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Non-reductive Homogeneous
Pseudo-Riemannian Manifolds of
Dimension Four

M. E. Fels and A. G. Renner

Abstract. A method, due to Élie Cartan, is used to give an algebraic classification of the non-reductive

homogeneous pseudo-Riemannian manifolds of dimension four. Only one case with Lorentz signature

can be Einstein without having constant curvature, and two cases with (2, 2) signature are Einstein

of which one is Ricci-flat. If a four-dimensional non-reductive homogeneous pseudo-Riemannian

manifold is simply connected, then it is shown to be diffeomorphic to R
4. All metrics for the simply

connected non-reductive Einstein spaces are given explicitly. There are no non-reductive pseudo-

Riemannian homogeneous spaces of dimension two and none of dimension three with connected

isotropy subgroup.

1 Introduction

A homogeneous space G/H, where G is a Lie group and H a closed Lie subgroup, is

reductive [9] if the Lie algebra g of G may be decomposed into a vector-space direct

sum g = h ⊕ m where m is an Ad(H)-invariant complement to h. If G/H is a re-

ductive homogeneous space which admits a pseudo-Riemannian metric with G act-

ing by isometries, the curvature tensor takes on a particularly simple form. For this

reason, the geometry of these spaces has been well studied [2, 9], and some classifica-

tion results are known [5]. On the other hand, little is known about the structure of

non-reductive homogeneous pseudo-Riemannian manifolds, and the purpose of this

paper is to classify and investigate the basic geometry and topology of these special

manifolds in low dimensions.

While it is easy to construct non-reductive homogeneous spaces, it is quite a bit

more difficult to construct examples where G is the isometry group of a pseudo-

Riemannian metric on G/H. The difficulty is that if G is the isometry group of a

Riemannian metric on G/H, then G/H is automatically reductive [12] (see Section 4

for an algebraic proof). Therefore, to construct examples of non-reductive pseudo-

Riemannian homogeneous spaces, only metrics with indefinite signature need to be

considered. These facts are mentioned in [2], but no non-reductive examples are

given. In the article [11] the author studies the ring of invariant differential operators

on non-reductive homogeneous spaces but only considers geometric examples which

turn out to be reductive.

Élie Cartan [3] outlined a method in which questions about the geometry of ho-

mogeneous Riemannian manifolds become algebraic questions about Lie algebras.
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Cartan used his technique to classify the three-dimensional simply connected Rie-

mannian homogeneous spaces which admit a group of isometries of dimension at

least 4. Ishihara [7] used Cartan’s method to classify the four-dimensional Rieman-

nian manifolds with transitive isometry groups while Jensen [8] used this technique

to determine the simply connected homogeneous Einstein spaces of dimension 4. An

alternative approach to the classification of low dimensional homogeneous Rieman-

nian manifolds was given in [1], but this approach utilizes the compactness of the

isotropy subgroup and so cannot be used here.

Cartan’s method works perfectly well for pseudo-Riemannian homogeneous

spaces. We use this method in Section 5 to first show that there are no two- or

three-dimensional non-reductive homogeneous pseudo-Riemannian manifolds. We

then classify the four-dimensional non-reductive homogeneous pseudo-Riemannian

manifolds and show in Section 6 that if these four-dimensional homogeneous spaces

are simply connected, then they are diffeomorphic to R
4. As a consequence of the

calculations in Section 5, we identify the cases which are Einstein and compare them

with those in [10]. Finally, in Section 7 we construct the corresponding homoge-

neous Einstein metrics on R
4 (the simply connected spaces) for the three cases in

which they exist.

2 The Classification and Einstein metrics

In this section, we provide a summary of the classifications proved in Section 5 and

then list the possible Einstein metrics which are found in Section 7 when G/H is

assumed to be simply connected.

If η is a pseudo-Riemannian metric on the manifold G/H and G acts effectively

and by isometries, we say the pair (G/H, η) is a homogeneous pseudo-Riemannian

manifold. We also use the convention that the bilinear form η on an n-dimensional

Lorentz manifold has signature (n − 1, 1).

Theorem 2.1 Let (G/H, η) be a homogeneous Lorentz manifold. If G/H is two-

dimensional, then G/H is reductive. If G/H is three-dimensional and H is connected,

then G/H is reductive.

Let h be a Lie subalgebra of the Lie algebra g and denote this pair by (g, h).

Definition 2.2 The Lie algebra pairs (g, h) and (g ′, h′) are isomorphic if there ex-

ists an isomorphism Φ : g → g ′ such that Φ(h) = h ′.

For every homogeneous space G/H, let g be the Lie algebra of G and h the Lie

algebra of H; let (g, h) be the associated Lie algebra pair. In the next theorem, we list

all possible non-isomorphic Lie algebra pairs for the non-reductive four-dimensional

homogeneous spaces that are classified in Section 5. We use the table of Lie algebras

in [16] and refer to these algebras by Ax,y , [16, p. 990].

Theorem 2.3 Let (G/H, η) be a four-dimensional homogeneous Lorentz manifold

where H is connected. If G/H is not reductive, then the Lie algebra pair (g, h) is iso-

morphic to one in the following list.
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A1 The Lie algebra g is the decomposable five-dimensional algebra sl(2,R)⊕s(2), where

s(2) is the two-dimensional solvable algebra. There exists a basis for g where the

non-zero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e4, e5] = e4.

The isotropy is h = span{e3 + e4}.

A2 The Lie algebra g is the one-parameter family of five-dimensional solvable Lie alge-

bras A5,30. There exists a basis for g where the non-zero products are

[e1, e5] = (α + 1)e1, [e2, e4] = e1, [e2, e5] = αe2,

[e3, e4] = e2, [e3, e5] = (α− 1)e3, [e4, e5] = e4,

where all values of α ∈ R are admissible. The isotropy is h = span{e4}.

A3 The Lie algebra g is one of the five-dimensional solvable algebras A5,37 or A5,36. There

exists a basis for g where the non-zero products are

[e1, e4] = 2e1, [e2, e3] = e1, [e2, e4] = e2,

[e2, e5] = −ǫe3, [e3, e4] = e3, [e3, e5] = e2,

where ǫ = 1 for A5,37 and ǫ = −1 for A5,36. The isotropy is h = span{e3}.

A4 The Lie algebra g is the six-dimensional algebra sl(2,R) × n(3) where n(3) is the

three-dimensional Heisenberg algebra. There exists a basis for g where the non-zero

products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5, [e4, e5] = e6.

The isotropy is h = span{e3 + e6 e5}. The algebra is sometimes called the Schroe-

dinger algebra.

A5 The Lie algebra g is the seven-dimensional algebra sl(2,R) × A1
4,9. There exists a

basis for g where the non-zero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e1, e5] = −e5, [e1, e6] = e6,

[e2, e3] = e1, [e2, e5] = e6, [e3, e6] = e5, [e4, e7] = 2e4,

[e5, e6] = e4, [e5, e7] = e5 [e6, e7] = e6.

The isotropy is h = span{e1 + e7, e3 − e4, e5}.

Petrov [18] gave a fairly comprehensive list of the possible infinitesimal generators

for the isometry algebras of a four-dimensional Lorentz manifold. The Lie algebras

in A1 and A4 should appear on the list, but they do not.

We now list the possibilities when the signature is (2, 2).
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Theorem 2.4 Let (G/H, η) be a four-dimensional homogeneous pseudo-Riemannian

manifold of signature (2, 2) where H is connected. If G/H is not reductive, then the Lie

algebra pair (g, h) is isomorphic to one in the following list.

A1–A3 The corresponding Lie algebra pairs in Theorem 2.3.

B1 The Lie algebra g is the five-dimensional algebra sl(2,R) × R
2. There exists a basis

for g where the non-zero products are

[e1, e2] = 2e2, [e1, e3] = −2e2, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5.

The isotropy is h = span{e3}.

B2 The Lie algebra g is the six-dimensional Schroedinger algebra sl(2,R) × n(3) in A4

of Theorem 2.3 and the isotropy h = span{e3 − e6, e5}.

B3 The Lie algebra g is the seven-dimensional algebra sl(2,R) × R
2 ⊕ R. There exists

a basis for g where the non-zero products are

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1, [e1, e4] = e4,

[e1, e5] = −e5, [e2, e5] = e4, [e3, e4] = e5.

The isotropy is h = span{e3, e5 + e6}.

The following theorem, proved in Section 6, gives a complete classification when

the space is simply connected.

Theorem 2.5 Let G/H be a simply connected non-reductive pseudo-Riemannian ho-

mogeneous space of dimension four, then

(i) G/H is diffeomorphic to R
4, and

(ii) if G is the full isometry group then the Lie algebra pair for G/H is equivalent to

one in Theorem 2.3 excluding A5, or to one in Theorem 2.4.

Conversely, for any Lie algebra pair from Theorem 2.3 except A5, or any in Theorem

2.4, there exists a pseudo-Riemannian metric on R
4 (subject to the conditions on the

signature), where the isometry group acts transitively on R
4, the Lie algebra of the isom-

etry group is the given Lie algebra g, and the Lie algebra of the isotropy at a point is

(conjugate to) h.

We show in Lemma 5.1 that only A2 in Theorem 2.3 or 2.4 with α = 2/3 and B3

lead to Einstein spaces which are not of constant curvature. Furthermore, B3 is Ricci-

flat. By using this result we prove in Section 7 the following theorem which gives

a complete list of all the homogeneous Einstein metrics which are not of constant

curvature for the simply connected non-reductive pseudo-Riemannian manifolds of

dimension 4.

Theorem 2.6 Let (G/H, η) be a simply connected non-reductive homogeneous space

of dimension 4 which is Einstein and not of constant curvature. If η is Ricci-flat, then
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the Lie algebra pair is isomorphic to B3 and there exist global coordinates (yi)i=1...4 on

G/H = R
4 such that the metric is

η = 2ey1

cos y2(dy1dy4 − dy2dy3) − 2ey1

sin y2(dy1dy3 + dy2dy4) + Le4y1

(dy2)2

for some L ∈ R
∗. Otherwise the Lie algebra pair is isomorphic to A2 with α = 2/3 and

there exist global coordinates (yi)i=1...4 on G/H = R
4 such that the metric is

η = a1e−
4

3
y4

(2dy1dy3 − (dy2)2) + a2e
2

3
y4

(dy3)2 + 2a3e
1

3
y4

dy3dy4 + a4(dy4)2

for some choice of ai ∈ R, i = 1 . . . 4 where a1a4 6= 0, and a2 6= 0.

It is worth noting that determining the Lie algebra of the isometry group for the

Ricci-flat metrics in this theorem is non-trivial.

3 Cartan’s Approach to the Geometry of Homogeneous Spaces

Let η0 be a non-degenerate symmetric bilinear form on R
n with signature (p, p̃),

and O(p, p̃) ⊂ GL(n,R) be the Lie group preserving η0. Let (M, η) be a pseudo-

Riemannian manifold of signature (p, p̃), and π : O(M) → M be the orthonormal

frame bundle corresponding to η0 defined by

O(M) = {up : R
n → TpM | η(up(X), up(Y )) = η0(X,Y )}.

Denote the right action of a ∈ O(p, p̃) on u ∈ O(M) by u a, and for X ∈ o(p, p̃), let

X̃ be the corresponding infinitesimal generator on O(M) defined by

X̃u =
d

dt
(u exp(tXe)) |t=0.

The canonical R
n-valued one-form θ and the o(p, p̃)-valued connection one-form ω

on O(M) have the following properties [9, pp. 118–121]

(3.1) ιZθ = u−1π∗(Z), ιX̃ω = X, dθ = −ω ∧ θ,

where X ∈ o(p, p̃), Z ∈ Tu(O(M)) and ι is left interior multiplication. The o(p, p̃)-

valued curvature two-form Ω = dω + ω ∧ ω satisfies

(3.2) ιX̃Ω = 0, Ω ∧ θ = 0, dΩ = Ω ∧ ω − ω ∧ Ω .

The forms θ, ω, and Ω satisfy the equivariance conditions

a∗θ = a−1(θ), a∗ω = Ad(a−1)ω, a∗Ω = Ad(a−1)Ω where a ∈ O(p, p̃).

If H is connected, then (3.1) and (3.2) imply the equivariance of θ, ω and Ω.

Let g : M → M be an isometry of the pseudo-Riemannian manifold (M, η), and

φg be the lift of the diffeomorphism g of M to the frame bundle,

φg(u) = g∗u, u ∈ F(M).
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Since g is an isometry, the subset O(M) ⊂ F(M) is invariant under φg . The forms

θ, ω, and Ω satisfy the invariance properties

(3.3) φ∗g θ = θ, φ∗gω = ω, φ∗g Ω = Ω.

Suppose that (G/H, η) is a homogeneous pseudo-Riemannian manifold and let

σ = [H] ∈ G/H, and uσ ∈ O(G/H) be an orthonormal frame at σ. The linear

isotropy representation ρ : H → O(p, p̃) is defined by

(3.4) uσρ(h) = (Lh)∗uσ

where Lh is left multiplication in G by h ∈ H. The differential of ρ defines a homo-

morphism ρ∗ : h → o(p, p̃). Since G acts effectively and by isometries, the linear

isotropy representation of H is faithful. Following Cartan [3] (or see Jensen [8]), we

define the function Ψ : G → O(G/H) by

(3.5) Ψ(g) = g∗uσ

which makes the diagram

(3.6)

G
Ψ−−−−→ O(G/H)

q





y





y

π

G/H G/H.

commutative. The map Ψ is equivariant with respect to the left action of G on G and

the action of G on O(M). It is also equivariant with respect to the linear isotropy

representation. Therefore, Ψ satisfies

(3.7) Ψ(gh) = Ψ(g)ρ(h), and Ψ(g1g2) = φg1
◦ Ψ(g2).

By defining the forms

θ̂ = Ψ
∗θ, ω̂ = Ψ

∗ω, Ω̂ = ψ∗
Ω

which are G-invariant on account of the equivariance of Ψ and equation (3.3), we

obtain the following structure on the Lie algebra g of G.

Lemma 3.1 Let (G/H, η) be an n-dimensional homogeneous pseudo-Riemannian

manifold with Lie algebra pair (g, h). There exists an injective homomorphism ρ∗ : h →
o(p, p̃), an R

n-valued one-form θ̂ : g → R
n, and an o(p, p̃)-valued one-form ω̂ : g →

o(p, p̃) satisfying

(1) ker θ̂ = h,

(2) ω̂(X) = ρ∗(X),

(3) dθ̂ = −ω̂ ∧ θ̂,
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where X ∈ h. Furthermore, the o(p, p̃)-valued two-form Ω = dω̂ + ω̂ ∧ ω̂ satisfies

(4) ιXΩ = 0, Ω̂ ∧ θ̂ = 0, and dΩ̂ = Ω̂ ∧ ω̂ − ω̂ ∧ Ω̂.

Lemma 3.1 has the following partial converse.

Lemma 3.2 Let h be a Lie algebra, ρ∗ : h → o(p, p̃) a monomorphism, and g be

the vector space R
n ⊕ h. Suppose there exists forms θ : g → R

n and ω : g → o(p, p̃)

satisfying

(1̂) ker θ = h,

(2̂) ω(X) = ρ∗(X),

(3̂) ιX(dω + ω ∧ ω) = 0,

for all X ∈ h, where dθ = −ω ∧ θ. If Ω = dω + ω ∧ ω satisfies

(4̂) Ω ∧ θ and dΩ = Ω ∧ ω − ω ∧ Ω,

then g is a Lie algebra where α([X,Y ]) = −dα(X,Y ), α ∈ g∗,X,Y ∈ g.

The principle step in Cartan’s approach to the classification of homogeneous pseu-

do-Riemannian manifolds is to start with a subalgebra h ⊂ o(p, p̃) and then classify

all Lie algebras that satisfy Lemma 3.2. To simplify this classification, one expects

that we only need the conjugacy class of the subalgebra h ⊂ o(p, p̃) under inner

automorphism, but slightly more is true.

Lemma 3.3 Let h and h̃ be two Lie algebras, and let ρ∗ : h → o(p, p̃) and ρ̃∗ : h̃ →
o(p, p̃) be monomorphisms. Suppose there exists an inner automorphismψ : gl(n,R) →
gl(n,R) which restricts to an isomorphism φ : h → h̃ such that

ρ̃∗(φ(X)) = ψ(ρ∗(X)) X ∈ h.

Then the pairs (g, h) which satisfy Lemma 3.2 are in one-to-one correspondence with

the pairs (g̃, h̃) which satisfy Lemma 3.2.

Proof Suppose the inner automorphism ψ is a conjugation by the matrix A ∈
GL(n,R). It is then easy to check that the vector-space isomorphism T : R

n ⊕ h →
R ⊕ h̃ defined by

T(ξ,X) = (Aξ, φ(X))

provides a correspondence.

Note that every inner automorphism of o(p, p̃) satisfies this lemma.

4 Non-Reductive Homogeneous Spaces

The preceding section described Cartan’s procedure for constructing all possible iso-

morphism classes of Lie algebra pairs (g, h) for homogeneous pseudo-Riemannian

manifolds by starting from the inequivalent subalgebras of o(p, p̃) under the auto-

morphisms described in Lemma 3.3. In principle, one could find a general classifica-

tion of the four-dimensional homogeneous pseudo-Riemannian manifolds starting
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with the entire list of subalgebras for the Lie algebras o(3, 1) and o(2, 2). This classifi-

cation would be rather daunting because the known lists of inequivalent subalgebras

under inner automorphisms are quite large [15, 17]. In this section, we simplify

the classification problem by proving a lemma which reduces the possible subalge-

bras h ⊂ o(p, p̃) associated with a non-reductive homogeneous pseudo-Riemannian

manifold (G/H, η).

We start with the following characterization of reductive homogeneous spaces, see

[9, p. 103, Theorem 11.1].

Lemma 4.1 A homogeneous space G → G/H is reductive if and only if the principal

H-bundle G → G/H admits a G-invariant connection.

The following lemma greatly simplifies the classification problem.

Lemma 4.2 If G/H is a pseudo-Riemannian homogeneous space and O(p, p̃)/ρ(H)

is a reductive homogeneous space, then G/H is reductive.

Proof Let h̃ be the Lie algebra of ρ(H), and o(p, p̃) = h̃⊕m be a reductive decom-

position of o(p, p̃). Decompose the connection form on O(G/H) as ω = ωh̃ + ωm

where ωh̃ takes values in h̃ and ωm takes values in m. By using the map ρ defined

in (3.4) and Ψ defined in (3.5), we prove that the h-valued form ρ−1
∗ ◦ (Ψ∗ωh̃) de-

fines a G-invariant connection on G/H.

The G-invariance of ρ−1
∗ ◦ (Ψ∗ωh̃) follows from the equivariance of Ψ in (3.7)

together with (3.3). In order that this form define a connection we need to check that

the two conditions of [9, p. 64] are satisfied. To check the first condition, we use (3.1)

and compute

ρ−1
∗ ◦ (Ψ∗ωh̃(Xe)) = ρ−1

∗ ◦ ωh̃(ρ∗(Xe)) = Xe.

This verifies condition one. We now check the second condition. It follows from the

hypothesis in the lemma and the equivariance of the connection form ω that

R∗
aωh̃ = Ada−1 ωh̃ and R∗

aωm = Ada−1 ωm.

Now from the H-equivariance of Ψ in (3.7), the equation above, and the identity

ρ−1
∗ ◦ Adρ(h) = Adh ◦ρ−1

∗ , it follows that

R∗
h

(

ρ−1
∗ ◦ (Ψ∗ωh̃)

)

= ρ−1
∗ ◦

(

Ψ
∗ρ(h)∗ωh̃

)

= ρ−1
∗ ◦

(

Adρ(h)−1 ◦Ψ∗ωh̃

)

= Adh−1 ◦ρ−1
∗ ◦

(

Ψ
∗ωh̃

)

.

This verifies the second condition. Therefore, the h-valued form ρ−1
∗ ◦ Ψ

∗ωh̃, is a

G-invariant connection on G/H and by Lemma 4.1, G/H is reductive.

The proof of Lemma 4.2 is similar to the proof of Proposition 6.4 in [9, p. 83]. This

proposition implies that if O(p, p̃)/H is reductive, then the metric connection is re-

ducible to H.

This lemma has a few simple but interesting corollaries.
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Corollary 4.3 If ρ∗(h) ⊂ o(p, p̃) is a non-degenerate subspace with respect to the

Killing form of o(p, p̃), then G/H is reductive.

Lemma 4.2 also provides an algebraic proof of the following corollaries.

Corollary 4.4 If G/H admits a G invariant Riemannian metric, then G/H is a re-

ductive homogeneous space.

Corollary 4.5 If (G/H, η) is a two-dimensional homogeneous Lorentz manifold, then

G/H is reductive.

5 The Computations

By starting with the inequivalent subalgebras of o(2, 1), o(3, 1), and o(2, 2) we prove

Theorems 2.1, 2.3 and 2.4 by building all non-reductive Lie algebra pairs (g, h) which

satisfy Lemma 3.2. All inequivalent subalgebras of o(2, 1), o(3, 1), o(2, 2) under in-

ner automorphisms are known. Although this list is rather long, Lemma 4.2 says

that we need only those subalgebras that are not reductive in their respective alge-

bras. With this reduced list of subalgebras, the equivalence problem in Lemma 3.3 is

much easier. By using this final list of inequivalent subalgebras, we determine those

which extend to a Lie algebra that satisfies Lemma 3.2 and not Lemma 4.1 (see also

Lemma A.1). The resulting Lie algebra pairs are then put into a canonical form which

proves Theorems 2.1, 2.3 and 2.4.

Let (ei
j) denote the standard basis for gl(n,R) where

(ei
j)

k
l = δi

kδ
l
j , 1 ≤ i, j, k, l ≤ n.

Hereafter we omit writing the isomorphism ρ∗ between h with basis {eα}α=1...q and

ρ∗(h) ⊂ o(p, p̃) with basis {bα}α=1...q. Given two differential one forms σ1, σ2 ∈
Ω

1(M), we use the convention

σ1σ2
=

1

2
(σ1 ⊗ σ2 + σ2 ⊗ σ1)

for the symmetric tensor product. Other notation that is used is given in Appendix A.

Proof of Theorem 2.1: o(2, 1) Let {σi}i=1...3 denote the standard basis for (R
3)∗,

and

η0
= (σ1)2 + 2σ2σ3.

For o(2, 1) we use the basis

B1 = e2
2 − e3

3, B2 = e1
2 − e3

1, B3 = e2
1 − e1

3.

Of the inequivalent subalgebras of o(2, 1) under inner automorphism, only two

are not reductive. In each case, by using equations (A.1) and (A.3), equation (A.5)

always has a solution, so for these two subalgebras, the constructed homogeneous

space will be reductive. Here are the details.
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Case 1 The isotropy subalgebra is h = span{b1 = B3}. By using the basis {b̃1 =

B1 , b̃2 = B2, b1} for o(2, 1), equations (A.1) and (A.3) give

ω̃1
= p1θ

1 + p2θ
3, ω̃2

= −p1θ
3.

Equation (A.5) has the general solution

r1
1 = −p2, r1

2 = p1,

and (ω1 − p2θ
1 + p1θ

2) ⊗ e1 defines a G-invariant connection.

Case 2 The isotropy subalgebra is h = span{b1 = B1, b2 = B3}. By using the basis

{b̃1 = B2, b1, b2} for o(2, 1), equations (A.1) and (A.3) give

ω̃1
= p1θ

3.

Equation (A.5) has the general solution

r1
1 = p1, r1

2 = r1
3 = r2

1 = r2
3 = 0, r2

2 = −p1,

and (ω1 + p1θ
1) ⊗ e1 + (ω2 − p1θ

2) ⊗ e2 defines a G-invariant connection.

This proves Theorem 2.1.

Proof of Theorem 2.2: o(3, 1) Let {σi}i=1...4 denote the standard basis for (R
4)∗,

and

η0
= (σ1)2 + (σ2)2 + 2σ3σ4.

The basis we use for o(3, 1) is

B1 = e2
1 − e1

2, B2 = e4
4 − e3

3, B3 = e4
1 − e1

3,

B4 = e4
2 − e2

3, B5 = e1
4 − e3

1, B6 = e3
2 − e2

4.

The inequivalent subalgebras of o(3, 1), under inner automorphisms are listed in [15,

p. 1605]. Of these subalgebras, labeled F1 to F15, seven are not reductive in o(3, 1).

Case 1 We consider the non-reductive subalgebras of o(3, 1) which admit a solu-

tion to equation (A.5). Therefore they always lead to a reductive homogeneous space.

Subcase 1.1 The subalgebra F2 in [15] is h = span{b1 = B1, b2 = B2, b3 = B3,
b4 = B4}. By using the basis {b̃1 = B5, b̃2 = B6, b1, b2, b3, b4} for o(3, 1), equations

(A.1) and (A.3) give

ω̃1
= 0, ω̃2

= 0.

Equation (A.5) has the general solution {rαi = 0}α=1...2,i=1...4, and ωα ⊗ eα defines a

G-invariant connection.
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Subcase 1.2 The subalgebra F5 in [15] is h = span{b1 = cos θ B1 + sin θB2, b2 =

B3, b3 = B4} where θ ∈ (0, π), θ 6= π/2. By using the basis {b̃1 = − sin θB1 +

cos θB2, b̃2 = B5, b̃3 = B6, b1, b2, b3} for o(3, 1), equations (A.1) and (A.3) give

ω̃1
= 0, ω̃2

= 0, ω̃3
= 0.

Equation (A.5) has the general solution {rαi = 0}α=1...2,i=1...4 and ωα ⊗ eα defines a

G-invariant connection.

Subcase 1.3 The subalgebra F6 in [15] is h = span{b1 = B1, b2 = B3, b3 = B4}. By

using the basis {b̃1 = B2, b̃2 = B5, b̃3 = B6, b1, b2, b3} for o(3, 1), equations (A.1)

and (A.3) give

ω̃1
= p1θ

3, ω̃2
= 0 , ω̃3

= 0.

Equation (A.5) has the general solution

r1
3 = r3

1 = t, r2
2 = −t, r1

1 = r1
2 = r1

4 = r2
3 = r2

4 = r3
3 = r3

4 = 0, r2
1 = r3

2 = −p1

where t ∈ R, and (ω1 + t θ3) ⊗ e1 + (ω2 − p1θ
1 − tθ2) ⊗ e2 + (ω3 + tθ1 − p1θ

2) ⊗ e3

defines a G-invariant connection for any choice of t ∈ R.

Subcase 1.4 The subalgebra F8 in [15] is h = span{b1 = B2, b2 = B3}. By using

the basis {b̃1 = B1, b̃2 = B4, b̃3 = B5, b̃4 = B6, b1, b2} for o(3, 1), equations (A.1)

and (A.3) give

ω̃1
= −p1θ

1, ω̃2
= p1θ

4, ω̃3
= p2θ

3, ω̃4
= p1θ

3.

Equation (A.5) has the general solution

r1
1 = p2, r2

1 = r1
2 = r2

2 = r1
3 = r2

3 = r1
4 = 0, r2

4 = −p2,

and (ω1 + p2θ
1) ⊗ e1 + (ω2 − p2θ

4) ⊗ e2 defines a G-invariant connection.

We now consider the cases where condition (A.5) is not automatically satisfied.

Case 2 The subalgebra F7 in [15] is h = span{b1 = B2, b2 = B3, b3 = B4}. By

using the basis {b̃1 = B1, b̃2 = B5, b̃3 = B6, b1, b2, b3} for o(3, 1), equations (A.1)

and (A.3) give

ω̃1
= p1θ

1 + p2θ
2, ω̃2

= −p2θ
3, ω̃3

= −p1θ
3.

From condition (A.5), G/H is reductive if and only if p1 = p2 = 0, so we assume

this is not satisfied. Let K = p1
2 + p2

2 (which is non-zero). The Bianchi identities

give

C1
42 = −K, C2

43 = −K, C3
41 = −K,
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and Cα
jk = 0 otherwise. The curvature form is Ωi j = −Kθi ∧ θ j , and the homoge-

neous space will be of constant curvature. The change of basis

α1
= (p1θ

2 − p2θ
1 − ω1)/2, α2

= Kθ3, α3
= θ4 + K−1(p1ω

3 − p2ω
2),

α4
= θ4 + K−1(p2ω

2 − p1ω
3), α5

=
√

2K−1(p1ω
2 + p2ω

3),

α6
=

√
2(p1θ

1 + p2θ
2), α7

= (p2θ
1 − p1θ

2 − ω1)/2

for g∗ leads to the multiplication table A5 in Theorem 2.3 with isotropy in the dual

basis h = span{e1 + e7, e3 − e4, e5}.

Case 3 The subalgebra F10 in [15] is h = span{b1 = B3, b2 = B4}. By using the

basis {b̃1 = B1, b̃2 = B2, b̃3 = B5, b̃4 = B6, b1, b2} for o(3, 1), equations (A.1) and

(A.3) give

ω̃1
= p1θ

1 + p2θ
2 + p3θ

3, ω̃2
= p2θ

1−p1θ
2 + p4θ

3, ω̃3
= −p2θ

3, ω̃4
= −p1θ

3.

From condition (A.5), G/H is reductive if and only if p1 = p2 = 0. Let K =

−(p1
2 + p2

2) (which is non-zero) and C1
13 = L(p1

2 + 4p2
2). The Bianchi identities

give

C1
12 = −3p2 p3, C1

14 = −K, C1
34 = 2p4 p2 − p1 p3, C1

24 = C2
14 = 0,

C1
23 = −3Lp2 p1, p3 = 0, C2

12 = 3p1 p3, C2
24 = −K,

C2
34 = −2p4 p1 − p2 p3, C2

23 = (4p1
2 + p2

2)L, C2
13 = −3Lp2 p1, p4 = 0.

The curvature components are

(5.1)
Ω12 = Kθ1 ∧ θ2, Ω13 = Kθ1 ∧ θ4 + L(p1

2 + 4p2
2)θ1 ∧ θ3 − 3Lp2 p1θ

2 ∧ θ3,

Ω14 = Kθ1 ∧ θ3, Ω24 = Kθ2 ∧ θ3,

Ω23 = Kθ2 ∧ θ4 + L(4p1
2 + p2

2)θ2 ∧ θ3 − 3Lp2 p1θ
1 ∧ θ3, Ω34 = Kθ4 ∧ θ3.

The change of basis

α1
= p1θ

2 − p2θ
1, α2

= θ3, α3
= −K(θ4 − Lθ3) − p2ω

1 + p1ω
2,

α4
=

√
2(p1θ

1 + p2θ
2), α5

=
√

2(p1ω
1 + p2ω

2),

α6
= K(θ4 + Lθ3) − p2ω

1 + p1ω
2

for g∗ leads to the multiplication table A4 in Theorem 2.3 with isotropy in the dual

basis h = span{e3 + e6, e5}.

Case 4 The subalgebra F14 in [15] is h = span{b1 = B3}. By using the basis {b̃1 =

B1, b̃2 = B2, b̃3 = B4, b̃4 = B5, b̃5 = B6, b1} for o(3, 1), equations (A.1) and (A.3)

give

2ω̃1
= p1θ

1 + p2θ
3, ω̃2

= p3θ
1 + p4θ

2 + p5θ
3,

ω̃3
= p2θ

1 + p6θ
2 + p7θ

3 − p1θ
4, ω̃4

= −p3θ
3, ω̃5

= −p1θ
3.
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From condition (A.5), G/H is reductive if and only if p4 = 0, so we assume p4 6= 0.

The first Bianchi identity gives

C1
14 = −p3

2, C1
12 = −p2 p3 − p6 p1, C1

24 = 0,

C1
23 = −3p7 p3 + p2(p5 − p6), C1

34 = 2p2(p1 + p4) + 2p5 p3

and

(5.2)
p6 = t1(p1 − p4), p5 = t1(p4 + p1),

−p6 p3 + p2 p4 − 2p1 p2 = 0, p1 p3 = 0

where t1 ∈ R. These last two equations will split into a number of cases. If p3 6= 0,

the Killing form will have rank 4, otherwise the Killing form has rank at most 3, so

we split this case into subcases based on p3.

Subcase 4.1 Starting with p3 6= 0 and p1 = 0, we solve (5.2) and the second Bianchi

identity to get

p2 = −t1 p3, C1
13 = t2 p3

2, p7 = −p4(2t1
2 + t2)/4

where t2 ∈ R. The curvature components are

(5.3)
Ω12 = Kθ1 ∧ θ3,

Ω13 = Kθ1 ∧ (θ2 − t1θ
3) + p3

2θ1 ∧ (t2θ
3 − θ4) + 3

4
Lp3 p4θ

2 ∧ θ3,

Ω14 = −p3
2θ1 ∧ θ3, Ω23 = Kθ3 ∧ (θ4 − t1θ

2) + 1
2

p4L(p4θ
2 + 3

2
p3θ

1) ∧ θ3,

Ω24 = 0, Ω34 = Kθ2 ∧ θ3 + p3
2θ3 ∧ θ4

where K = t1 p3
2 and L = t2 − 2t1

2. The change of basis

α1
= −p3θ

1 − 1
2

p4θ
4, α2

= p3θ
3,

α3
= t1 p4θ

1 + p3θ
4 + t1(p4

2 − 2p3
2)(2p3)−1θ2

+ (t1
2(p4

2 − 2p3
2) − t2 p3

2)(4p3)−1θ3 − ω1

α4
= − 1

2
t2 p3θ

3 − p3θ
4 − ω1, α5

= −p4θ
2 − t1 p4θ

3,

for g∗ leads to the multiplication table A1 in Theorem 2.3 with isotropy in the dual

basis h = span{e3 + e4}.

Subcase 4.2 Starting with p3 = 0, the Bianchi identities give

p2 = 0, (p1 − p4)(C1
13 − t1

2 p1 p4) = 0.

The solution to this last equation splits into two further subcases.
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Subcase 4.2.1 If C1
13 = t1

2 p1 p4 (the Killing form has rank 1), the curvature com-

ponents are

(5.4) Ω12 = −p1
2θ1 ∧ θ2, Ω13 = p1Lθ1 ∧ θ3 − p1

2θ1 ∧ θ4,

Ω14 = −p1
2, Ω24 = −p1

2θ2 ∧ θ3,

Ω23 = 2L(p1 − p4)θ2 ∧ θ3 − p1
2θ2 ∧ θ4, Ω34 = p1

2θ3 ∧ θ4

where L = (p7 + t1
2 p4). The change of basis

α1
= θ4 − p7(2p4)−1θ3, α2

= −θ1, α3
= −θ3,

α4
= ω1 − t1 p1θ

1, α5
= −p4(θ2 + t1θ

3)

for g∗ leads to the multiplication table A2 in Theorem 2.3 where α = p1/p4 and the

isotropy in the dual basis is h = span{e4}.

Subcase 4.2.2 We assume C1
13 − t1

2 p1 p4 6= 0, so p1 = p4 and the Killing form has

rank 2. Let L = C1
13 + p4 p7. The curvature components are

(5.5) Ω12 = −p4
2θ1 ∧ θ2, Ω13 = Lθ1 ∧ θ3 − p4

2θ1θ4, Ω14 = −p4
2θ1 ∧ θ3,

Ω23 = −p4
2θ2 ∧ θ4, Ω24 = p4

2θ3 ∧ θ4, Ω34 = 0.

Write C1
13 − t1

2 p2
4 = ǫm2 (which is non-zero) where ǫ = ±1. The change of basis

α1
= mθ4 − mp7(2p4)−1θ3, α2

= mθ1, α3
= t1 p4θ

1 − ω1,

α4
= −p4θ

2 − t1 p4θ
3, α5

= mθ3

for g∗ leads to the multiplication table A3 in Theorem 2.3 with isotropy in the dual

basis h = span{e3}.

This concludes the proof of Theorem 2.3.

Proof of Theorem 2.4: o(2, 2) Let {σi}i=1...4 denote the standard basis for (R
4)∗,

and

η0
= 2σ1σ2 + +2σ3σ4.

For o(2,2) use the basis

2A1 = e1
4 + e2

3 + e3
2 + e4

1, 2A2 = e1
3 − e2

4 + e3
1 − e4

2, 2A3 = e1
2 − e2

1 + e3
4 − e4

3

2B1 = −e1
4 + e2

3 + e3
2 − e4

1, 2B2 = e1
3 + e2

4 + e3
1 + e4

2, 2B3 = e1
2 − e2

1 − e3
4 + e4

3.

The inequivalent subalgebras of o(3, 1), under inner automorphisms are listed

in [17, pp. 2281–2283]. Of these subalgebras, labeled ed,n, 22 are not reductive in

o(2, 2).
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Case 1 We consider the non-reductive subalgebras of o(2, 2) which admit a solu-

tion to equation (A.5). Therefore, they always lead to a reductive homogeneous space.

Subcase 1.1 The subalgebra e5,1 in [17] is h = span{b1 = A2, b2 = A1 − A3, b3 =

B1, b4 = B2, b5 = B3}. By using the basis {b̃1 = A1 +A3, b1, b2, b3, b4, b5} for o(2,2),

equations (A.1) and (A.3) give ω̃1
= 0. Equation (A.5) has the general solution

{rαk = 0}α=1...5,k=1...4, and ωα ⊗ eα defines a G-invariant connection.

Subcase 1.2 The following 4-dimensional algebras in [17] always admit a solution

to (A.5). Therefore, they always lead to the construction of a reductive homogeneous

space.

h Basis {b1, b2, b3, b4} Complement {b̃1, b̃2}
e4,2 A1 − A3,A2,B2,B1 − B3 A1 + A3,B1 + B3

e4,3 A1 − A3,B1,B2,B3 A1 + A3,A2

Equations (A.1) and (A.3) give ω̃1
= ω̃2

= 0. Equation (A.5) has the general solution

{rαk = 0}α=1...4,k=1...4, and ωα ⊗ eα defines a G-invariant connection.

Subcase 1.3 The following 3-dimensional algebras in [17] always admit a solution

to (A.5). Therefore, they lead to the construction of a reductive homogeneous space.

h Basis {b1, b2, b3} Complement {b̃1, b̃2 b̃3}
e3,2 B2,A2,A1 − A3 A1 + A3,B1,B3

e3,4 B3,A2,A1 − A3 A1 + A3,B1,B2

e3,3; e3,5; e3,6; e3,7 A2 + αB2,A1 − A3,B1 − B3 A1 + A3,B1 + B3,B2

Equations (A.1) and (A.3) give ω̃1
= ω̃2

= ω̃3
= 0. Equation (A.5) has the general

solution {rαk = 0}α=1...3,k=1...4, and ωα ⊗ eα defines a G-invariant connection.

Subcase 1.4 The following 2-dimensional algebras in [17] always admit a solution

to (A.5). Therefore, they lead to the construction of a reductive homogeneous space.

h Basis {b1, b2} Complement {b̃1, b̃2, b̃3, b̃4}
e2,3 B2,A1 − A3 A1 + A3,A2,B1,B3

e2,4 A1 − A3,B3 A1 + A3,A2,B1,B2

e2,7 A2,A1 − A3 A1 + A3,B1,B2,B3

e2,10; e2,11 A2 + cB2,−A1 + A3; c > 0 A1 + A3,B1,B2,B3

e2,12 A2 − cB3,−A1 + A3; c 6= 0 A1 + A3,B1,B2,B3

eǫ2,13 B2 + ǫ(A3 − A1),B1 − B3; ǫ = ±1 A1 + A3,A2,B1 + B3,B2

Equations (A.1) and (A.3) give ω̃1
= ω̃2

= ω̃3
= ω̃4

= 0. Equation (A.5) has the

general solution {rαk = 0}α=1...2,k=1...4, and ωα⊗eα defines a G-invariant connection.
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Subcase 1.4.1 The subalgebras e2,8 and e2,9 in [17] are h = span{b1 = A2+B2, b2 =

−A1 + A3 + ǫ(B1 − B3)} when ǫ = 1 and ǫ = −1, respectively. By using the basis

{b̃1 = A1 + A3, b̃2 = B1 + B3, b̃3 = A2 −B3, b̃3 = −A1 + A3 − ǫ(B1 − B3), b1, b2} for

o(2,2), equations (A.1) and (A.3) give

ω̃1
= ǫ(2p2 − p1)θ1, ω̃2

= p1θ
1, ω̃3

= p2(θ4 − ǫθ3), ω̃4
= p2θ

2.

Equation (A.5) has the general solution

r1
1 = r1

2 = r2
1 = r2

3 = r2
4 = 0, r1

3 = ǫ(p2 − p1), r1
4 = r2

2 = p1 − p2,

and (ω1 + (p1 − p2)(θ4 − ǫθ3)) ⊗ e1 + (ω2 + (p1 − p2)θ2) ⊗ e2 defines a G-invariant

connection.

We now consider the cases where condition (A.5) is not automatically satisfied.

Case 2 The subalgebra e2,1 in [17] is h = span{A1 − A3,B1 − B3}. By using the

basis {b̃1 = A1 + A3, b̃2 = A2, b̃3 = B1 + B3, b̃4 = B2, b1, b2} for o(2,2), equations

(A.1) and (A.3) give

ω̃1
= p1θ

1, ω̃2
= p2θ

1 − 2p1θ
3, ω̃3

= p3θ
1, ω̃4

= p4θ
1 − 2p3θ

4.

From condition (A.5), G/H is reductive if and only if p1 = 0 and p3 = 0. The first

Bianchi identity yields

C1
12 =

1
2
(p2 + 3p4)p3, C1

34 =
3
2
(p4 − p2)p3, C2

24 = −2p1 p3, C2
23 = 0,

C1
13 = C2

14, C2
12 =

1
2
(p4 + 3p2)p1, C2

34 =
3
2
(p4 − p2)p1,

C1
23 = −2p1 p3, C1

24 = 0.

The second Bianchi identity has the general solution

p2 = 0, p4 = 0, C2
13 = t p1

2, C1
14 = t p3

2, C2
14 =

5
3
t p1 p3

where t ∈ R. Let L = 2p1 p3. The curvature components are

Ω12 = Lθ1 ∧ θ2, Ω23 = −Lθ1 ∧ θ4, Ω13 = t p1
2θ1 ∧ θ3 + 5

6
tLθ1 ∧ θ4 − Lθ2 ∧ θ4,

(5.6)

Ω34 = Lθ3 ∧ θ4, Ω24 = −Lθ1 ∧ θ3, Ω14 =
5
6
tLθ1 ∧ θ3 + t p3

2θ1 ∧ θ4 − Lθ2 ∧ θ3.

The Jacobi identities are now satisfied, but depending on the parameters we get non-

isomorphic Lie algebras. We now determine the non-isomorphic algebras.
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Subcase 2.1 If p1 6= 0 and p3 6= 0 the change of basis

α1
= −p1θ

3 − p3θ
4, α2

= −θ1, α3
= L( 1

3
tθ1 − θ2) − p1ω

1 − p3ω
2,

α4
=

√
2(p1θ

3 − p3θ
4), α5

=
√

2(p1ω
5 − p3ω

2)

α6
= −L( 2

3
tθ1 + θ2) + p1ω

1 + p3ω
2,

for g∗ leads to the multiplication table B2 in Theorem 2.4 with isotropy

h = span{e5, e3 − e6}.

Subcase 2.2 If p1 = 0 or p3 = 0 the change of basis

α1
= −p1θ

3 − p3θ
4, α2

= θ1, α3
= p1ω

1 + p3ω
2,

α4
= p3θ

3 − p1θ
4, α5

= (p3
2 − p1

2)( 1
3
tθ1 − θ2) − p3ω

1 + p1ω
2,

α6
=

1
2
t(p3 + p1)2θ2 − (p3

3ω1 + p1
3ω2)/(p3 + p1)2,

for g∗ leads to the multiplication table B3 in Theorem 2.4 with isotropy in the dual

basis h = span{e3, e5 + e6} when p1 = 0 and h = span{e3, e5 − e6} when p3 = 0.

Reversing the sign of e6 is an automorphism, thus these are equivalent Lie algebra

pairs.

Case 3 The subalgebra e1,10 in [17] is h = span{−A1 + A3}. By using the basis

{b̃1 = A1 + A3, b̃2 = A2, b̃3 = B1, b̃4 = B2, b̃5 = B3, b1 = −A1 + A3} for o(2,2),

equations (A.1) and (A.3) give

ω̃1
= p1θ

1 + p2θ
4, ω̃2

=
1
3
(p3 − p7)θ1 + 2p2θ

2 − 2p1θ
3 + 1

3
(p4 − p9)θ4,

ω̃3
= (p5 + p9)θ1 + (p6 − p3)θ4, ω̃4

= (p3 + p7)θ1 + p8θ
4,

ω̃5
= (p9 − p5)θ1 + p10θ

4.

From condition (A.5), G/H is reductive if and only if p1 = 0 and p2 = 0. The first

Bianchi identity yields

p3 = sp1, p4 = t p1, p5 = −rp1, p6 = t p2, p7 = rp2,

p8 = t p1 + sp2, p9 = sp2, p10 = t p2 + sp1,

C1
12 = 5p1 p2 J, C1

13 = −5p1
2 J, C1

23 = −K, C1
34 = 5p1 p2 J, C1

24 = −5p2
2 J

J =
1
3
(rt − s2), K =

1
3
(p1

2t − 2p1 p2s + p2
2r), L =

1
3
(p1

2t + 4p1 p2s + p2
2r).

The second Bianchi identity has the general solution

C1
14 = 4 JK.
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The curvature components are

(5.7) Ω12 = p1(sp1 + rp2)θ1 ∧ θ3 − (K + L)θ1 ∧ θ2 − 5p1 p2 Jθ1 ∧ θ4

+ p2(t p1 + sp2)θ2 ∧ θ4 − Lθ3 ∧ θ4,

Ω34 = p1(sp1 + rp2)θ1 ∧ θ3 − (K + L)θ3 ∧ θ4 − 5p1 p2 Jθ1 ∧ θ4

+ p2(t p1 + sp2)θ2 ∧ θ4 − Lθ1 ∧ θ2,

Ω13 = p1(sp1 + rp2)θ1 ∧ θ2 − 2rp1
2θ1 ∧ θ3 + 5p1

2 Jθ1 ∧ θ4

− 2sp1 p2θ
2 ∧ θ4 + p1(sp1 + rp2)θ3 ∧ θ4,

Ω24 = p2(t p1 + sp2)θ1 ∧ θ2 − 2t p2
2θ2 ∧ θ4 + 5p2

2 Jθ1 ∧ θ4−

2sp1 p2θ
1 ∧ θ3 + p2(t p1 + sp2)θ3 ∧ θ4,

Ω14 = J(5p1 p2θ
2 − 5p1

2θ3 + 4Kθ4) ∧ θ1 + Kθ2 ∧ θ3

+ 5 J(p2
2θ2 − p1 p2θ

3) ∧ θ4,

Ω23 = Kθ1 ∧ θ4.

The change of basis

α1
=

1
3
(2sp1 − rp2)θ1 + p2θ

2 − p1θ
3 + 1

3
t p1θ

4, α2
= −p1θ

1 − p2θ
4,

α3
=

1
9
r(3t p1 − 2sp2)θ1 + 1

3
(t p1 + sp2)θ2 + 1

3
(rp2 − 3sp1)θ3

+
1

9
(2st p1 + 3trp2 − 4s2 p2)θ4 + ω1,

α4
= p2θ

1 − p1θ
4, α5

=
1
3
(2sp2 + rp1)θ1 − p1θ

2 − p2θ
3 + 1

3
t p2θ

4,

for g∗ leads to the multiplication table B1 in Theorem 2.4, with isotropy h =

span{e3}.

Case 4 The subalgebras e1,3 and e1,4 in [17] satisfy Lemma 3.3. Define A ∈ GL(4,R)

by A( f1) = f3,A( f2) = − f4,A( f3) = f1,A( f4) = − f2, where fk is the standard basis

for R
4, then A is an automorphism of o(2, 2) that maps e1,3, which has basis {b1 =

−A1 +A3−B1 +B3}, to the subalgebra e1,4, which has basis {b1 = −A1 +A3 +B1−B3}.

Therefore, we consider only e1,4. By using the basis {b̃1 = A1 − A3 + B1 − B3, b̃2 =

B2, b̃3 = A1 − A3 + B1 + B3, b̃4 = −A1 − A3 + B1 − B3, b̃5 = A2, b1} for o(2,2),

equations (A.1) and (A.3) give

ω̃1
= p1θ

1 + p2θ
2 + (p3 + p4)θ3 + (p4 − p3)θ4,

ω̃2
= 2(p5 − p3)θ1 + (p6 + p7 − p2)θ3 + (p6 − p7 + p2)θ4, ω̃3

= (p7 − p2)θ1,

ω̃4
= (p7 + p2)θ1, ω̃5

= 2(p5 + p3)θ1 + (p6 + p7 + p2)θ3 + (p6 − p7 − p2)θ4.
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From condition (A.5), G/H is reductive if and only if p6 = 0. The first Bianchi

identity yields

p4 = t(p6 + p2), p5 = t(p2 − p6),

C1
24 = p7

2, C1
34 = 2p3 p7 + 2p2 p4, C1

12 = 4p2 p3 − 4p3 p6 − 4p5 p7,

C1
23 = −p7

2, C1
14 = −4p3 p4 + 2p2

2 − 6p1 p7 − 6p7
2 + 4p2 p6 + 4p5 p3 −C1

13

where t ∈ R, and the conditions

p2 p7 = 0, 2p2 p3 + (p3 − t p7)p6 = 0.

Let K = (2p6t2 + p1 + p7)/p6, L = 2(p6t2 + p7 + p1)/p6 and β = C1
13 − p2

2 −
2p2 p6 − 2p2 p6t2. The second Bianchi identity yields p3 = t p7 so the final remaining

conditions are

p2 p7 = 0, β(p6 + p2) + p7 p6(L(p6 + 2p7) + K p6) = 0.

This case splits into three subcases based on p7 and β.

Subcase 4.1 If p7 6= 0, then p2 = 0. The remaining condition implies C1
13 =

−p7(L(p6 + 2p7) + K p6). The curvature components are

(5.8) Ω23 = p7
2θ1 ∧ (θ4 − θ3), Ω12 = −2p7

2θ1 ∧ (θ2 + tθ3 + tθ4),

Ω24 = p7
2θ1 ∧ (θ3 − θ4), Ω34 = 2t p7

2θ1 ∧ (θ3 − θ4),

Ω13 = −2t p7
2θ1 ∧ θ2 − 2(p6 + p7)(p6 + 2p7)Kθ1 ∧ θ3

− 2(p6
2K − p7

2L)θ1 ∧ θ4 − p7
2θ2 ∧ (θ3 − θ4) + 2t p7

2θ3 ∧ θ4,

Ω14 = −2t p7
2θ1 ∧ θ2 − 2(p6 − p7)(p6 − 2p7)Kθ1 ∧ θ4

− 2(p6
2K − p7

2L)θ1 ∧ θ3 + p7
2θ2 ∧ (θ3 − θ4) − 2t p7

2θ3 ∧ θ4.

The change of basis

α1
= −2p6tθ1 + (p6 + 2p7)θ3 + (p6 − 2p7)θ4, α2

= −4p7
2/p6θ

1,

α3
= (p1 + p7)θ1 + p6θ

2 + p6tθ3 + p6tθ4 − p6/p7ω
1,

α4
= 2(p1 + p7)θ1 − p6θ

2 + p6tθ3 + p6tθ4 − p6/p7ω
1

α5
= −2p6tθ1 + p6θ

3 + p6θ
4,

for g∗ leads to the multiplication table A1 in Theorem 2.4 with isotropy in the dual

basis h = span{e3 + e4}.

Subcase 4.2 If p7 = 0, the remaining the condition splits into two subcases based

on β.
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Subcase 4.2.1 When β = 0, the remaining condition implies C1
13 = p2

2 + 2p2 p6 +

2p2 p6t2. The curvature components are

(5.9) Ω12 = 2p2
2θ1 ∧ θ2,

Ω13 = −Kθ1 ∧ ((p2 + 2p6)θ3 + (3p2 + 2p6)θ4) − 2p2
2θ2 ∧ θ4,

Ω14 = −Kθ1 ∧ ((p2 + 2p6)θ4 + (3p2 + 2p6)θ3) − 2p2
2θ2 ∧ θ3,

Ω23 = −2p2
2θ1 ∧ θ4, Ω24 = −2p2

2θ1 ∧ θ3, Ω34 = 2p2
2θ3 ∧ θ4.,

The change of basis

α1
= −p1θ

1 + 2p6θ
2, α2

= 2p6(θ3 − θ4), α3
= 4p6θ

1,

α4
= p2(θ1 + tθ3 − tθ4) + ω1, α5

= p6(−2tθ1 + θ3 + θ4)

for g∗ leads to the multiplication table A2 in Theorem 2.4 where α = −p2/p6 with

isotropy in the dual basis h = span{e4}.

Subcase 4.2.2 If β 6= 0, then p2 = −p6. The curvature components are

(5.10) Ω12 = 2p6
2θ1 ∧ θ2, Ω23 = −2p6

2θ1 ∧ θ4,

Ω13 = (β − p6
2K)θ1 ∧ (θ3 − θ4) − 2p6

2θ2 ∧ θ4,

Ω34 = 2p6
2θ3 ∧ θ4, Ω24 = −2p6

2θ1 ∧ θ3,

Ω14 = (β − p6
2K)θ1 ∧ (θ4 − θ3) − 2p6

2θ2 ∧ θ3.

The change of basis

α1
=

√

|β/2|( 1
2

p1/p6θ
1 − θ2), α2

=
√

|β/2|(θ3 − θ4),

α3
= p6(θ1 + tθ3 − tθ4) − ω1, α4

= p6(−2tθ1 + θ3 + θ4),

α5
=

√

|2β|θ1,

for g∗ leads to the multiplication table A3 in Theorem 2.4 where ǫ =
β
|β| and the

isotropy in the dual basis is h = span{e3}.

This concludes the proof of Theorem 2.4.

We now list the algebra pairs in Theorems 2.3 and 2.4 where the metrics can be

Einstein without being of constant curvature.

Lemma 5.1 Let (G/H, η) be a homogeneous non-reductive pseudo-Riemannian Ein-

stein manifold of dimension four which is not of constant curvature and where H is

connected.

(i) The space is Ricci-flat if and only if the Lie algebra pair (g, h) is isomorphic to B3.
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(ii) The space is Einstein and not Ricci-flat if and only if the Lie algebra is isomorphic

to the pair A2 with α = 2/3.

Proof Starting with the curvature forms in equations (5.1)–(5.10), the coefficients

of the Ricci tensor in an orthonormal frame uσ at σ = [H] are easily computed. For

example, from the curvature in (5.4) we get

Ricci = (3α2 p4
2)η0 − p4(t1

2 p4 + p7)(3α− 2)θ3 ⊗ θ3

where p4 6= 0. If α = 2/3 and t1
2 p4 + p4 6= 0, the space is Einstein and not of

constant curvature. Similar computations with (5.9) and (5.6) in Subcase 2.2 prove

the lemma.

Case (i) in Lemma 5.1 corresponds to [10, Proposition 2.5.2, p. 153], and case (ii)

in Lemma 5.1 corresponds to [10, Proposition 1.4.2, p. 142].

6 Global Results and Existence

To prove Theorem 2.5, we start by characterizing the four-dimensional simply con-

nected non-reductive pseudo-Riemannian homogeneous spaces. These turn out to

be fairly simple.

Theorem 6.1 Let (g, h) be a Lie algebra pair from Theorem 2.3 or Theorem 2.4 and

suppose G is the simply connected Lie group with Lie algebra g. Then there exists a closed

connected Lie subgroup H ⊂ G with Lie algebra h such that G/H is diffeomorphic to

R
4.

Proof The proof is done on a case-by-case basis. We first consider the pairs in A2

and A3 of Theorem 2.3 (or Theorem 2.4) where g is solvable. Let G be the simply

connected solvable Lie group having Lie algebra g, and H the connected Lie sub-

group having Lie subalgebra h. Since H is closed [4], G/H is a manifold. Since H is

connected, G/H is simply connected and G/H is diffeomorphic to R
4 [13].

For cases A1 and A4 of Theorem 2.3 and B1 and B3 of Theorem 2.4, we construct

connected Lie groups G0 and connected closed subgroups H0 ⊂ G0 such that the

covering space of G0/H0 is R
4. It follows that R

4
= G̃/H (see [14, Theorem 2.1,

p. 125]) where G̃ is the simply connected cover of G0 and H is a closed connected Lie

subgroup having Lie subalgebra h. We start with A4 and B2.

Let a, b ∈ R
2, and a × b = a1b2 − b1a2. The multiplication map for the six-

dimensional Lie group SL(2,R) × N3 is

(A, a, α) ∗ (B, b, β) = (AA ′,Ab + a, α + β − (Ab) × a)

where A,B ∈ SL(2,R), a, b ∈ R
2 and α, β ∈ R. Let H0

l and H0
n be the closed
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subgroups

H0
l =

{((

1 0

t 1

)

,

(

0

s

)

, 2t

) ∣

∣

∣

∣

t, s ∈ R

}

H0
n =

{((

1 0

t 1

)

,

(

0

s

)

,−2t

)
∣

∣

∣

∣

t, s ∈ R

}

.

The Lie algebra pair in A4 is isomorphic to (g, hl), and the pair in B2 is isomorphic to

(g, hn). The quotient spaces G0/H0
l and G0/H0

n are diffeomorphic to (R
2\{(0, 0)})×

R
2, so the covering space in these cases is R

4.

For the Lie algebra pair B1 in Theorem 2.4, let G0 be the group SL(2,R) ×R
2, and

let

H0
=

{((

1 0

t 1

)

,

(

0

0

))
∣

∣

∣

∣

t ∈ R

}

.

The pair in B1 of Theorem 2.4 is isomorphic to this (g, h). The quotient space G0/H0

is diffeomorphic to (R
2\{(0, 0)}) × R

2, so its simply connected cover is R
4. The Lie

algebra pair in A1 in Theorems 2.3 and 2.4 is similar to this one.

For A5, consider the monomorphism φ : g → o(2, 3) given by

φ(e1) = e1
4 + e4

1 − e2
3 − e3

2, φ(2e2) = e1
2 + e1

3 + e2
4 + e3

1 + e4
2 + e4

3 − e2
1 − e3

4,

φ(
√

2e5) = e1
5 + e5

1 + e5
4 − e4

5, φ(2e3) = e1
3 + e2

1 + e2
4 + e3

1 + e3
4 + e4

2 − e1
2 − e4

3,

φ(
√

2e6) = e3
5 − e2

5 − e5
2 − e5

3, φ(2e4) = e2
1 + e2

4 + e4
2 + e4

3 − e1
2 − e1

3 − e3
1 − e3

4,

φ(e7) = e1
4 + e2

3 + e3
2 + e4

1,

where η0
= diag(−1,−1, 1, 1, 1) is the symmetric 5 × 5 matrix defining o(2, 3). Let

G be the simply connected seven-dimensional Lie group having Lie algebra g, and let

Φ : G → O(2, 3) be the induced homomorphism from φ. We now show that G acts

transitively on the manifold

M = {(x1, x2, x3, x4, x5) ∈ R
5 | −x1

2 − x2
2 + x3

2 + x4
2 + x5

2
= −r2},

which is diffeomorphic to S1 × R
3 [19]. Let (x1, x2, x3, x4, x5) ∈ M. Application of

the group element eφ(te3−te2), where t = π/2 if x2 = 0 and tan t = x1/x2 otherwise,

maps this point to (0, x̃2, x̃3, x̃4, x̃5), where x̃2 6= 0. Similar use of the one parameter

subgroups of G map this point to (0, r, 0, 0, 0). Hence, G acts transitively on M. The

Lie algebra of the Lie subgroup of G which stabilizes (0, r, 0, 0, 0) is h = {e1 + e7, e3 −
e4, e5}. Therefore, the covering space for G/H is R

4.

The details for B3 can be found in the proof of Theorem 2.6 in Section 7.

Theorem 6.1 can now be used to prove Theorem 2.5(i).

Proof of Theorem 2.5(i) Since the homogeneous space G/H in the theorem is sim-

ply connected, we may assume G is simply connected and H is connected. By The-

orem 2.3 or Theorem 2.4, the Lie algebra pair (g,h) is isomorphic to one of A1–A5
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or B1–B3. The Lie algebra isomorphism lifts to a Lie group isomorphism to one

of the simply connected groups used in the proof of Theorem 6.1. Therefore, M is

diffeomorphic to R
4.

Up to this point, we have shown that a simply connected non-reductive homoge-

neous pseudo-Riemannian manifold is diffeomorphic to R
4 and the Lie algebra of its

isometry group must be isomorphic to one in Theorems 2.3 or 2.4. We now show

that A5 cannot occur.

Lemma 6.2 Let (G/H, η) be a simply connected four-dimensional homogeneous

Lorentz manifold with Lie algebra pair A5. Then G is a proper subgroup of the isometry

group Õ(2, 3).

Proof The computations in Theorem 6.1 show that there exists a transitive action

of G on S1 × R
3 with isotropy K which has the same Lie algebra as H. We showed

in the proof of Theorem 2.3 in Section 5, Case 2, that the Lorentz metric, which is

unique up to scaling, was of constant (negative) curvature, so the standard action of

O(2, 3) on S1 × R
3 is by isometries for this metric. Therefore, an invariant Lorentz

metric on G/H (the covering space) will admit Õ(2, 3) acting by isometries, and the

Lie algebra of the isometry group will not be g.

Lemma 6.2 allows us to prove Theorem 2.5(ii) by eliminating A5.

Proof of Theorem 2.5(ii) Starting with G/H simply connected we may assume that

H is connected and so Theorem 2.3 or 2.4 implies that the Lie algebra pair is isomor-

phic to one in the lists in these two theorems. However if G is the isometry group,

then by Lemma 6.2, A5 cannot be the Lie algebra pair for the isometry group of a

simply connected four-dimensional homogeneous Lorentz manifold.

In order to finish the proof of Theorem 2.5 (the converse part) we need to show

that we can build metrics on R
4 having the isometry algebras in Theorems 2.3 (ex-

cept A5) and 2.4. In order to do this we first give two lemmas.

Lemma 6.3 Let G/H be a homogeneous space with pair (g, h), and H connected. If

the pair (g, h) satisfies Lemma 3.2, then

η(X,Y ) = η0(θ(X), θ(Y )) X,Y ∈ TpG

is basic for the projection q : G → G/H and defines a pseudo-Riemannian metric on

G/H with curvature tensor Ω.

Proof The form θ is R
n valued, so η defines a symmetric bilinear form on TG. From

Lemma 3.1(1), the form η is semi-basic for the projection q : G → G/H and has the

same signature as η0. The Lie derivative of η with respect to X ∈ h,

LXη
0(θ, θ) = η0(LXθ, θ) + η0(θ,LXθ) = η0(ρ∗(X)θ, θ) + η0(θ, ρ∗(X)θ) = 0,
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implies that η is H-basic, because H is connected. We can check that Ω is the cur-

vature of η by choosing a local cross section of q : G → G/H and pulling back the

structure equations by the cross section, or by reversing the arguments in Section 3

which we now do. Let uσ ∈ O(M), and Ψ be constructed as in (3.5). The pullbacks

Ψ
∗θ̄ of the canonical form θ̄ on the frame bundle, are G-invariant and provide a basis

for the q : G → G/H semi-basic forms. Therefore,

(6.1) θ = AΨ
∗θ̄ where A ∈ GL(n,R).

Now, let X,Y ∈ R
n and choose X̃, Ỹ ∈ TeG such that q∗X̃ = uσX, and q∗Ỹ = uσY .

By definition of uσ and η we have

η0(X,Y ) = η(uσX, uσY ) = η0(θ(X̃), θ(Ỹ )).

Condition (6.1) gives

η0(X,Y ) = η0(Aθ̄(Ψ∗X),Aθ̄(Ψ∗Y )) = η0(Au−1
σ π∗Ψ∗X,Au−1

σ π∗Ψ∗X).

The commutative diagram (3.6) gives

η0(X,Y ) = η0(Aq∗(X̃),Aq∗(Ỹ )) = η0(AX,AY ),

so A ∈ O(p, p̃). Finally, using the frame vσ = uσA to redefine Ψ, we get Ψ
∗θ =

θ,Ψ∗ω = ω, and Ψ
∗
Ω = Ω.

This lemma says that for any case we consider in Section 5, and no matter what

value we choose for the parameters in the curvature form Ω, we can construct a ho-

mogeneous pseudo-Riemannian manifold having the chosen value of the curvature

form. In the next lemma, we give a sufficient condition on the curvature for a given

Lie algebra to be the Lie algebra of the isometry group.

Lemma 6.4 Let (G/H, η) be an n-dimensional pseudo-Riemannian homogeneous

space with curvature form Ω and let Ri jkl and Ri jkl;m be the corresponding components

of the Riemann curvature tensor and its covariant derivative in the orthonormal frame

uσ at σ = [H]. Let

(6.2) S =

{

E ∈ o(p, p̃)
∣

∣

∣
Rs jklE

s
i + RisklE

s
j + Ri jslE

s
k + Ri jksE

s
l = 0,

Rs jkl;mEs
i + Riskl;mEs

j + Ri jsl;mEs
k + Ri jks;mEs

l + Ri jkl;sE
s
m = 0

}

.

If dim S = dim h, then the Lie algebra of the isometry group is g (the Lie algebra of G).

Proof Use the notation in Section 3. If E = ρ∗(e) where e ∈ h, then E ∈ S,

so dim S ≥ dim h. Suppose that G̃ is the isometry group of (G/H, η). To prove

the lemma, it is sufficient to show dim G̃ = dim G. Let H̃ ⊂ G̃ be the isotropy

subgroup at σ = [H] ∈ G/H with linear isotropy representation ρ̃. We have G ⊂ G̃,

dim G = n + dim H, and dim G̃ = n + dim H̃. By the argument just given, ρ̃∗(h̃)

satisfies (6.2). Therefore, if the hypothesis of the theorem holds, then dim h̃ = dim h

and dim G = dim G̃.
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The set S is the Lie algebra of the stabilizer of both the curvature tensor and its

covariant derivative at a point. This lemma states that if this subalgebra has the same

dimension as h, then the isometry algebra can not have dimension greater than n +

dim h. Therefore, it must be the given algebra. Lemma 6.4, of course, generalizes

using the higher order covariant derivatives of the curvature tensor.

We can now prove the converse condition in Theorem 2.5 by using Lemmas 6.3,

Lemma 6.4, and the computations from Section 5. That is, for each Lie algebra pair

in the theorem we find values for the coefficients of the curvature form Ω such that

Lemma 6.4 is satisfied.

Proof of the converse for Theorem 2.5 We start with the Lorentz signature.

Case 3 If C1
13(p1

2 + 4p2
2)−1

= L 6= 0, then Lemma 6.4 is satisfied, and the isometry

algebra is A4.

Subcase 4.1 If t2 − 2t1
2
= L 6= 0, then Lemma 6.4 is satisfied, and the algebra is A1.

Subcase 4.1.1 If p7 + t2 p4 6= 0, then Lemma 6.4 is satisfied, and the algebra is A2.

Subcase 4.1.2 If L = C1
13 + p7 p4 6= 0, then Lemma 6.4 is satisfied, and the algebra

is A3.

Now we consider the signature (2, 2) cases.

Subcase 2.1 If t 6= 0, then Lemma 6.4 is satisfied, and the isometry algebra is B2.

Subcase 2.2 See the first part of Theorem 2.6 in Section 7.

Case 3 If rt − s2 6= 0, then Lemma 6.4 is satisfied, and the isometry algebra is B1.

Subcase 4.1 If 2p6t2 + p1 + p7 = K 6= 0, Lemma 6.4 is satisfied and the isometry

algebra is A1.

Subcase 4.2 If p2 6= 0 and 2p6t2 + p1 6= 0, Lemma 6.4 is satisfied and the isometry

algebra is A2.

Subcase 4.3 If C1
13− p1 p6 + p2

6 6= 0, Lemma 6.4 is satisfied, and the isometry algebra

is A3.
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7 The Einstein Examples

In this section, we prove Theorem 2.6 by constructing all homogeneous Einstein and

Ricci-flat metrics on the simply connected non-reductive homogeneous spaces of

dimension four.

Proof of Theorem 2.6 By Lemma 5.1, the Lie algebra pair (g, h) of G/H is isomor-

phic to B3 if η is Ricci-flat, otherwise it is isomorphic to the Lie algebra pair A2 with

α = 2/3. To prove the theorem, it is sufficient to construct the two simply con-

nected homogeneous spaces that have Lie algebra pair B3 or A2 with α = 2/3, and

find all the invariant metrics. Theorem 2.5 says that the manifolds themselves are

diffeomorphic to R
4.

We remind the reader that the Lie algebra of infinitesimal generators of G acting

on G/H is isomorphic to the Lie algebra of right invariant vector fields, and so we use

a basis of left invariant forms σ which have structure constants negative to the ones

in Theorem 2.3 or 2.4 to construct our examples.

We start by proving the second part of the theorem using the Lie algebra in A2.

The (negative of the) structure equations are easily integrated on R
5 to give the left

invariant forms

σ5
= dx5, σ4

= e−x5

dx4, σ3
= e(1−α)x5

dx3,

σ2
= e−αx5

(dx2 + y3dx4), σ1
= e−(α+1)x5

(dx1 − x4dx2).

Let Xi , i = 1 . . . 5 be the dual frame of left invariant vector fields. The X4 basic

symmetric bilinear forms on G are easily computed to be

η̃ = a1(2σ1σ3 − (σ2)2) + a2(σ3)2 + 2a3σ
3σ5 + a4(σ5)2.

With the coordinates y1
= x1 + x3(x4)2/2, y2

= x2 + x3x4, y3
= x3, and y4

= x5 on

the quotient of G by the orbits of X4 = ex5

(∂x4 − x4x3∂x1 − x3∂x2 ) we have η̃ = π∗η
where

η = a1e−2αy4

(2dy1dy3 − (dy2)2) + a2e2(1−α)y4

(dy3)2 + 2a3e(1−α)y4

dy3dy4 + a4(dy4)2.

These bilinear forms are non-degenerate if a1a4 6= 0. If a2 6= 0, the only Killing

vectors are

Y1 = ∂y1 , Y2 = ∂y2 , Y3 = ∂y3 , Y4 = y2∂y1 + y3∂y2 ,

Y5 = (1 + α)y1∂y1 + αy2∂y2 + (α− 1)y3∂y3 + ∂y4 .

These vector fields form a Lie algebra with the multiplication table in A2. At the

point (0, 0, 0, 0), the isotropy is Y4 and η is the most general metric invariant under

the flow of these Killing fields. When α = 2/3, these metrics are Einstein and they

are not of constant curvature when a2 6= 0. The signature of theses metrics can be

only Lorentz or (2, 2), as expected.
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For the Lie algebra pair in B3, consider the quotient space G/H where G =

SL(2,R) × R
2 ⊕ R and

H =

{((

1 0

t 1

)

,

(

0

s

)

, s

) ∣

∣

∣

∣

t, s ∈ R

}

.

The manifold G/H is diffeomorphic to R
2 − (0, 0) × R

2. In terms of coordinates

(x1, x2, x3, x4) on G/H, the most general metric having signature (2, 2) on G/H

where G acts by isometries is

η̂ = 2σ1σ2 + 2σ3σ4,

where σ1
= dx1, σ2

= dx4 + Lx2

2
(x2dx1 − x1dx2), σ3

= dx2, σ4
= −dx3 + Lx1

2
(x1dx2 −

x2dx1). Let π : R
4 → M be given by x1

= ey1

cos y2, x2
= ey2

sin y2, x3
= y3,

x4
= y4, and η = π∗η̂. This gives the metrics η in part one of Theorem 2.6. The

covering group G̃ = S̃L(2,R) × R
2 ⊕ R acts transitively and by isometries on R

4 for

the metrics η. There are eight Killing vector fields for η:

Y1 = cos(2y2)∂y1 − sin(2y2)∂y2 + y3∂y3 − y4∂y4 ,

Y2 =
1
2

sin(2y2)∂y1 + cos2 y2∂y2 + y3∂y4 ,

Y3 =
1
2

sin(2y2)∂y1 − sin2(y2)∂y2 + y4∂y3 , Y4 = ∂y4 , Y5 = −∂y3 ,

Y6 = ey1

cos(y2)∂y3 + ey1

sin y2∂y4 ,

Y7 = e−y1

cos(y2)∂s1 − ey1

sin(y2)∂s2 + Le2y1

( 1
2

sin(2y2)∂y3 + sin2(y2)∂y4 ),

Y8 = e−y1

sin(y2)∂s1 + ey1

cos y2∂s2 − Le2y1

(cos2(y2)∂y3 + 1
2

sin(2y2)∂y4 ).

The first six of these vector fields are complete and are the infinitesimal generators

for the transitive action of G̃ on R
4. The metric η is the most general metric invariant

under the flow of these six Killing fields. In order to have a complete Killing vector

field of the form aX7 +bX8, it is necessary and sufficient that the differential equations

dy1

dt
= e−y1 (

a cos y2 + b sin y2
)

,
dy2

dt
= e−y1 (

b cos y2 − a sin y2
)

admit solutions defined for all t ∈ R. By letting z = y1 − i y2, this equation becomes

dz

dt
= (a + ib)e−z,

which has solution z = ln((a + ib)t + (c0 + ic1)). For any initial condition of the form

z(0) = r(a + ib) where r ∈ R, the solution does not exist for all t ∈ R. Therefore, the

Lie algebra of the isometry group is sl(2,R) ×R
2 ⊕R, and at the point (0, 0, 0, 0) the

isotropy subalgebra is {Y3,Y5 + Y6}. This proves the first part of the theorem. For

completeness, the non-zero components of the curvature form are

Ω
1
3 = −Ω

3
2 = −3Lσ̂1 ∧ σ̂3,

where σ̂i
= π∗σi . By using this formula for the curvature form, the Ricci tensor

is found to vanish. It is worth noting that the covariant derivative of the Riemann

curvature vanishes.
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8 Concluding Remarks

In this paper we have investigated only the most basic questions surrounding the ge-

ometry of non-reductive homogeneous spaces. We have not addressed such natural

problems as determining the holonomy of these spaces [6], the homogeneous struc-

ture of the geodesics of these spaces [12], or whether they are geodesically complete.

These problems will be considered in future research.

A Some Computations in a Basis

We write out the conditions in Lemma 3.2 in a basis. Let {bα}α=1...q be a basis for the

subalgebra h ⊂ o(p, p̃) and complete this to a basis {b̃r, bα}r=1...n(n−1)/2−q,α=1...q for

o(p, p̃). In this basis, the structure constants are

[bα, bβ] = Kγ
αβbγ , [bα, br] = K̃β

αrbβ + K̂s
αrbs, [br, bs] = L̃αrsbα + Lt

rsbt .

Let {eα}α=1...q, form a basis for h ⊂ g = h ⊕ R
n, where ρ∗(eα) = bα, and complete

this to a basis {ẽi, eα}1≤i≤n,1≤α≤q for g. Let {θi, ωα}i=1...n,α=1...q be the dual basis.

We may then write

ω = ωαbα + ω̃rb̃r

where ωα, ω̃r ∈ g∗. By conditions (2̂)

ωα(eβ) = δαβ , ω̃r(eα) = 0,

and consequently,

(A.1) ω̃r
= Pr

i θ
i

where Pr
i ∈ R. Therefore

(A.2) dθi
= −bi

α jω
α ∧ θ j − bi

r[kPr
j]θ

j ∧ θk.

Substituting ω = ωαbα + Pr
i θ

ibr into (3̂), the coefficients of br give

(A.3) Pr
i bi
α j − K̂r

αsP
s
j = 0.

The coefficients of bβ in (3̂) give

ιeαdωβ + Kα
βγω

γ + K̃β
αrP

r
i θ

i
= 0.

This equation leads to the formula

(A.4) dωα = − 1
2
Kα
βγω

β ∧ ωγ − K̃α
βrP

r
iω

β ∧ θi − 1
2
Cα

jkθ
j ∧ θk

where Cα
jk = Cα

[ jk] are yet to be determined. The form Ω can be computed from (A.4)

and (A.3):

Ω =
(

Pr
i Ps

kb̃i
s j + 1

2
Lr

st P
s
jP

t
k

)

θ j ∧ θk ⊗ br + 1
2

(

L̃αrsP
r
i Ps

j −Cα
i j

)

θi ∧ θ j ⊗ bα.
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By choosing Pr
i and C i

jk, we can satisfy the last two equations in (4̂) (the Bianchi

identities). The Bianchi identities can be imposed by either computing Ω and imple-

menting them as written in (4̂) or imposing d2θi
= 0 and d2ωα = 0 in (A.2) and

(A.4).

We write, in terms of our basis, the condition for the algebra g to be reductive.

Lemma A.1 Let G → G/H with H be a homogeneous space with H connected and

where the Lie algebra g admits forms θ and ω satisfying the conditions in Lemma 3.2.

Then G → G/H is reductive if and only if there exist constants rαi such that

(A.5) r
γ
i Kα

βγ − rαi bi
β j = K̃α

βrP
r
i .

Proof Since H is connected, the form (ωβ + r
β
i θ

i) ⊗ eβ is invariant (or equivariant)

if and only if its Lie derivative with respect to eα ∈ h is zero. Therefore, G/H is

reductive if and only if there exists r
β
i such that

ιeα

(

dωβ + rβi dθi
)

⊗ eβ +
(

ωβ + rβi θ
i
)

⊗ Kγ
αβeγ = 0.

Expanding this equation out using (A.2), (A.3), and (A.4) we get equation (A.5).
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