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Non-reductive Homogeneous
Pseudo-Riemannian Manifolds of
Dimension Four

M. E. Fels and A. G. Renner

Abstract. A method, due to Elie Cartan, is used to give an algebraic classification of the non-reductive
homogeneous pseudo-Riemannian manifolds of dimension four. Only one case with Lorentz signature
can be Einstein without having constant curvature, and two cases with (2, 2) signature are Einstein
of which one is Ricci-flat. If a four-dimensional non-reductive homogeneous pseudo-Riemannian
manifold is simply connected, then it is shown to be diffeomorphic to R*. All metrics for the simply
connected non-reductive Einstein spaces are given explicitly. There are no non-reductive pseudo-
Riemannian homogeneous spaces of dimension two and none of dimension three with connected
isotropy subgroup.

1 Introduction

A homogeneous space G/H, where G is a Lie group and H a closed Lie subgroup, is
reductive [9] if the Lie algebra g of G may be decomposed into a vector-space direct
sum g = h & m where m is an Ad(H)-invariant complement to h. If G/H is a re-
ductive homogeneous space which admits a pseudo-Riemannian metric with G act-
ing by isometries, the curvature tensor takes on a particularly simple form. For this
reason, the geometry of these spaces has been well studied [2, 9], and some classifica-
tion results are known [5]. On the other hand, little is known about the structure of
non-reductive homogeneous pseudo-Riemannian manifolds, and the purpose of this
paper is to classify and investigate the basic geometry and topology of these special
manifolds in low dimensions.

While it is easy to construct non-reductive homogeneous spaces, it is quite a bit
more difficult to construct examples where G is the isometry group of a pseudo-
Riemannian metric on G/H. The difficulty is that if G is the isometry group of a
Riemannian metric on G/H, then G/H is automatically reductive [12] (see Section 4
for an algebraic proof). Therefore, to construct examples of non-reductive pseudo-
Riemannian homogeneous spaces, only metrics with indefinite signature need to be
considered. These facts are mentioned in [2], but no non-reductive examples are
given. In the article [11] the author studies the ring of invariant differential operators
on non-reductive homogeneous spaces but only considers geometric examples which
turn out to be reductive.

Elie Cartan [3] outlined a method in which questions about the geometry of ho-
mogeneous Riemannian manifolds become algebraic questions about Lie algebras.
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Cartan used his technique to classify the three-dimensional simply connected Rie-
mannian homogeneous spaces which admit a group of isometries of dimension at
least 4. Ishihara [7] used Cartan’s method to classify the four-dimensional Rieman-
nian manifolds with transitive isometry groups while Jensen [8] used this technique
to determine the simply connected homogeneous Einstein spaces of dimension 4. An
alternative approach to the classification of low dimensional homogeneous Rieman-
nian manifolds was given in [1], but this approach utilizes the compactness of the
isotropy subgroup and so cannot be used here.

Cartan’s method works perfectly well for pseudo-Riemannian homogeneous
spaces. We use this method in Section 5 to first show that there are no two- or
three-dimensional non-reductive homogeneous pseudo-Riemannian manifolds. We
then classify the four-dimensional non-reductive homogeneous pseudo-Riemannian
manifolds and show in Section 6 that if these four-dimensional homogeneous spaces
are simply connected, then they are diffeomorphic to R*. As a consequence of the
calculations in Section 5, we identify the cases which are Einstein and compare them
with those in [10]. Finally, in Section 7 we construct the corresponding homoge-
neous Einstein metrics on R* (the simply connected spaces) for the three cases in
which they exist.

2 The Classification and Einstein metrics

In this section, we provide a summary of the classifications proved in Section 5 and
then list the possible Einstein metrics which are found in Section 7 when G/H is
assumed to be simply connected.

If 1) is a pseudo-Riemannian metric on the manifold G/H and G acts effectively
and by isometries, we say the pair (G/H,n) is a homogeneous pseudo-Riemannian
manifold. We also use the convention that the bilinear form 7 on an n-dimensional
Lorentz manifold has signature (n — 1, 1).

Theorem 2.1  Let (G/H,n) be a homogeneous Lorentz manifold. If G/H is two-
dimensional, then G/H is reductive. If G/H is three-dimensional and H is connected,
then G/H is reductive.

Let h be a Lie subalgebra of the Lie algebra g and denote this pair by (g, h).

Definition 2.2 The Lie algebra pairs (g, h) and (g’, h’) are isomorphic if there ex-
ists an isomorphism ®: g — g’ such that ®(h) = h’.

For every homogeneous space G/H, let g be the Lie algebra of G and h the Lie
algebra of H; let (g, h) be the associated Lie algebra pair. In the next theorem, we list
all possible non-isomorphic Lie algebra pairs for the non-reductive four-dimensional
homogeneous spaces that are classified in Section 5. We use the table of Lie algebras
in [16] and refer to these algebras by A, ,, [16, p. 990].

Theorem 2.3  Let (G/H,n) be a four-dimensional homogeneous Lorentz manifold

where H is connected. If G/H is not reductive, then the Lie algebra pair (g,h) is iso-
morphic to one in the following list.
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A1 The Lie algebra g is the decomposable five-dimensional algebra s1(2, R)®s(2), where
s(2) is the two-dimensional solvable algebra. There exists a basis for g where the
non-zero products are

[er,e2] = 2e;, [er,e3] = —2e3, [er,e3] =e;, [es,e5] =ey.

The isotropy ish = span{e; + e4}.
A2 The Lie algebra g is the one-parameter family of five-dimensional solvable Lie alge-
bras As 3. There exists a basis for g where the non-zero products are
[e1,e5] = (a+ 1er, [er,es] = ey, [e2, €5] = cvey,

[es,es] = e, [es,es] = (v — 1)es, [es, e5] = ey,

where all values of o € R are admissible. The isotropy ish = span{es}.

A3 The Lie algebra g is one of the five-dimensional solvable algebras As 37 or As 36. There
exists a basis for g where the non-zero products are
[e1,es] =261, [ex,e3] =1, [exe4] = e,

[e27e5] = —€es, [63,64] = €3, [63785] = €,

where € = 1 for As 37 and € = —1 for As 36. The isotropy ish = span{es}.

A4 The Lie algebra g is the six-dimensional algebra sl(2,R) x n(3) where n(3) is the
three-dimensional Heisenberg algebra. There exists a basis for g where the non-zero
products are

[er,e:] =26, [er,e3] = —2e3, [er,e3] =e;, [e,e] = ey,
[er,es] = —es, [ex,€5] = ey, [e5,e4] = €5, [eq,€5] = es.
The isotropy is h = span{e; + es es}. The algebra is sometimes called the Schroe-

dinger algebra.

A5 The Lie algebra g is the seven-dimensional algebra sl(2,R) x A}hg. There exists a
basis for g where the non-zero products are

[er,e:] =265, [er,e3] = —2e3, [e,es] = —es, [er,e5] = e,
[e;,e3] =e1, [er,e5] = e, [es, es] = es5, [es, 7] = 2ey,
[es, e6] = ey, [es,e7] = es [es, e7] = es.

The isotropy ish = span{e; + e7,e; — ey, €5 }.

Petrov [18] gave a fairly comprehensive list of the possible infinitesimal generators
for the isometry algebras of a four-dimensional Lorentz manifold. The Lie algebras
in Al and A4 should appear on the list, but they do not.

We now list the possibilities when the signature is (2, 2).
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Theorem 2.4 Let (G/H,n) be a four-dimensional homogeneous pseudo-Riemannian
manifold of signature (2,2) where H is connected. If G/H is not reductive, then the Lie
algebra pair (g, h) is isomorphic to one in the following list.

A1-A3 The corresponding Lie algebra pairs in Theorem 2.3.

B1 The Lie algebra g is the five-dimensional algebra s1(2, R) x R2. There exists a basis
for g where the non-zero products are

[er,e2] =2ey, [e,e3] = —2e;, [ey,e3] =er, [e,e] = ey,

[er,es] = —es, [er,e5] = ey, [es, e4] = es5.

The isotropy ish = span{e; }.

B2 The Lie algebra g is the six-dimensional Schroedinger algebra sl(2, R) x n(3) in A4
of Theorem 2.3 and the isotropy h = span{e; — e, es}.

B3 The Lie algebra g is the seven-dimensional algebra sl(2, R) x R? @ R. There exists
a basis for g where the non-zero products are

[er,ex] =2ey, [er,e3] = —2e3, [ey,e3] =er, [e,e] = ey,

[er,es] = —es, [er,e5] = ey, [es, es] = es5.

The isotropy ish = span{es, e5 + e }.

The following theorem, proved in Section 6, gives a complete classification when
the space is simply connected.

Theorem 2.5 Let G/H be a simply connected non-reductive pseudo-Riemannian ho-

mogeneous space of dimension four, then

(i)  G/H is diffeomorphic to R*, and

(i) if G is the full isometry group then the Lie algebra pair for G/H is equivalent to
one in Theorem 2.3 excluding A5, or to one in Theorem 2.4.

Conversely, for any Lie algebra pair from Theorem 2.3 except A5, or any in Theorem
2.4, there exists a pseudo-Riemannian metric on R* (subject to the conditions on the
signature), where the isometry group acts transitively on R, the Lie algebra of the isom-
etry group is the given Lie algebra g, and the Lie algebra of the isotropy at a point is
(conjugate to) h.

We show in Lemma 5.1 that only A2 in Theorem 2.3 or 2.4 with « = 2/3 and B3
lead to Einstein spaces which are not of constant curvature. Furthermore, B3 is Ricci-
flat. By using this result we prove in Section 7 the following theorem which gives
a complete list of all the homogeneous Einstein metrics which are not of constant
curvature for the simply connected non-reductive pseudo-Riemannian manifolds of
dimension 4.

Theorem 2.6  Let (G/H,n) be a simply connected non-reductive homogeneous space
of dimension 4 which is Einstein and not of constant curvature. If 1 is Ricci-flat, then
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the Lie algebra pair is isomorphic to B3 and there exist global coordinates (y');=1. 4 on
G/H = R* such that the metric is

n= 2¢" cos vy (dy'dy* — dy*dy’) — 2¢” sin yH(dy'dy® + dy*dy*) + Le" (dy*)?

for some L € R*. Otherwise the Lie algebra pair is isomorphic to A2 with o = 2/3 and
there exist global coordinates (y')i—1. 4 on G/H = R* such that the metric is

n=ae V' Qdy'dy® — (dy*)?) + are’” (dy*)? + 2ase3” dydy* + ay(dy*)?
or some choice of a; € R,1 = 1...4 whereajay # 0, and a, # 0.
hoi R, h d

It is worth noting that determining the Lie algebra of the isometry group for the
Ricci-flat metrics in this theorem is non-trivial.

3 Cartan’s Approach to the Geometry of Homogeneous Spaces

Let 7° be a non-degenerate symmetric bilinear form on R” with signature (p, p),
and O(p, p) C GL(n,R) be the Lie group preserving n°. Let (M,n) be a pseudo-
Riemannian manifold of signature (p, p), and 7: O(M) — M be the orthonormal
frame bundle corresponding to 7,° defined by

OM) = {up: R" — T,M | n(u,(X),u,(Y)) = n’(X,Y)}.

Denote the right action of a € O(p, p) on u € O(M) by ua, and for X € o(p, p), let
X be the corresponding infinitesimal generator on O(M) defined by

. d
Xu = % (Ll CXP(er)) |t:0~

The canonical R”-valued one-form € and the o(p, p)-valued connection one-form w
on O(M) have the following properties [9, pp. 118-121]

(3.1) 120 =u"'m (2), 1xw=X, di=—wAb,

where X € o(p, p), Z € T,(O(M)) and ¢ is left interior multiplication. The o(p, p)-
valued curvature two-form 2 = dw + w A w satisfies

(3.2) 1x2=0, QANO=0, dQA=QANw—-wAQ.
The forms 6, w, and €2 satisfy the equivariance conditions
a0 =a'(0), a*‘w=Adl@ w, a*Q=Ad@ " whereac O(p,p).

If H is connected, then (3.1) and (3.2) imply the equivariance of 6, w and {2.
Let g: M — M be an isometry of the pseudo-Riemannian manifold (M, n), and
¢, be the lift of the diffeomorphism g of M to the frame bundle,

bg(u) = geu, u € F(M).
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Since g is an isometry, the subset O(M) C F(M) is invariant under ¢¢. The forms
0, w, and (2 satisfy the invariance properties

(3.3) G0=0, Pw=w, Q=0

Suppose that (G/H,n) is a homogeneous pseudo-Riemannian manifold and let
o = [H] € G/H, and u, € O(G/H) be an orthonormal frame at o. The linear
isotropy representation p: H — O(p, p) is defined by

(3.4) ugp(h) = (Ly) s

where Lj, is left multiplication in G by h € H. The differential of p defines a homo-
morphism p,: h — o(p, p). Since G acts effectively and by isometries, the linear
isotropy representation of H is faithful. Following Cartan [3] (or see Jensen [8]), we
define the function ¥: G — O(G/H) by

(3.5) U(g) = guliy

which makes the diagram

G —Y— O(G/H)

(3.6) ql l

commutative. The map W is equivariant with respect to the left action of G on G and
the action of G on O(M). It is also equivariant with respect to the linear isotropy
representation. Therefore, W satisfies

(3.7) U(gh) = ¥(g)p(h), and V(gig) = ¢g o ¥(g).

By defining the forms
=00, w=U'w Q=¢*Q

which are G-invariant on account of the equivariance of ¥ and equation (3.3), we
obtain the following structure on the Lie algebra g of G.

Lemma 3.1 Let (G/H,n) be an n-dimensional homogeneous pseudo-Riemannian
manifold with Lie algebra pair (g, h). There exists an injective homomorphism p,: h —
o(p, p), an R"-valued one-form 0: g — R", and an o(p, p)-valued one-form &: g —
o(p, p) satisfying

(1) kerf = h,

(2) &(X) = pu(X),

(3) dd =—-d AND,
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where X € h. Furthermore, the o(p, p)-valued two-form Q) = dw + & A & satisfies
4) xQ=0, QAO=0, and dA=QAD—-0AQ

Lemma 3.1 has the following partial converse.

Lemma 3.2  Let h be a Lie algebra, p.: h — o(p, p) a monomorphism, and g be
the vector space R" @ h. Suppose there exists forms 0: g — R" and w: g — o(p, p)
satisfying

(1) kerf = h,

(2) wX) = p.(X),

3) ix(dw+wAw) =0,

forall X € h, wheredf = —w A 6. If Q = dw + w A w satisfies

A) QANOanddQ=QAw—-—wAQ,

then g is a Lie algebra where o([X,Y]) = —da(X,Y),a € g*, X, Y € g.

The principle step in Cartan’s approach to the classification of homogeneous pseu-
do-Riemannian manifolds is to start with a subalgebra h C o(p, p) and then classify
all Lie algebras that satisfy Lemma 3.2. To simplify this classification, one expects
that we only need the conjugacy class of the subalgebra h C o(p, p) under inner
automorphism, but slightly more is true.

Lemma 3.3 Leth and h be two Lie algebras, and let p,: h — o(p, p) and p,: h —
o(p, p) be monomorphisms. Suppose there exists an inner automorphism: gl(n, R) —
gl(n, R) which restricts to an isomorphism ¢: h — h such that

P (X)) = h(p«(X)) X €h

Then the pairs (g, h) which satisfy Lemma 3.2 are in one-to-one correspondence with
the pairs (g, h) which satisfy Lemma 3.2.

Proof Suppose the inner automorphism % is a conjugation by the matrix A €
GL(n,R). It is then easy to check that the vector-space isomorphism T: R" & h —
R @ h defined by

provides a correspondence. [ ]

Note that every inner automorphism of o(p, p) satisfies this lemma.

4 Non-Reductive Homogeneous Spaces

The preceding section described Cartan’s procedure for constructing all possible iso-
morphism classes of Lie algebra pairs (g, h) for homogeneous pseudo-Riemannian
manifolds by starting from the inequivalent subalgebras of o(p, p) under the auto-
morphisms described in Lemma 3.3. In principle, one could find a general classifica-
tion of the four-dimensional homogeneous pseudo-Riemannian manifolds starting
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with the entire list of subalgebras for the Lie algebras o(3, 1) and o(2, 2). This classifi-
cation would be rather daunting because the known lists of inequivalent subalgebras
under inner automorphisms are quite large [15, 17]. In this section, we simplify
the classification problem by proving a lemma which reduces the possible subalge-
brash C o(p, p) associated with a non-reductive homogeneous pseudo-Riemannian
manifold (G/H, n).

We start with the following characterization of reductive homogeneous spaces, see
[9, p. 103, Theorem 11.1].

Lemma 4.1 A homogeneous space G — G/H is reductive if and only if the principal
H-bundle G — G/H admits a G-invariant connection.

The following lemma greatly simplifies the classification problem.

Lemma 4.2 If G/H is a pseudo-Riemannian homogeneous space and O(p, p)/p(H)
is a reductive homogeneous space, then G/H is reductive.

Proof Let h be the Lie algebra of p(H), and o(p, p) = h @ m be a reductive decom-
position of o(p, p). Decompose the connection form on O(G/H) as w = wj, + Wm
where wy, takes values in h and wy, takes values in m. By using the map p defined
in (3.4) and ¥ defined in (3.5), we prove that the h-valued form p; ! o (U*wy;,) de-
fines a G-invariant connection on G/H.

The G-invariance of p; ! o (U*wy,) follows from the equivariance of ¥ in (3.7)
together with (3.3). In order that this form define a connection we need to check that
the two conditions of [9, p. 64] are satisfied. To check the first condition, we use (3.1)
and compute

Pyt o (Wrwi(Xe)) = py ! o wi(p«(Xe)) = Xe.

This verifies condition one. We now check the second condition. It follows from the
hypothesis in the lemma and the equivariance of the connection form w that

Riw; =Ad,~1w, and Riwm = Ad,-1 Wy

Now from the H-equivariance of ¥ in (3.7), the equation above, and the identity
py ' o Ad, ) = Adjop; !, it follows that
R; (p" 0 (Way)) = pto (U p(h)*wy) = ' o (Ad -1 oWy
= Ad;- Op*_1 o (\I/*wﬁ) .

This verifies the second condition. Therefore, the h-valued form p;! o U*wy, is a
G-invariant connection on G/H and by Lemma 4.1, G/H is reductive. ]

The proof of Lemma 4.2 is similar to the proof of Proposition 6.4 in [9, p. 83]. This
proposition implies that if O(p, p)/H is reductive, then the metric connection is re-
ducible to H.

This lemma has a few simple but interesting corollaries.
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Corollary 4.3  If p.(h) C o(p, p) is a non-degenerate subspace with respect to the
Killing form of o(p, p), then G/H is reductive.

Lemma 4.2 also provides an algebraic proof of the following corollaries.

Corollary 4.4  If G/H admits a G invariant Riemannian metric, then G/H is a re-
ductive homogeneous space.

Corollary 4.5 If (G/H,n) is a two-dimensional homogeneous Lorentz manifold, then
G/H is reductive.

5 The Computations

By starting with the inequivalent subalgebras of 0(2, 1), 0(3, 1), and 0(2, 2) we prove
Theorems 2.1, 2.3 and 2.4 by building all non-reductive Lie algebra pairs (g, h) which
satisfy Lemma 3.2. All inequivalent subalgebras of o(2, 1), 0(3, 1), 0(2, 2) under in-
ner automorphisms are known. Although this list is rather long, Lemma 4.2 says
that we need only those subalgebras that are not reductive in their respective alge-
bras. With this reduced list of subalgebras, the equivalence problem in Lemma 3.3 is
much easier. By using this final list of inequivalent subalgebras, we determine those
which extend to a Lie algebra that satisfies Lemma 3.2 and not Lemma 4.1 (see also
Lemma A.1). The resulting Lie algebra pairs are then put into a canonical form which
proves Theorems 2.1, 2.3 and 2.4.
Let (e?) denote the standard basis for gl(n, R) where

(€)f =605 1<ijkl<n

Hereafter we omit writing the isomorphism p,. between h with basis {e, }a—1..4 and
p«(h) C o(p, p) with basis {b, }o—1..4. Given two differential one forms ol o? €
Q' (M), we use the convention

1
olo? = E(Jl ®c*+0’ Q0
for the symmetric tensor product. Other notation that is used is given in Appendix A.

Proof of Theorem 2.1: 0(2,1) Let {0'},—,_ 5 denote the standard basis for (R®)*,
and

n° = (¢1)? + 20%0°.
For o(2, 1) we use the basis

Bi=e,—e€, By=e —¢, By=e —es.

Of the inequivalent subalgebras of o(2, 1) under inner automorphism, only two
are not reductive. In each case, by using equations (A.1) and (A.3), equation (A.5)
always has a solution, so for these two subalgebras, the constructed homogeneous
space will be reductive. Here are the details.
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Case 1 The isotropy subalgebra is h = span{b, = Bs}. By using the basis {b, =
Bj ,by = B,,b; } for o(2, 1), equations (A.1) and (A.3) give

LDI = p191 +p293, LDZ = —p193.

Equation (A.5) has the general solution

1 1
ry = —p2, 1, =P1,
and (w! — p,0' + p16?) ® e, defines a G-invariant connection.

Case2 The isotropy subalgebra is h = span{b, = By, b, = B;}. By using the basis
{b; = B,,by,b,} for 0(2, 1), equations (A.1) and (A.3) give

LDl g p193.
Equation (A.5) has the general solution

1 _ 1 2
- 1

1 _ _ 22 2
n=p, np=r=r=r3=01rn=-p,

and (W' + p10') @ e; + (w? — p16?) ® e, defines a G-invariant connection.

This proves Theorem 2.1. ]

Proof of Theorem 2.2: 0(3,1) Let {o'},—;_4 denote the standard basis for (R*)*,
and
2)2

n° = (1) + (6%)* + 20°c*.

The basis we use for o(3, 1) is

2l _ 43 _ 4l
By =e —e, By=¢ —¢, B;s=¢ —ej,

_ A2 _J_ 3 _ 32
By=¢,—e5, Bs=¢e,—¢/, Be=¢e —¢.

The inequivalent subalgebras of 0(3, 1), under inner automorphisms are listed in [15,
p. 1605]. Of these subalgebras, labeled F; to F;s, seven are not reductive in o(3, 1).

Case 1 We consider the non-reductive subalgebras of o(3, 1) which admit a solu-
tion to equation (A.5). Therefore they always lead to a reductive homogeneous space.

Subcase 1.1 The subalgebra F, in [151 ish = span{b, = B;,b, = B;,b; = B;,
b, = B,}. By using the basis {b, = Bs,b, = Bs, by, by, b3, b, } for 0(3, 1), equations
(A.1) and (A.3) give

ol=0, @&*=o0.

Equation (A.5) has the general solution {r® = 0}, =14, and w* ® e, defines a
G-invariant connection.
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Subcase 1.2 The subalgebra Fs in [15] is h = span{b; = cos@l?l + sinéB,,b, =
Bs,bs = By} where § € (0,7),0 # /2. By using the basis {b; = —sin¢B; +
cos0B,, by = Bs,b; = Bs, by, by, b3} for o(3, 1), equations (A.1) and (A.3) give

Equation (A.5) has the general solution {r® = 0},—;.2=1..4 and w® ® e, defines a
G-invariant connection.

Subcase 1.3 The subalgebra Fy in [15] ish = span{b; = B;,b, = B;,b; = B;}. By
using the basis {f)l = B,,b, = Bs,b; = Bg, by, b, bs} for o(3, 1), equations (A.1)
and (A.3) give

o' =p?, P*=0, @=0.

Equation (A.5) has the general solution

1_ .3 2 _

_ 3 11
=1 =t 15 =r, =

1 _ 3 _
y N =N =1y =T =

3 3 __
3 7‘4—0, r - =

=n p1

W
=

_ 2 2
=TI, = 1

wheret € R,and (w! +10°) ® e; + (w? — p10' — t0*) @ ey + (WP + 10! — p16?) R e3
defines a G-invariant connection for any choice of t € R.

Subcase 1.4 The subalgebra Fs in [15] is h = span{b; = B,,b, = B;}. By using
the basis {b, = By,b, = B4,bs = Bs,b; = Bs, b, by} for 0(3, 1), equations (A.1)
and (A.3) give

o'=—p0', & =p0t, & =p0, & =pb.

Equation (A.5) has the general solution

1_ > 12 12 1 2
n=p, nN=En=n=r=r13=r,=0 T1,=—p),

and (w! + p,0") ® e; + (W? — p20*) ® e, defines a G-invariant connection.

We now consider the cases where condition (A.5) is not automatically satisfied.

Case2 The subalgebra F; in [15] is h = span{b; = B,,b, = B;,b; = B,}. By
using the basis {b; = B;,b, = Bs,b; = Bs, by, b,, b3} for 0(3, 1), equations (A.1)
and (A.3) give

2 -~

LDI = p191 +p202, W = —p293, w3 = —p193.

From condition (A.5), G/H is reductive if and only if p; = p, = 0, so we assume
this is not satisfied. Let K = p,% + p,? (which is non-zero). The Bianchi identities
give

C,,=-K, CiL=-K, Ci =-K,
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and C;”k = 0 otherwise. The curvature form is 2;; = —K6; A 0;, and the homoge-
neous space will be of constant curvature. The change of basis

al = (p10* — p.0' —wh/2, P =KO, o =60"+K (pw — pw?),
o =0 + KN (pyw? — pr®), o = V2K (p1w? + paw?),
a® =V2p0' + pa67), o = (pa6' — pr6® —w')/2
for g* leads to the multiplication table A5 in Theorem 2.3 with isotropy in the dual

basis h = span{e; + e;,e; — e;,es}.

Case3 The subalgebra Fyg in [15] ish = span{b; = B;,b, = B,}. By using the
basis {b; = B;,b, = B,,b; = Bs,b; = Bg, by, by} for o(3, 1), equations (A.1) and
(A.3) give

4

@' = p10"+pa0P+ps0’, @ = pa0' —p1P+paf’, &= —p.0°, @ = —p.f’.
From condition (A.5), G/H is reductive if and only if p; = p, = 0. Let K =
—(p12 + pzz) (which is non-zero) and C}3 = L(p12 + 4p22). The Bianchi identities
give
Ciy = =3paps, Ciy=—-K, C3=2psps—pips, Cy=Ciy=0,
Cy3 = —=3Lpap1, ps =0, Ci,=3pips, C3=—K,
C§4 = —=2psp1 — pa2ps, C§3 = (4P12 +P22)L, C%3 = —3Lpap1, ps=0.

The curvature components are
(5.1)
Q1 =KO' A0, Q3 =KO'AN0* + L(pi> +4p,2)0" ANO> —3Lp,p,60° A 62,

Dy =KO' AN, Q= KO NG,
Qo3 = KO* A O* + L(4p1* + p22)0* A0 — 3Lpop 6" A 6, Q34 = KO* N 6°.
The change of basis
a' = p10* — p0', oF =6, o’ =—-K(O* L) — pw' + piw?,
ot = V2Apib' + pa6?), @ =V2piw' + pow?),
a® = K(0* + LO®) — prw' + pro?

for g* leads to the multiplication table A4 in Theorem 2.3 with isotropy in the dual
basis h = span{e; + eg, €5 }.

Case4 The subalgebra Fy, in [15] ish = span{b; = B;}. By using the basis {b, =
Bi,b, = B,,bs; = By,by = Bs,bs = B¢, b; } for 0(3, 1), equations (A.1) and (A.3)
give

2(:)1 = p191 + p293, (Dz = p391 + p492 + 175937

~ ~5

@ = pa0' + pel® + ps0° — 16, &F = —ps0®, &° = —pi6°.
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From condition (A.5), G/H is reductive if and only if p; = 0, so we assume p4 # 0.
The first Bianchi identity gives

Ciy=—ps°, Ci,=—paps — psp1, Cp =0,
Cys = =3p7p3 + pa(ps — ps);  Ciu = 2p2(p1 + pa) + 2psps
and

Pe = ti(p1 — pa), ps=ti(ps+p1),
—pep3 + P2ps —2p1p2 =0, p1p3 =0

(5.2)

where t; € R. These last two equations will split into a number of cases. If p3 # 0,
the Killing form will have rank 4, otherwise the Killing form has rank at most 3, so
we split this case into subcases based on ps.

Subcase 4.1 Starting with p; # 0and p; = 0, we solve (5.2) and the second Bianchi
identity to get

pr=—t1ps, Cls=tps’, p;r=—ps2ti° +1)/4

where t, € R. The curvature components are
(5.3)
O, =Ko A0,

Qi = KOU A (6% — 067) + ps20' A (67 — 0%) + 2 Lpspat® A 6,
Q= —p320' NG, Q3 = KO A (0* —1,6%) + %p4L(p46‘2 + %p391) N
Doy =0, 3y = KO A+ pi20° NO*
where K = t,p3*> and L = t, — 2t;°. The change of basis
ol = —psb' — 1p,0t, o = pst?,
@ = t1ps0" + p30* + t1(pa — 2p37)(2p3) " '0?
+(t12(pa® — 2p3®) — taps®)(4p3) 107 — !

Oé4 = —%t2p393 — p394 — O.)l, OéS = —p492 — t1p493,

for g* leads to the multiplication table Al in Theorem 2.3 with isotropy in the dual
basis h = span{e; + e, }.

Subcase 4.2 Starting with p; = 0, the Bianchi identities give

p2=0, (p1—pa)(Cis —ti’p1ps) =0.

The solution to this last equation splits into two further subcases.
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Subcase 4.2.1 1f C{; = t,°p;p4 (the Killing form has rank 1), the curvature com-
ponents are

(54) Q]z = —p1201 A 92, 913 = p1L91 A 93 — p1291 AN 94,
Qu=-p1°, Qu=-p A&,
Qz3 = ZL(pl — p4)92 A\ 93 — p126‘2 A\ 94, Q34 = p1293 A\ 94

where L = (p; + t;2p4). The change of basis

al = 94 - P7(2p4)71937 aZ = _915 O[3 = _035

ot =0 —1pi0, o = —py0* +1,0°)

for g* leads to the multiplication table A2 in Theorem 2.3 where & = p;/p, and the
isotropy in the dual basis is h = span{e,}.

Subcase 4.2.2 We assume C}; — t;%p1py # 0,50 p; = p4 and the Killing form has
rank 2. Let L = C}; + p4p7. The curvature components are

(55) Q]z = —p4291 A 02, Q]3 = LQI A 93 — p429104, Q]4 = —p4201 A 93,
923 = —p4202 A 94, 924 = p4203 A 94, Q34 =0.

Write Cl; — t;2p3 = em? (which is non-zero) where ¢ = +1. The change of basis

al = mh* —mp;(2py) 107, F =mh', o =tp,0' — W',
O[4 = —p402 — t1p403, OLS = m93
for g* leads to the multiplication table A3 in Theorem 2.3 with isotropy in the dual
basis h = span{e; }.

This concludes the proof of Theorem 2.3. ]

Proof of Theorem 2.4: 0(2,2) Let {0'},_, 4 denote the standard basis for (R*)*,
and
7’ =20'0? + +20°0*.

For 0(2,2) use the basis

_ 2 3,4 _J_ 2.3 4 _ 2.3 4
24) = e, +e5+e te, 20 =e;—e;te] —e, 2A3=e, —e]te; —e;

23 4 Ll 2, 3 4 _ 0 _ 2 3,4
2B = —e,teste; —e], 2Bp=e;+e te te,, 2Bz=e, —e —e te;.

The inequivalent subalgebras of o(3, 1), under inner automorphisms are listed
in [17, pp. 2281-2283]. Of these subalgebras, labeled e, ,, 22 are not reductive in
0(2,2).
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Case 1 We consider the non-reductive subalgebras of 0(2,2) which admit a solu-
tion to equation (A.5). Therefore, they always lead to a reductive homogeneous space.

Subcase 1.1 The subalgebra es; in [17] ish = span{b; = A;,b, = A; — A3,b; =
Bl, b4 = BQ, b5 = B3} By using the basis {Bl = A1 +A3, b1 s bz, b3, b4, b5} for 0(2,2),
equations (A.1) and (A.3) give @' = 0. Equation (A.5) has the general solution
{rf =0}a=1.54=1.4 and w* ® e, defines a G-invariant connection.

Subcase 1.2 The following 4-dimensional algebras in [17] always admit a solution
to (A.5). Therefore, they always lead to the construction of a reductive homogeneous
space.

h Basis {by, b,,bs, by} Complement {b;,b,}
ey | Ay —A3,A2,B;,By — B3 | A; + A3, B + B3
€43 Ay — A3, By, B;,Bs A+ A3, Ay

Equations (A.1) and (A.3) give @! = @?* = 0. Equation (A.5) has the general solution
{rf = 0}a=1.4=1.4 and w* @ e, defines a G-invariant connection.

Subcase 1.3 The following 3-dimensional algebras in [17] always admit a solution
to (A.5). Therefore, they lead to the construction of a reductive homogeneous space.

h Basis {by, by, b3} Complement {b;, b, b3}
es) By, Ay, Ay — As Ay +A3,By,B;

€34 B3, Ay, A; — A; Ay +A;,B,, B,
es3;ess;e365637 | Ay +aBy,Ay —A3,By —B; | Ay +A3,B; + B3, B

Equations (A.1) and (A.3) give @' = &? = @* = 0. Equation (A.5) has the general
solution {r{' = 0}4—1..3k=1.4, and w* ® e, defines a G-invariant connection.

Subcase 1.4 The following 2-dimensional algebras in [17] always admit a solution
to (A.5). Therefore, they lead to the construction of a reductive homogeneous space.

h Basis {b;, by} Complement {by, b,, bs,b,}
€3 By, A; — As Ay +As, Ay, By, B;

€4 Ay — Az, Bs A; + A3, Ay, B, B,

€7 Ay, Al — As A1+ A3, By, B,,Bs

€105 €2,11 Ay +cBy,—A; +Asz;¢c >0 Ay +As,B;,B;,,B;

€12 Ay — B3, —A1 +A35¢ £ 0 Ay +As,B;,B;,,B;

e 13 B, +€(A; — Ay),B; — Bs;e = +1 | A; +A3,A,,B; + B3, B,

Equations (A.1) and (A.3) give @' = &* = &> = &* = 0. Equation (A.5) has the
general solution {r{ = 0},—1.24=1..4» and w* ®e, defines a G-invariant connection.
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Subcase 1.4.1 The subalgebrase; g and e; 9 in [17] are h = span{b; = A,+B,,b, =
—A; + A; + ¢(B; — B;)} when e = 1 and ¢ = —1, respectively. By using the basis
{f)l = A1 +A3,f)2 = Bl +B37f)3 = A2 —B37f)3 = —A1 +A3 - G(Bl —B3)7b17b2} for
0(2,2), equations (A.1) and (A.3) give

wl = 6(21)2 — pl)ﬁl, LDZ = p1917 (I)3 = p2(94 — 603), @4 = p202.

Equation (A.5) has the general solution

1

1.2 2 2
rn=rn=n

=r3=r1,=0, @:6(172—1?1)7 r4:r§:p1—p2,

and (w! + (p1 — p2)(0* — €6°)) @ e; + (W? + (p1 — p2)0?) ® e, defines a G-invariant
connection.

We now consider the cases where condition (A.5) is not automatically satisfied.

Case2 The subalgebra e in [17] is h = span{A; — A3, By — B;}. By using the
basis {b; = A; + A3,b, = Ay,b; = By + Bs,by; = B,,b;,b,} for 0(2,2), equations
(A.1) and (A.3) give

~1 3

@' =pi0', &F=pft —2p10, & =pi0', @ = puf' — 2ps0*.

From condition (A.5), G/H is reductive if and only if p; = 0 and p; = 0. The first
Bianchi identity yields

Ci, = 3(p2+3pa)ps, Ciy=3(ps—p2)ps, C3y=—2p1ps, C33 =0,

Ci;=Ciy Ch=3(pa+3p)p1, Cl=3(psa— p2)p1,
Cy = —2p1ps, Cyy=0.
The second Bianchi identity has the general solution
p2=0, pi=0, Ch=tp’ Cy=tps’, Ciy=3tpips

wheret € R. Let L = 2p, p3. The curvature components are

(5.6)
Q= L0 AP, Qos = —LO' AO*, Qs = tp20" A 6P + 2016" A 6% — L2 A 6°,

Qo =L NG, Qo= —LO' NG, Qg = 2L A 6° +1ps20" A O* — LO> N 6°.

The Jacobi identities are now satisfied, but depending on the parameters we get non-
isomorphic Lie algebras. We now determine the non-isomorphic algebras.
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Subcase 2.1 1If p; # 0 and p; # 0 the change of basis
ol = —pi6® —ps0*, o =-0", o =L(Et0" — 6?) — pw' — psu?,
ot = \/E(P193 —psth), o = \/E(PMS — paw?)
af = —L(3t0" +6°) + p1w' + psw?,
for g* leads to the multiplication table B2 in Theorem 2.4 with isotropy
h = span{es, e; — e }.
Subcase 2.2 If p; = 0 or ps = 0 the change of basis
o' = —p10® — ps0t, P =0, & =pw+psw’
ot = p30° — pi16*, o® = (ps? — pi2) (310" — 6) — psw' + pruw?,
a® = 3t(ps + p1)°0* — (p3°w' + pr’w?)/(ps + p1)%,

for g* leads to the multiplication table B3 in Theorem 2.4 with isotropy in the dual
basis h = span{es, es + e} when p; = 0 and h = span{es, es — es} when p; = 0.
Reversing the sign of e is an automorphism, thus these are equivalent Lie algebra
pairs.

Case3 The subalgebra e 1o in [17] is h = span{—A; + A;}. By using the basis
{b; = A; + A3,b, = A;,b; = By,by = B;,bs = Bs,b; = —A; + A3} for 0(2,2),
equations (A.1) and (A.3) give
o' = pi0' + pa0t, & = 2(ps — p7)0" +2p20% — 2p16° + (ps — po)b*,
@ = (ps +po)0' + (ps — p3)8*, &' = (ps + p7)0' + psb*,
@& = (po — ps)8' + p1od*.

From condition (A.5), G/H is reductive if and only if p; = 0 and p, = 0. The first
Bianchi identity yields

p3 =sp1, pa=tp1, ps=—rpi, Pe=1p2, p7=71Pp2,
ps =1tp1+spa, P9 =5Sp2, Ppiro =1tpa+spi,
Ch,=5pp2), Ciy=-5p%), Cp=-K, Cy=5pp), Cy=-5p°]
J=30t =), K=35(pi’t =2pipas+ps°r), L= 3(pr’t+4pipas+ po°r).

The second Bianchi identity has the general solution

Ci, = 4JK.
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The curvature components are

(5.7) Q1 = pi(spy +7p2)0' A G — (K+L)0" A O* —5p,p, JO' A 6

+ pa(tpy +5pa)6* A O* — LO° A6,

Qs = pi(spr +1p2)0" NO — (K+L)O° AO* —5pip,JO" A GO*
+ pa(tpy +5pa)0* A O — LO' A 62,

Qi3 = pi(spy +rp2)0' AG* —2rp 20" A6 +5p,2]0 A 6
— 25p1 920 A O* + pi(spr +1p2)0° A 6°,

Dog = pa(tpy +5pa)0" A O* — 2tp,20% N O +5p,° JO' N O* —
25p120" A6 + paltpy +5p2)6° A6,

Qg = J(5p1p20* — 5p1%60° + 4K0*) A 0 + KO* N O°
+5](p2260% — p1p20°) A6,

Q3 = KO' A 6.

The change of basis

o = 22spy — rpy)0' + pr07 — p16® + Ltp 16, @2 = —pi0' — p,06*,

-3

o’ = §5r(3tpy — 25p2)0" + §(tpy + 5p2)07 + 3(rpy — 3sp1)0?

1
+ 6(251'1)1 + 3trp2 — 452172)94 + (.()17

of = prf' — p16*, o’ = 1(2spy +rp1)f' — p16? — paf® + 1epa6*,
for g* leads to the multiplication table Bl in Theorem 2.4, with isotropy h =
span{es}.

Case 4 Thesubalgebrase; 5 and e; 4 in [17] satisfy Lemma 3.3. Define A € GL(4, R)
by A(fi) = f3,A(f2) = —f1, A(f3) = fi, A(fs) = — fo, where f; is the standard basis
for R*, then A is an automorphism of 0(2, 2) that maps e; 3, which has basis {b; =
—A1+A;— B, +Bs}, to the subalgebra e; 4, which has basis {b; = —A;+A3+B,—Bs}.
Therefore, we consider only e; 4. By using the basis {I~)1 = A, —As + B, — B, b, =
Bz,f)g, = A —A;+ B + B3,f)4 = —A; — A3+ B — B3,f)5 = Az,bl} for 0(2,2),
equations (A.1) and (A.3) give

@' = p10" + 207 + (p3 + pa)0” + (ps — p3)6*,
@ =2(ps — p3)0" + (ps + p7 — p2)O° + (ps — p7 + p2)0*, & = (p7 — p2)O’,
Gt = (pr+p2)0', & =2(ps+ p3)0 + (ps + p7+ p2)0° + (ps — p7 — p2)0*.
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From condition (A.5), G/H is reductive if and only if ps = 0. The first Bianchi
identity yields

pa=1t(ps+p2), ps=1t(ps— Pe)s
Cyy = p7*y,  Ciy=2psp7+2paps, Cly = 4paps — 4psps — 4psp7,
Cys=—p7°s Cly= —4psps+2ps° — 6p1p7 — 6p7° +4pape +4psps — Cis

where t € R, and the conditions

p2p7 =0, 2prps+(ps —tp7)ps = 0.

Let K = (2p6t2 + p1 + p7)/p63 L = 2(p6t2 + p7 + pl)/pﬁ and 6 = C%S — p22 —
2p2ps — 2p2pst?. The second Bianchi identity yields p; = tp; so the final remaining
conditions are

pap7 =0,  B(ps + p2) + prps(L(ps +2p7) + Kps) = 0.
This case splits into three subcases based on p; and S.

Subcase 4.1 1f p; # 0, then p, = 0. The remaining condition implies C}; =
—p7(L(ps + 2p7) + Kps). The curvature components are

(5.8) D3 = p 20 A (O* — 60%), Qi = —2p,20" A (67 +t0° +t6*),
Oog = p20V A (07 — 6Y),  Qay = 2tp,20" A (67 — 6,
Q3 = =2tp 20" AN O* — 2(pe + p7)(pe + 2p7)KO' A 6°
—2(ps’K — p2L)O" A O* — p20* N (6 — 0%) + 2tp,20° N O,
Oy = —2tp 20 AN O* — 2(ps — p7)(ps — 2p7)KO' A 6
—2(p6°K — p;~L)0" A O° + p, 20> N (07 — 0*) — 2tp,20° N O*.
The change of basis
al = —2peth' + (pe +2p7)0° + (ps — 2p7)0*,  o* = —4p;*/peh",
@ = (py+p7)0" + peb® + pet® + petd* — pe/prw’,
ot =2(py + p7)0' — peb® + pett® + pet0* — ps/prw’
a® = —2petd' + pl® + peb*,

for g* leads to the multiplication table Al in Theorem 2.4 with isotropy in the dual
basis h = span{e; + e4}.

Subcase 4.2 If p; = 0, the remaining the condition splits into two subcases based

on (3.
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Subcase 4.2.1 When 3 = 0, the remaining condition implies C{; = p2> + 2p2ps +
2p, p6t2. The curvature components are

(5.9) Oy = 2p,20" A 62,
Qi3 = —K0' A ((p2 +2p6)0 + (3p2 + 2p6)0*) — 2p,°0° N 6%,
Qi = —KO' A ((p2 + 2p6)0* + (3py + 2p6)0°) — 2p,20% A 6°,
Qo3 = =2p%0" NOY, Qo = —2p20" NO°, Qsy = 2p)°0° NGO,
The change of basis
a' = —p10' +2ps*, o =2pe(6° —0%), o = 4peh’,
ot = py(0' +10° — 10" + W', o’ = pe(—2t0" + 07 + 0%

for g* leads to the multiplication table A2 in Theorem 2.4 where &« = —p,/ps with
isotropy in the dual basis h = span{e,}.

Subcase 4.2.2 1f 3 # 0, then p, = —ps. The curvature components are
(5.10) Qi =2ps*0' NG, Qo3 = —2ps20' N6,
Qi3 = (B — p6’K)O' A (6° — 0*) — 2ps?0* N 6%,
Qag = 2ps°0° N O, oy = —2ps0' N 6P,
Qs = (B — pe*K)O* A (0 — 0°) — 2ps*0* N 6°.
The change of basis
o = VIB/21Gp1/pst" = ), o? = V/IB]21(6° - %),
o’ = pe(0' +10° —10") —w', o' = pe(—2t0" + 67 + 6%,
o’ =+/]266",
for g* leads to the multiplication table A3 in Theorem 2.4 where ¢ = % and the
isotropy in the dual basis is h = span{e;}.

This concludes the proof of Theorem 2.4. ]

We now list the algebra pairs in Theorems 2.3 and 2.4 where the metrics can be
Einstein without being of constant curvature.

Lemma 5.1 Let (G/H,n) be a homogeneous non-reductive pseudo-Riemannian Ein-
stein manifold of dimension four which is not of constant curvature and where H is
connected.

(i)  The space is Ricci-flat if and only if the Lie algebra pair (g, h) is isomorphic to B3.
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(ii)  The space is Einstein and not Ricci-flat if and only if the Lie algebra is isomorphic
to the pair A2 with o = 2/3.

Proof Starting with the curvature forms in equations (5.1)—(5.10), the coefficients
of the Ricci tensor in an orthonormal frame u, at ¢ = [H] are easily computed. For
example, from the curvature in (5.4) we get

Ricci = (3a2p42)77° - p4(t12p4 + p7) (B — 2)6° ® 6°

where py # 0. If « = 2/3 and t;%py + ps # O, the space is Einstein and not of
constant curvature. Similar computations with (5.9) and (5.6) in Subcase 2.2 prove
the lemma. [ |

Case (i) in Lemma 5.1 corresponds to [10, Proposition 2.5.2, p. 153], and case (ii)
in Lemma 5.1 corresponds to [10, Proposition 1.4.2, p. 142].

6 Global Results and Existence

To prove Theorem 2.5, we start by characterizing the four-dimensional simply con-
nected non-reductive pseudo-Riemannian homogeneous spaces. These turn out to
be fairly simple.

Theorem 6.1  Let (g,h) be a Lie algebra pair from Theorem 2.3 or Theorem 2.4 and
suppose G is the simply connected Lie group with Lie algebra g. Then there exists a closed
connected Lie subgroup H C G with Lie algebra h such that G/H is diffeomorphic to
R4,

Proof The proofis done on a case-by-case basis. We first consider the pairs in A2
and A3 of Theorem 2.3 (or Theorem 2.4) where g is solvable. Let G be the simply
connected solvable Lie group having Lie algebra g, and H the connected Lie sub-
group having Lie subalgebra h. Since H is closed [4], G/H is a manifold. Since H is
connected, G/H is simply connected and G/H is diffeomorphic to R* [13].

For cases Al and A4 of Theorem 2.3 and B1 and B3 of Theorem 2.4, we construct
connected Lie groups G° and connected closed subgroups H® C G° such that the
covering space of G°/H? is R%. It follows that R* = G/H (see [14, Theorem 2.1,
p. 125]) where G is the simply connected cover of G® and H is a closed connected Lie
subgroup having Lie subalgebra h. We start with A4 and B2.

Leta,b € R?, anda x b = a;b, — bya,. The multiplication map for the six-
dimensional Lie group SL(2,R) x N is

(A,a,a) * (B,b,3) = (AA’,Ab+a,a + 3 — (Ab) x a)

where A,B € SL(2,R),a,b € R? and o, 3 € R. Let H and HY be the closed
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2= {( 9:0)2) seer
- {((9.0)-2) roer)

The Lie algebra pair in A4 is isomorphic to (g, h;), and the pair in B2 is isomorphic to
(g, h,,). The quotient spaces G°/H and G° /H}) are diffeomorphic to (R*\{(0, 0)}) x
IR2, so the covering space in these cases is R*.

For the Lie algebra pair B1 in Theorem 2.4, let G° be the group SL(2, R) x IR2, and

e {(()-0))

The pair in B1 of Theorem 2.4 is isomorphic to this (g, h). The quotient space G°/H°
is diffeomorphic to (R*\{(0,0)}) x IR?, so its simply connected cover is R*. The Lie
algebra pair in A1 in Theorems 2.3 and 2.4 is similar to this one.

For A5, consider the monomorphism ¢: g — o(2, 3) given by

subgroups

dle)=e;+el—es—e, PRe)=eteteteatete—e—e,

p(V2es) =el+el+e) —el,  pe) =el+eteitel el el —el el

352 55 2,2, 4, 4 1 13 3
¢(\/§e6):es—es—ez—63, P(2eq) =ej teyjte, tes—e, —e3 —e] —ey,
ple;) = e} +e5+e+ef,

where n° = diag(—1, —1,1, 1, 1) is the symmetric 5 x 5 matrix defining o(2, 3). Let
G be the simply connected seven-dimensional Lie group having Lie algebra g, and let
®: G — 0O(2,3) be the induced homomorphism from ¢. We now show that G acts
transitively on the manifold

M = {(x1, %2, X3, X4, %5) € R® | =x1% — 307 + x5 + x4 + x5° = —17},

which is diffeomorphic to S' x R? [19]. Let (x;, X, X3, X4, X5) € M. Application of
the group element e?' ") where t = 7/2 if x, = 0 and tant = x, /x, otherwise,
maps this point to (0, %, X3, X4, Xs), where X, # 0. Similar use of the one parameter
subgroups of G map this point to (0, 1,0, 0,0). Hence, G acts transitively on M. The
Lie algebra of the Lie subgroup of G which stabilizes (0,1,0,0,0) ish = {e; +e;,e; —
ey, s }. Therefore, the covering space for G/H is R*.

The details for B3 can be found in the proof of Theorem 2.6 in Section 7. ]

Theorem 6.1 can now be used to prove Theorem 2.5(i).
Proof of Theorem 2.5(i) Since the homogeneous space G/H in the theorem is sim-

ply connected, we may assume G is simply connected and H is connected. By The-
orem 2.3 or Theorem 2.4, the Lie algebra pair (gh) is isomorphic to one of A1-A5
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or B1-B3. The Lie algebra isomorphism lifts to a Lie group isomorphism to one
of the simply connected groups used in the proof of Theorem 6.1. Therefore, M is
diffeomorphic to R*. n

Up to this point, we have shown that a simply connected non-reductive homoge-
neous pseudo-Riemannian manifold is diffeomorphic to R* and the Lie algebra of its
isometry group must be isomorphic to one in Theorems 2.3 or 2.4. We now show
that A5 cannot occur.

Lemma 6.2 Let (G/H,n) be a simply connected four-dimensional homogeneous
Lorentz manifold with Lie algebra pair A5. Then G is a proper subgroup of the isometry
group O(2,3).

Proof The computations in Theorem 6.1 show that there exists a transitive action
of G on S' x R? with isotropy K which has the same Lie algebra as H. We showed
in the proof of Theorem 2.3 in Section 5, Case 2, that the Lorentz metric, which is
unique up to scaling, was of constant (negative) curvature, so the standard action of
0(2,3) on S' x R? is by isometries for this metric. Therefore, an invariant Lorentz
metric on G/H (the covering space) will admit O(2, 3) acting by isometries, and the
Lie algebra of the isometry group will not be g. ]

Lemma 6.2 allows us to prove Theorem 2.5(ii) by eliminating A5.

Proof of Theorem 2.5(ii) Starting with G/H simply connected we may assume that
H is connected and so Theorem 2.3 or 2.4 implies that the Lie algebra pair is isomor-
phic to one in the lists in these two theorems. However if G is the isometry group,
then by Lemma 6.2, A5 cannot be the Lie algebra pair for the isometry group of a
simply connected four-dimensional homogeneous Lorentz manifold. ]

In order to finish the proof of Theorem 2.5 (the converse part) we need to show
that we can build metrics on R* having the isometry algebras in Theorems 2.3 (ex-

cept A5) and 2.4. In order to do this we first give two lemmas.

Lemma 6.3 Let G/H be a homogeneous space with pair (g, h), and H connected. If
the pair (g, h) satisfies Lemma 3.2, then

n(X,Y) = n"(0(X),0(Y)) X,Y € T,G

is basic for the projection q: G — G/H and defines a pseudo-Riemannian metric on
G/H with curvature tensor .

Proof The form 6 isR" valued, so 1 defines a symmetric bilinear form on TG. From
Lemma 3.1(1), the form 7 is semi-basic for the projection q: G — G/H and has the

same signature as 1°. The Lie derivative of  with respect to X € h,

ano(ﬂ, 0) = T;O(LXH, 0) + 770(0, Lx0) = no(p*(X)H, 0) + 770(9, p«(X)0) =0,
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implies that 7 is H-basic, because H is connected. We can check that € is the cur-
vature of 77 by choosing a local cross section of q: G — G/H and pulling back the
structure equations by the cross section, or by reversing the arguments in Section 3
which we now do. Let u, € O(M), and ¥ be constructed as in (3.5). The pullbacks
U*@ of the canonical form 6 on the frame bundle, are G-invariant and provide a basis
for the q: G — G/H semi-basic forms. Therefore,

(6.1) = AT*H where A € GL(n,R).

Now, let X,Y € R" and choose X,Y € T,G such that q.X = u,X, and q,Y = u,Y.
By definition of u, and 7 we have

1°(X,Y) = n(u, X, usY) = n°(0(X), 0(Y)).
Condition (6.1) gives
n°(X,Y) = n°(AO(¥.X), AD(T.Y)) = n°(Au, "7, V. X, Au, ‘7,0, X).
The commutative diagram (3.6) gives
n"(X,Y) = 1°(4q,(X), Aq,(Y)) = 1" (AX, AY),

so A € O(p, p). Finally, using the frame v, = u,A to redefine ¥, we get U*0 =
0, ¥*w = w, and ¥*Q = Q. ]

This lemma says that for any case we consider in Section 5, and no matter what
value we choose for the parameters in the curvature form 2, we can construct a ho-
mogeneous pseudo-Riemannian manifold having the chosen value of the curvature
form. In the next lemma, we give a sufficient condition on the curvature for a given
Lie algebra to be the Lie algebra of the isometry group.

Lemma 6.4 Let (G/H,n) be an n-dimensional pseudo-Riemannian homogeneous
space with curvature form Q and let R;ji and R;jy,m be the corresponding components
of the Riemann curvature tensor and its covariant derivative in the orthonormal frame
uy ato = [HJ. Let

6.2) S= {E € o(p,p) ‘ RjuE; + RiswE} + RijaEy + RijisE] = 0,
RjkimE; + RiskimE; + RijsimEy, + RijksmE] + RijiisE,, = 0} :
Ifdim S = dim h, then the Lie algebra of the isometry group is g (the Lie algebra of G).

Proof Use the notation in Section 3. If E = p,(e) where e € h, then E € §,
so dimS > dimh. Suppose that G is the isometry group of (G/H,n). To prove
the lemma, it is sufficient to show dimG = dim G. Let H C G be the isotropy
subgroup at ¢ = [H] € G/H with linear isotropy representation p. We have G C G,
dimG = n +dimH, and dim G = n + dim H. By the argument just given, p. (h)
satisfies (6.2). Therefore, if the hypothesis of the theorem holds, then dimh = dimh
and dim G = dim G. ]
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The set S is the Lie algebra of the stabilizer of both the curvature tensor and its
covariant derivative at a point. This lemma states that if this subalgebra has the same
dimension as h, then the isometry algebra can not have dimension greater than »n +
dimh. Therefore, it must be the given algebra. Lemma 6.4, of course, generalizes
using the higher order covariant derivatives of the curvature tensor.

We can now prove the converse condition in Theorem 2.5 by using Lemmas 6.3,
Lemma 6.4, and the computations from Section 5. That is, for each Lie algebra pair
in the theorem we find values for the coefficients of the curvature form €2 such that
Lemma 6.4 is satisfied.

Proof of the converse for Theorem 2.5 We start with the Lorentz signature.

Case3 IfClL(p2+4p,*)~! = L # 0, then Lemma 6.4 is satisfied, and the isometry
algebra is A4.

Subcase 4.1 Ift, —2t2 =1L # 0, then Lemma 6.4 is satisfied, and the algebra is Al.
Subcase 4.1.1 If p; + t>p, # 0, then Lemma 6.4 is satisfied, and the algebra is A2.

Subcase 4.1.2 1f L = C}5 + p;ps # 0, then Lemma 6.4 is satisfied, and the algebra
is A3.

Now we consider the signature (2, 2) cases.

Subcase 2.1 Ift # 0, then Lemma 6.4 is satisfied, and the isometry algebra is B2.
Subcase 2.2 See the first part of Theorem 2.6 in Section 7.

Case3 Ifrt —s* # 0, then Lemma 6.4 is satisfied, and the isometry algebra is B1.

Subcase 4.1 1f 2pgt> + p; + p; = K # 0, Lemma 6.4 is satisfied and the isometry
algebrais Al.

Subcase 4.2 1f p, # 0and 2pst? + p; # 0, Lemma 6.4 is satisfied and the isometry
algebra is A2.

Subcase 4.3 1fCl,—p,ps+p2 # 0, Lemma 6.4 is satisfied, and the isometry algebra
is A3. u
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7 The Einstein Examples

In this section, we prove Theorem 2.6 by constructing all homogeneous Einstein and
Ricci-flat metrics on the simply connected non-reductive homogeneous spaces of
dimension four.

Proof of Theorem 2.6 By Lemma 5.1, the Lie algebra pair (g, h) of G/H is isomor-
phic to B3 if ) is Ricci-flat, otherwise it is isomorphic to the Lie algebra pair A2 with
a = 2/3. To prove the theorem, it is sufficient to construct the two simply con-
nected homogeneous spaces that have Lie algebra pair B3 or A2 with & = 2/3, and
find all the invariant metrics. Theorem 2.5 says that the manifolds themselves are
diffeomorphic to R*.

We remind the reader that the Lie algebra of infinitesimal generators of G acting
on G/H is isomorphic to the Lie algebra of right invariant vector fields, and so we use
a basis of left invariant forms o which have structure constants negative to the ones
in Theorem 2.3 or 2.4 to construct our examples.

We start by proving the second part of the theorem using the Lie algebra in A2.
The (negative of the) structure equations are easily integrated on R to give the left
invariant forms

o’ =dx’, o'= e*xﬁdx‘L, ol = 6(1*“)"5dx37
0_2 _ e—(xXS(de + y3dx4), 0_1 —_ e—(a+1)x5 (dxl _ x4dx2).
Let X;,i = 1...5 be the dual frame of left invariant vector fields. The X, basic
symmetric bilinear forms on G are easily computed to be

f1=a,20'0 — (0°)?) + ay(0%)* + 2a30°0° + as(c°)>.
With the coordinates y' = x! + x> (x*)?/2, y* = x* + ¥’x*, y° = x°, and y* = x° on
the quotient of G by the orbits of X; = €° (8 — x*x*9y — x*92) we have ) = 7*7)

where
n=ae 2 Qdy'dy’ — (dy*)?) + a1 (dy* P+ 2a3¢1 Y dy dy* + ay(dy*).

These bilinear forms are non-degenerate if ajas # 0. If a, # 0, the only Killing
vectors are

Y, = @,1, Y, = 8),2, Y; = 8),3, Y, = yzayl + y38yz,

Ys; = (1+ a)ylayl +ay28yz + (o — 1)y38y3 + 0.

These vector fields form a Lie algebra with the multiplication table in A2. At the
point (0,0, 0, 0), the isotropy is Y, and 7 is the most general metric invariant under
the flow of these Killing fields. When oz = 2/3, these metrics are Einstein and they
are not of constant curvature when a, # 0. The signature of theses metrics can be
only Lorentz or (2, 2), as expected.
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For the Lie algebra pair in B3, consider the quotient space G/H where G =
SL(2,R) x R? ® R and

{9 o)

The manifold G/H is diffeomorphic to R?> — (0,0) x R%. In terms of coordinates
(x',x*,x°,x*) on G/H, the most general metric having signature (2,2) on G/H
where G acts by isometries is

fi = 20'0% + 200",
where o' = dx!, 0 = dx* + LT"Z(xzdxl —xldx?), 0% = dx?, 0t = —dx* + %(xldx2 —
x*dx'). Let m: R* — M be given by x' = ¢’ cosy?, x> = ¢ siny?, X = 57,
x* = y* and n = 7*). This gives the metrics 1) in part one of Theorem 2.6. The

covering group G = SL(2, R) x R? & R acts transitively and by isometries on R* for
the metrics 7. There are eight Killing vector fields for #:

Y, = cos(2y2)8y1 - sin(2y2)8yz + y38y3 - y48y4,
Y; = 3sin(2y?)9,1 + cos? 20y + y?0,,

Y5 = L1sin(2y?)0, —sin® (30,2 + y*0,, Y= 0,, Ys=—0p,

Yo =e¢" cos(y*)0,s + ¢ sin y2Op,
Y, =e cos(y*)0a — ¢ sin(y*)0g + Le¥' (4 sin(2y?)9, +sin’(y2)9,4),
Yy =e sin(y*)0a + ¢ cos 20 — Le¥' (cos’(y*)0,s + 4 sin(2y?)0,4).
The first six of these vector fields are complete and are the infinitesimal generators
for the transitive action of G on R*. The metric 7 is the most general metric invariant
under the flow of these six Killing fields. In order to have a complete Killing vector

field of the form aX;+bXs, it is necessary and sufficient that the differential equations
2

dy' _ dy

-y 2 s 2 —y! 2 s 2
it Y (acosy® +bsiny?), o =e " (beosy® — asiny?)
admit solutions defined for all ¢ € R. By letting z = y! — iy?, this equation becomes
d
= = (a+ib)e,

which has solution z = In((a + ib)t + (¢o +ic;)). For any initial condition of the form
z(0) = r(a+ ib) where r € R, the solution does not exist for all t € R. Therefore, the
Lie algebra of the isometry group is sl(2, R) x R? @ R, and at the point (0, 0, 0, 0) the
isotropy subalgebra is {Y3,Ys + Ys}. This proves the first part of the theorem. For
completeness, the non-zero components of the curvature form are

Q3 = -0 = -3L6' A 67,

where 4° = 7*0'. By using this formula for the curvature form, the Ricci tensor
is found to vanish. It is worth noting that the covariant derivative of the Riemann
curvature vanishes. [ |
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8 Concluding Remarks

In this paper we have investigated only the most basic questions surrounding the ge-
ometry of non-reductive homogeneous spaces. We have not addressed such natural
problems as determining the holonomy of these spaces [6], the homogeneous struc-
ture of the geodesics of these spaces [12], or whether they are geodesically complete.
These problems will be considered in future research.

A Some Computations in a Basis

We write out the conditions in Lemma 3.2 in a basis. Let {by, },—1..4 be a basis for the
subalgebrah C o(p, p) and complete this to a basis {b,, bo } 1. nn—1)/2—g.a=1...q for
o(p, p). In this basis, the structure constants are

[bou bﬁ] = Kngw/, [bcu br] = Kgrbﬁ + I%S b [b,, bs] = I:;Crysba + Lfrsbt-

ar™'sy

Let {e, }a—1..q» form a basis forh C g = h @ R", where p,(e,) = b,, and complete
this to a basis {&;, e, }1<i<n1<a<q for g. Let {0, w*}iz1..ma=1..q be the dual basis.
We may then write

w = w, + D,

where w®, @" € g*. By conditions (2)
w(eg) =03, w'(ey) =0,

and consequently,
(A.1) o =P
where P} € R. Therefore
(A2) o' = —bj,;w” A 07 — b} P67 A6,
Substituting w = wb,, + P{Hibr into (3), the coefficients of b, give
(A.3) Pjbl,; — K}, .,P = 0.
The coefficients of bg in (3) give

Le, dw” + Gyw’ + RP Plo" = 0.
This equation leads to the formula

(A4) dw® = —3K§ W’ AW’ = K§ Pilw? A6 — 3C507 A6

where C;-’k =C ij] are yet to be determined. The form €2 can be computed from (A.4)
and (A.3):

Q = (PPl + 5LLPSP,) 07 A 6F @b, + 5 (LLPIPS — CF) 0/ A 67 ® by,

2t rstitj
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By choosing P} and C;k, we can satisfy the last two equations in (4) (the Bianchi
identities). The Bianchi identities can be imposed by either computing €2 and imple-
menting them as written in (4) or imposing d*0’ = 0 and d*w® = 0 in (A.2) and
(A4).

We write, in terms of our basis, the condition for the algebra g to be reductive.

Lemma A.1 Let G — G/H with H be a homogeneous space with H connected and
where the Lie algebra g admits forms 6 and w satisfying the conditions in Lemma 3.2.
Then G — G/H is reductive if and only if there exist constants r& such that

(A.5) r/ 5y — 17 = K§,Pr.

Proof Since H is connected, the form (v + rﬁqﬁi) ® eg is invariant (or equivariant)
if and only if its Lie derivative with respect to e, € h is zero. Therefore, G/H is
reductive if and only if there exists r? such that

e, (dw” + rfd@i) ®es+ (w+ r;fg@i) ® K] e, =0.
Expanding this equation out using (A.2), (A.3), and (A.4) we get equation (A.5). W

Acknowledgements The authors would like to thank Ian Anderson for numerous
helpful suggestions and for the use of his package Vessiot available at www.math.
usu. edu/"fg_mp. We also thank Charlie Torre, Stephen Yeung, and Scot Adams for
helpful discussions.

References

[1] L. Bérard-Bergery, Les espaces homogenes riemanniens de dimension 4. Textes Math. 3, CEDIC,
Paris, 1981, pp. 40—60.

[2]  A. Besse, Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete 3,
Springer-Verlag, Berlin 1987.

[3] E.Cartan, Legons sur la géométrie des espaces de Riemann. Second edition. Gauthier-Villars, Paris,
1951.

[4]  C. Chevalley, On the topological structure of solvable groups. Ann. of Math. 42(1941), 668-675.

[5]  P.M. Gadea and J. A. Oubina, Reductive homogeneous pseudo-Riemannian manifolds. Monatsh.
Math. 124(1997), no. 1, 17-34.

[6]  R.Ghanam and G. Thompson, The holonomy Lie algebras of neutral metrics in dimension four.

J. Math. Phys. 42(2001), no. 5, 2266—2284.

[7]  S.Ishihara, Homogeneous Riemannian spaces of four dimension. J. Math. Soc. Japan 7(1955),
345-370.

[8]  G.Jensen, Geometry of homogeneous Einstein spaces of dimension four. ]. Differential Geometry
3(1969), 309-349.

[9]  S.S.Kobayashi and K. Nomizu, Foundations of Differential Geometry. I. John Wiley, New York,
1996.

[10] B. Komrakov, Jr., Einstein-Maxwell equation on four-dimensional homogeneous spaces. Lobachevskii
J. Math. 8(2001), 33—165 (electronic).

[11] T. H. Koornwinder, Invariant differential operators on nonreductive homogeneous spaces. Afdeling
Zuivere Wiskunde 153, Mathematisch Centrum, Amsterdam, 1981, pp. 1-15;
http://arXiv.org/abs/math/0008116.

[12] O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian
manifolds. Geom. Dedicata 81(2000), no. 1-3, pp. 209-214.

[13] G. D. Mostow, Factor spaces of solvable groups. Ann. of Math. 60(1954), 1-27.

https://doi.org/10.4153/CJM-2006-012-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2006-012-1

Non-reductive Homogeneous Pseudo-Riemannian Manifolds 311

(14]
[15]
(16]
(17]

(18]
(19]

A. L. Onishchik, (Ed.), Lie Groups and Lie Algebras. I. Encyclopaedia Math. Sci. 20, Springer, Berlin,
1993.

J. Patera, P. Winternitz, and H. Zassenhaus, Continuous subgroups of the fundamental groups of
physics I. General method and the Poincaré group. J. Math. Phys. 16(1975), 1597-1614.

J. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhaus, Invariants of real low dimension Lie
algebras. J. Mathematical Phys. 17(1976), no. 6, 986-994.

, Continuous subgroups of the fundamental groups of physics. III. The de-Sitter groups.

J. Mathematical Phys. 18(1977), no. 12, 2259-2288.

A.Z. Petrov, Einstein Spaces. Pergamon Press, Oxford, 1969.

J. Wolf, Spaces of Constant Curvature. Fifth edition. Publish or Perish, Houston, TX, 1984.

Department of Mathematics and Statistics
Utah State University

Logan, UT 84322

US.A.

e-mail: fels@math.usu.edu

arenner@cc.usu.edu

https://doi.org/10.4153/CJM-2006-012-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2006-012-1

