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Abstract

We provide a short, intuitive proof of Isbell’s zigzag theorem.
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The elegant, elementary proof of the zigzag theorem published by Higgins [1, 2]
is unfortunately incorrect (the case overlooked in the proof is when the transition α is
puq → ptutq and β is ptutq → pu′tstq, where u = u′s in S). The proofs of Howie [3],
Storrer [4] and Renshaw [5] involve nontrivial algebra. The proof of Philip [6], which
completes Isbell’s original proof [7], is topological in nature. We provide a short,
elementary and intuitive proof of the monoid version of the zigzag theorem. Our proof
is heavily based on the proposed proof of Higgins.

Recall [8] that if U is a submonoid of S, then the dominion of U in S is the set
of all elements s ∈ S such that, for all homomorphisms h1, h2 : S → T coinciding on
U , h1(s) = h2(s). Note that a homomorphism h : U → S is epi if and only if the
dominion of h(U ) in S is S.

ISBELL’S ZIGZAG THEOREM. Let U be a submonoid of a monoid S and s∗ an element
of S. Then s∗ is in the dominion of U in S if and only if there exists a U-zigzag in S
with value s∗, that is, a diagram of the form
where s1, . . . , sn, s1, . . . , sn

∈ S, u0
1, u1

1, u1
2, u2

2, . . . , un
n, un

n+1 ∈ U, and all cells in
the diagram commute, that is, s∗ = s1u0

1, u0
1 = u1

1s1, s1u1
1 = s2u1

2, u1
2s1

= u2
2s2, . . . ,

snun
n = un

n+1, un
n+1sn

= s∗.

c© 2008 Australian Mathematical Society 1446-7887/08 $A2.00 + 0.00

229

https://doi.org/10.1017/S1446788708000384 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000384


230 P. Hoffman [2]

s1

??������� s2

__???????
...

sn

jjTTTTTTTTTTTTTTTTTT
u0

1

44

u1
1

??
u1

2

__
u2

2

??

u2
3

OO
un

n

??

s1

ggOOOOOOOOOOOOO

s2
OO sn

77ooooooooooooo

s3 ??�������

un
n+1

NN
s∗

33

s∗

ll

A simple verification shows that indeed, if h1, h2 : S → T are homomorphisms
coinciding on U and there is a U -zigzag with value s∗, then h1(s∗) = h2(s∗), which
proves that s∗ is in the dominion.

So, assume now that s∗ is in the dominion of U in S.
Let A consist of all elements s of the monoid S and of a new element |. Consider

the set A∗ of all finite words over the alphabet A, with ε denoting the empty word. On
A∗, define three types of reductions:

refactorization s1 . . . sn ↔ s′

1 . . . s′

k if s1 · . . . · sn = s′

1 · . . . · s′

k holds in S (n, k ≥ 0
and s1, . . . , sn, s′

1, . . . , s′

k ∈ S);

right/left shift |u ↔ u| for u ∈ U ;

creation/deletion ε ↔ ||.

Let ↔ be the reduction relation defined by the above reductions, and let ↔
+ be its

transitive closure; then ↔
+ is a congruence on A∗, giving rise to a quotient monoid T .

Consider maps µ, ν : S → T given by µ(s) = s and ν(s) = |s| for all s ∈ S. Both
µ and ν are monoid homomorphisms, and they coincide on U . Therefore we have
µ(s∗) = ν(s∗). In other words, s∗ ↔

+
|s∗|, which is equivalent to s∗| ↔

+
|s∗. We will

show that if a sequence q of reductions

s∗| = w1 ↔ w2 ↔ . . . ↔ wn−1 ↔ wn = |s∗

exists (n ≥ 2), then there is a U -zigzag in S with value s∗.
The proof rests on two observations.
The first observation is that one may track particular occurrences of the symbol |.

That is, any occurrence of |, if it is not the occurrence appearing in w1, is first created
by some reduction wi−1 ↔ wi ; then i is called its birth and the occurrence born with
it is called its birth pair. The identity of an occurrence of | may be tracked along any
shifts it performs, as well as any reductions in which it does not take an active role. If
the tracked occurrence is not the one appearing in wn , then it must be deleted by some
reduction w j ↔ w j+1; j is then called its death and the occurrence that died with it is
called its death pair. Potential problems that could arise in reductions, such as | ↔ |||,
where it is not clear whether the newly-born pair of occurrences appears to the right or
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FIGURE 1. The sequence r of reductions.

to the left of the original occurrence, can be resolved by, for instance, always choosing
births to happen at the left end of a word; the same remark applies to deaths.

The second observation is that if wi ↔ wi+1, and if wi contains an occurrence of |

that does not die at i , then also vi ↔ vi+1, where vi and vi+1 arise from wi and wi+1
by removing all occurrences of | other than the one under consideration. The reason is
that a refactorization or a shift of the considered occurrence of | remain uninfluenced,
while creations, deletions or shifts involving occurrences other than the considered one
are replaced by trivial refactorizations.

Consider the following sequence r of reductions: start with w1, and let o1 be the
original occurrence of | in w1. Proceed as in q up to the point i1 of o1’s death, removing
all occurrences of | other than o1; by the second observation, this leads to a correct
reduction sequence. Let o2 be the death pair of o1. Observe that wi1 with occurrences
other than o1 removed is the same as wi1 with occurrences other than o2 removed,
since o1 and o2 are adjacent in wi1 . So we may now proceed as in q , but in reverse,
from i1 to the point i2 of o2’s birth, removing all occurrences of | other than o2. Let o3
be the birth pair of o2. The above procedure may be repeated until an occurrence om
appears that does not die at all; then om must coincide with the sole occurrence of | in
wn . By this procedure, depicted in Figure 1, we have built a sequence of reductions
r starting with s∗| = w1, ending with wn = |s∗, and containing only words in which |

appears exactly once; thus, r consists of refactorizations and shifts only.
For any word w = s1 . . . sn|s′

1 . . . s′

k in the sequence r , consider the three-letter
word w#

= (s1 · . . . · sn)|(s′

1 · . . . · s′

k). This gives rise to a sequence r#, which starts
with s∗|1 and ends with 1|s∗. If w ↔ v was a refactorization in r , then w#

= v#. If
w ↔ v was a right shift in r involving u ∈ U , then w#

= s|(u · s′) and v#
= (s · u)|s′

for some s, s′
∈ S; similarly for left shifts. Thus, r# precisely corresponds to a U -

zigzag in S with value s∗. This completes the proof.
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