/v) 2)Y
Proof. By integration by parts we have

2—1/U)Lv—1 v 2—1/U}LU—1 -1 00 Y
- F(x) = ——"—x'" exp{ a } - w=1 7" exp{— }dt

I'(1/v) T oA T(1/v) ; 20
B 2—1/1})\1}—1 - i B ( )
= —F(l/v) X exXp _2)\,1) ry(Xx),

which is (3.1). Similarly,

21—1/1})\'21)—1 -1 v
ro(x) = w )xl‘z"exp{‘x }‘Sv(x).

vI'(1/v) 20V
Substituting this into (3.1), we obtain (3.2), where

27Ul — o — 1) [ &
sy(x) = wopev =D e ¢
vI'(1/v) x 2
P - -1 [
= P
V2 (1/v) 2
2-1/vy3v—1 ¢y _ - -
22l = DRu-DHBu - 1) Oof3”exp = dr
v2I'(1/v) x 2
227]/U}\‘3U*] (U — ])(2U - 1) 1-3v xv
- expy —
v2(1/v) 2

This completes the proof.
For the norming constants a, and b, defined by (1.6) and (1.5), respectively, let
a; = anry, by = by + Suay, (3.3)

where r, — 1 and §, — 0 as n — o0. The following expansion is needed.

Proposition 3.2. Let a; and b} be defined by (3.3). For fixed x € R and sufficiently large n,

2
F'(aix + b)) — Ax) = A(x)e_x{(v - l)anbn_1 (1 +x + %) + (rp — Dx + 6,

+ Ol(anb, ) + (ra — 1) + 521}.
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Proof. Note that b, ~ 21/YA(logn)'/? by (1.5), which implies that
anby ! ~ (logn)™' — 0

by (1.6). So, by (1.6) we have

2—1/vkv—l - (a*x +b*)v

T (aix + b)) vexp{_ n - n }
_ -1 -1 1—v _ by -1 v
=n"[1+anb, (rax +8,)] " exp 0 [(A 4+ anb,, " (rpx +68,))" — 1]

(v-1
2

_ n_l{l — (= Dlanby (o + 801+ 2 anby  (rax + 8,1

+ O(lanb, ' (rpx + 6,,)]3>}

v—1

5 (rpx + 5,1)261"17;1

xexp{—x—(rn—l)x—ﬁn—

+ O((anby; ) ((rax + sn))3)}

viv—1)

5 [anb, ' (rpx + 8,)17

= n_le_"{l —(v— 1)[anb;1(rnx +8n)] +

+ O(lanb, ' (rpx + 8n>]3>}
2

v —

1 2
B (rpx + Sn)zanbnl)

1
(rnx + 82)2anb; !t + O ((@nb; ) (rax + 81)%)

v
x{l—(rn—l)x—é,,—

1
+§<(rn—1)x+an+

+ 0((anb; ) + (rn — 1 + 53)}

= n‘le_"{l — (ra — Dx =8, — (v — Dayb, ' (x + %xz)
+ O((anby )2 + (ra = D2 + 52} 34
Similarly,
apb;! _ (anb;1)?

ST~ e e 8 + Oy D). (3.5)

(aix+b)7" =

By (3.4) and (3.5), we obtain
B (arx + b))

1-3
(ax+ b3 =" exp{ S

} = 0(n "(anb,1)?).
So,
su(@ix +b%) = 0 (anby M), (3.6)
where s, (x) is defined as in Proposition 3.1. So, by (3.2), (3.4), and (3.6), we have
1 - Faix+b) =n""e™ {1 - (r, — Dx — 8, — (v — Dayb, ' (1 +x + 1x?)
+ Ollanb, ) + (rn — D* + 871}
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for large n. So,
F'(@ix +b5) — Ax) = {1 —n'e ™[I = (r, — Dx — 8, — (v — Danb, ' (1 + x + 1x?)
+ Ol(anby, ) + (rn — D> + 571]}" — A)
2
— A(x)ex{(v — Dapby! (1 fx4 %) Ty — Dx + 6,
+ Ol(anby ) + (rn — 1* + 63]},

which completes the proof.

4. The proofs
We first prove Theorem 2.2 as it is relatively easy.

Proof of Theorem 2.2. Firstly, we derive the following asymptotic expansions of b,, defined

by (1.5):
by = B + o((logn)'/*7h, (4.1)
and 1/v—1 2 2
2V (v —1) B% —-2B, B
by = P — w=1 B — 2B T 4.2)
v2 (log n)2=1/v (log n)3—1/v
where

v—1 1
B, = loglogn + log2I'( —
v v
and B, is defined by (1.4). By Corollary 1.7 of Resnick (1987) we have
P(M, <aux +b,) > Ax).

By arguments similar to those used in Example 2 of Resnick (1987, pp. 71-72), we can obtain
(4.1). Now set
b, = .Bn + On,
where 6, = o((logn)!/*~1). Note that
log(1 —x) = —x + %xz + 0(x3) asx —> 0
and that ( n
1-x)=1 —vx+vax2+0(x3) asx — 0.

Substituting b, = B, + 6, into
v

1 b
1og21/”,\‘”r<—) + (v — Dlogh, + == = logn,
v 20V

we can obtain

v—1 B, v v—1 B, 6,
(21/mogn ~ 21/vya(logn)? t ot T 2, logn> (logn)1/v—1
v(v—1) 62
+ <22/v+1)\2(10gn)2 + 21+2/“A10gn> (log n)2/v—2

_ v—1 B,,—B—'% 4o (loglogn)? ’
vlogn 2 log®n
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from which we can derive

21/v=1h(w—1) B?-2B,

O ~ :
" v2 (logn)2=1/v

Once again, let
21/v=1x(w—1) B2-2B,

0, = O,
n v2 (logn)z_l/v +Un
where ¥, = o((loglogn)?/(logn)>~!/?). By similar arguments, we can obtain (4.2). Note
that
1 * — 1) logl
anb;1~ , rn_1=a_’l_1~_¥w’
vlogn an v logn
5 _ by —by (v — 1)3 (loglogn)?
" an 203 logn

for large n. So, the result follows by Proposition 3.2.

Proof of Theorem 2.1. Letting r, = 1, §, = 0 in (3.3), and noting that anbn_1 ~ 1/logn,
by Proposition 3.2 we can prove that there exists an absolute constant ¢; > 0 such that

sup | F™ (anx + bn) — Ax)| > —
ogn

xeR 1

for n > 2. In order to obtain the upper bound, we need to prove that

sup | F™"(anx + by) — A(x)| < dianb; !, 4.3)
0<x<oo
sup  |F"(anx + b,) — A(x)| < daayb) ", (4.4)
—cp<x<0
sup  |F"(anx 4 by) — A(x)| < dsayb, ", 4.5)
—00<x<—cy

forn > 2, where d; = d;(v) > 0, i = 1,2, 3, are absolute constants and ¢, =: loglogb, is
positive for n > 2. Note that, from (4.1),

0.81%logn < b, < 21"logn

and

1 v loglog(21" logn) v
sup — loglg b, < sup

T e 4.6
n>2 by, n>2  0.8AV]ogn 2)V (4.6)

forn > 2. So, b, — a,c, > 0forn > 2.
Firstly, consider the case in which x > —c¢,. Let

R, = —[nlog F(anx + b,) + n\¥, (x)], B, (x) = exp{—Ry},
Ap(x) = exp{_n\pn (x)+ e_x}y

where ¥, (x) = 1 — F(a,x + by). Note that, for v > 1,
by
b} — (by — ancy)’ = / vt?~ldr < vancnbz_l,

bp—ancn
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and, by (3.1), (1.5), and (1.6), we have

W, (x) < Wp(—cpn)
}Lv—lz—l/v

T (1/v)
=n"'( - bn_lancn)l_” exp{—(

_ (by — apcy)®
b _ 1—v - n mnmns
(by — ancy) CXP{ 0 }

(by — apcp)? bz
2\ 20V

_ _ _ va,b?~lc
<n 1(l—bnlancn)1 ”exp{%}

va,b’ ' loglog bY }

=n"'(1 — b, 'a, loglogh’)' Y exp{ T

217 =
= <1 - Tbn"loglogbz> n~ " exp{loglogb,}

20V 1—-v
< sup{ (1 — —b, " log logb}i) n~log(2AY logn)}
v

n>2
=1 (v)

< 1.

So,
inf 1-v,(x)>1-¢(v) >0.

Noting that

2

log(1 —x) < —x, 10g(1—x)>—x—x— forO0 <x <1,
2(1 —x)

we have
\1’2
0<R(x)<_"¥n®)
21 — ¥, (x)]
- nW2(—cy)
2[1 — W, (—cp)]
101 _ —1.y2-2v,—1 v—1 12
n= (1 —ayb, cy) a, “bp(exp{va,b; ™" c, /2A"})
2[1 — Wy (—cp)lay 'ba
2¢,(v)  \? v n1bY exp{2c,}
log(2A? log2) ) 4AY (1 — €1 (v)) a; ‘b, )

Noting that 0.81"logn < b} < 2A"logn for n > 2, we obtain
n= 'Y exp{2c,) < n7'2rlogn)® < € (v) forn > 2.

Substituting this into (4.7), we obtain

2¢1(v) )2 V& ()

byt = &3(v)anb, .
log(2Avlog?2) ) 4rv(1 — Ql(v))an n 3(v)anb,

R,(x) < <
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So,
|B,(x) — 1] < Ry(x) < @3(1})anbn_l forn > 2.

By inequality (4.8) we have

[F" (anx + bn) — A)| < AX) By (x)|Ap(x) — 1] + [Bu(x) — 1]

< AW)|Ap(x) = 1| + €3 (V)ayh, ! forx > —c,.

We now prove (4.3). Note that, as v > 1,

(1+x)">14+vx forallx >0,

which implies that
b)Y — b
x—% <0 forallx >0

since
2AVx 4 b — (anx + by)’ = bY(1 + vayb, 'x — (ayb;'x + 1Y)

by (1.6). By (1.5), (4.10), and the definition of A, (x), we have

A () = exp{—nW, (x) + ) [—n(¥, (x) —e ]
= —A,(x)e " [1 — naye* F,(ayx + by)]
— 1 expl 21 ex xpl - (@nX £ 00"
=—A,(x)e [1 exp{zm }e exp{ 7 ”

. (anx + by)¥ — b;,)
20V

=—A,(x)e” |:1 - exp{x
<0

for x > (. Noting that A,,(x) - 1 asx — oo,

SuI())|An(x) — 11 =14,0) - 1|
= exp{nry(by)} — 1

< nry exp{nr,}

S5w—1
< 2% T — 1)b, " exp v-D
2vlog?2
Sw—1]
=w-1 — tapb
@ )eXp{ 2v10g2} nOn

= €4(v)anbn_1.
The inequalities come from the facts thate* — 1 < xe* for0 < x < 1,
0 < nrp(by) < 220" (v — Db, " = (v — Dayb;, ',

and

v, —1 —v {2)‘1)7)_1(“ - 1)}
exp{nr,(b,)} < exp{2A"v™ (v — 1)b, "} < expy ———=——

0.8\VIogn
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Combining with (4.9), we have
sup |F™(anx + by) — A(x)| < (€3(v) + €4(v)anb; .

0<x<oo

Secondly, consider the case in which —¢,, < x < 0. By (1.5), (1.6), and Proposition 3.1, we

have
—n¥,(x) +e*
=-n [%(anx + b)Y exp{—%} — ry(apx + bn)i| +e*
G _Fl()lk;:;lzl_l/v (@nx + b)) "2 dy (anx + by) exp{——(a"xz;b")u ”

+e ™

b)Y — bV
= —(anby 'x + D7V exp{——(anx * o) - }

20V

b v o__ bU
+ 2007 (v = Db, (anby x4+ D' dy(anx + by) exp{_M}

20V
+e

= (anb, 'x + 1)1 7ve™
x {—[1 — 2% w = DbV (anb; ' x + 1) dy (anx + by)]

(anx + by)' — b} — 2A%x
20V

X exp{ - } + (a,,b;lx + 1)”‘1}

= (anb, 'x + 1) 7Y™ Dy (),
where 0 < d, (a,x + b,) < 1 and

Dy(x) = —{1 = 22%0 ™ (v — )b, Y (anb; 'x + 1)"Vdy (anx + by))

y exp{_ (anx + by)? — bY — 2AVx

}+ (anb;'x + VL

2AY
Since
apx +b, >0 forx > —c,, e >1—x forx>0,
and
A4+x)'>1—vx and (I1+x)V<1l—vx for —1<x <0, 4.11)
we have
ba)? — by — 237
Dy(x) < —(1— (@nx + bn)” — by x>
20V

x {1 =22%0 " (v = Db, Y (anb;, 'x + 1)"Vdy(anx + bp)} + (anb;, 'x +1)°7!
= (| _ lanx ba)’ — by — 20
20
+ (apb;'x + V!

){1 — 2w = Db, Y1 = vayb;, 'x))
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= —{1 —22% 7 (w = Db V(1 — vayb, 'x)

+ [(anx + bp)? = bY —22%x v~ (v — Db, (1 — va,b, 'x)
(anx + by)’ — b} —2A%x
20V

} + (apby, 'x + V!

(anx + by)’ — b} — 2A%x

—1 — —
< —1422% ' = Db, V(1 — vayb, 'x) + o

+ (anb; 'x + V7!
<—1+22% v - Db, (1 — vanb;]x) —(v— 1)anb,jlx2 +1
< (v —Dayb, '[1 4+ vayb, 'c,]
< W = Dayb; .
The last inequality follows by (1.6) and (4.6). Meanwhile, by (4.11),
Dy(x) > =14 (aph;'x + DV > —(v — Da,b, 'x.
Hence,
|Dy(x)| < (v = Danby ' (v + 1+ |x)).
So, forn > 2,
| —nW,(x) +e | < (v = DA +anb; ' x)' e anb; (W + 1+ |x])
< @—=DA=ayb; e) Ve ab, (v +1+¢p)
< C5(v).
Thus,
AX)|An(x) — 1
= A()|exp{—nW¥,(x) +e "} — 1]
< Ax) exp{(—n¥,(x) + e )0} — n¥,(x) + e |
< (—Dexp{€s )} —anb, le) ™Vayb,! sup {(v4 1+ |xDeFAx))

—cp<x<0
< Cs(v)ayb, .
Now combining this with (4.8) and (4.9), we complete the proof of (4.4).

Finally, consider the case in which —oo < x < —c¢,. Note that

v _
A) = A=) = Zoanby !
and
sup |Fn(anx +b,) —Ax)| < Fn(bn — aucy) + A(—cp)

x<—cp

< sup |F"(apx +by) — A(x)| +2A(—cy)

x€[—cy,0)

_ v _
< (€3(v) + Ce(v)anb, ' + —vanb; !
= @7(v)anb;1.

This completes the proof of (4.5). The proof of Theorem 2.1 is complete.
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