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Abstract
This paper develops theoretical foundations for extending Gauss–Hermite quadrature to
robust design with computer experiments. When the proposed method is applied with m
noise variables, the method requires 4mþ 1 function evaluations. For situations in which the
polynomial response is separable, this paper proves that the method gives exact transmitted
variance if the response is a fourth-order separable polynomial response. It is also proven that
the relative error mean and variance of the method decrease with the dimensionalitym if the
response is separable. To further assess the proposedmethod, a probabilitymodel based on the
effect hierarchy principle is used to generate sets of polynomial response functions. For typical
populations of problems, it is shown that the proposed method has less than 5% error in 90%
of cases. Simulations of five engineering systems were developed and, given parametric
alternatives within each case study, a total of 12 case studies were conducted. A comparison
is made between the cumulative density function for the hierarchical probabilitymodels and a
corresponding distribution function for case studies. The data from the case-based evaluations
are generally consistent with the results from the model-based evaluation.

Keywords: Robust design, uncertainty quantification, design of computer experiments

1. Introduction: the context in design
Robust parameter design is an off-line quality control method whose purpose is to
reduce the variability in performance of products and processes in the face of
uncontrollable variations in the environment, manufacture, internal degradation
and usage conditions (Taguchi 1987; Phadke 1989; Wu & Hamada 2000). The
variables that affect a product’s response are classified into control factors whose
nominal settings can be specified and noise factors that cause unwanted variations
in the system response. In robust design, the space of control factors is searched to
seek settings that are less sensitive to the noise factors and therefore exhibit less
variation in performance.

Robust parameter design is increasingly performed using computer models of
the product or process rather than laboratory experiments. Computer models can
provide significant advantages in cost and speed of the robustness optimization
process. Although random variations in noise factors can be simulated in a
computer, the results of computer models generally lack pure experimental error
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(Simpson et al. 2001). Therefore, it is generally acknowledged that the techniques
for robust design via computermodels ought to be different than the techniques for
robust design via laboratory experiments. In response to this fact, the field of design
and analysis of computer experiments (DACE) has grown rapidly in recent decades
providing a variety of useful techniques (Santner et al. 2003). A review of the
emerging field of DACE was provided by Giunta et al. (2003). Three of the most
promising techniques developed so far are reviewed in the next paragraphs.

Robust design with computer experiments is often accomplished using a
strategy employing two nested loops as depicted in Figure 1, an inner sampling
loop and an outer optimization loop (Kalagnanam & Diwekar 1997; Du & Chen
2002; Lu & Darmofal 2005). The goal of robust design with computer experiments
is to determine the optimal setting of control factors that minimizes the variance of
the probabilistic model, while ensuring that the mean of the probabilistic model
remains at the target value. The mean and variance are calculated by repeatedly
running the deterministic computer model with different values of noise factors
which are generated by a sampling scheme. Thus, the inner sampling loop
comprises the probabilistic model and the outer optimization loop serves to
decrease the variance of the probabilistic model’s output.

2. Ways to implement the inner sampling loop
LHS is a stratified sampling technique that can be viewed as an extension of Latin
square sampling and a close relative of highly fractionalized factorial designs
(McKay et al. 1979). LHS ensures that each input variable has all portions of its
distributions represented by input values. This is especially advantageous when
only a few of the many inputs turn out to contribute significantly to the output
variance. It has been proven that, for large samples, LHS provides smaller variance
in estimators than simple random sampling as long as the response function is
monotonic in all the noise factors (McKay et al. 1979). In typical engineering
applications, LHS converges to 1% accuracy in estimating variance in about 2000
samples. However, there is also evidence that LHS provides no significant practical
advantage over simple random sampling if the response function is highly non-
linear (Giunta et al. 2003) so the number of samples required to converge to 1%will

Figure 1. Schematic description of robust design including a sampling loop embed-
ded within an optimization loop (Adapted from Kalagnanam & Diwekar 1997).
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sometimes be much larger than 2000. Latin hypercube design continues to be an
active area of improvement. Chen and Xiong (2017) proposed a means to nest
these designs so that sequential construction is enabled and the restriction to
multiples of the original design is relaxed. With similar objectives, Kong et al.
(2018) proposed new sliced designs that accommodate arbitrary sizes for different
slices and also derived their sampling properties.

An innovation called Hammersley sequence sampling (HSS) appears to pro-
vide significant advantages over LHS (Kalagnanam&Diwekar 1997). HSS employs
a quasi-Monte Carlo sequence with low discrepancy and good space-filling prop-
erties. In applications to simple functions, it has been demonstrated that HSS
converges to 1% accuracy faster than LHS by a factor of from 3 to 100. In an
engineering application, HSS converged to 1% accuracy in about 150 samples.

A methodology based on the quadrature factorial model (QFM) employs
fractional factorial designs augmented with a center point as a sampling scheme.
A local regressionmodel is formed based on these samples. Thismodel is then used
to generate the missing samples from a “contrived” full factorial 3k design. Finally,
this 3k design is used to estimate the expected performance and deviation index.
This method was shown to produce reasonable estimates with fewer samples
especially for systems with significant interaction effects and nonlinear behavior
(Yu & Ishii 1998).

Quadrature and cubature are techniques for exactly integrating specified
classes of functions by means of a small number of highly structured samples. A
remarkable number of different methods have been proposed for different regions
and weighting functions (see Cools & Rabinowitz (1993) and Cools (1999), for
reviews). More recently, Lu & Darmofal (2005) developed a cubature method for
Gaussian weighted integration that scales better than other, previously published
cubature schemes. If the number of uncertain factors in the inner loop is m, then
the method requiresm2 þ 3mþ 3 samples. The new rule provides exact solutions
for the mean for polynomials of fifth degree including the effects of all multifactor
interactions. Used recursively to estimate transmitted variance, it provides exact
solutions for polynomials of second degree including all two-factor interactions.
On a challenging engineering application, the cubature method had less than 0.1%
error in estimating mean and about 1% to 3% error in estimating variance.
Quadratic scaling with dimensionality limits the method to applications with a
relatively small number of uncertain factors.

A meta-model approach has been widely used in practice to overcome com-
putational complexity (Booker et al. 1999; Simpson et al. 2001;Hoffman et al. 2003;
Du et al. 2004). The term “meta-model” denotes a user-defined cheap-to-compute
function which approximates the computationally expensive model. The popular-
ity of the meta-model approach is due to (1) the cost of computer models of high
fidelity in many engineering applications and (2) the many runs that are required
for robust design, for which direct computing may be prohibitive. Although the
meta-model approach has become a popular choice inmany engineering designs, it
does have some limitations. One difficulty associated with the meta-model
approach is the challenge of constructing an accurate meta-model to represent
the original model from a small sample size (Jin et al. 2000; Ye et al. 2000). These
meta-model-based approaches continue to be improved and integrated with the
optimization process (a departure from the nested loop structure displayed in
Figure 1). For example, Iooss & Marrel (2019) combined several statistical tools
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including space-filling design, variable screening and Gaussian process metamo-
deling. The combined approach enabled consideration of a large number of
variables and a more accurate estimation of confidence intervals for the results.

In meta-model-based approaches to robust design, acquisition functions are
often used to sequentially determine the next design point so that a Gaussian
Process emulator can more accurately locate the optimal setting. Tan (2020)
proposed four new acquisition functions for optimizing expected quadratic loss,
analyzed their convergence and developed accurate methods to compute them.
Tan applied acquisition functions to robust parameter design problems with
internal noise factors based on a Gaussian process model and an initial design
tailored for such problems. On relatively simple functions, the proposed methods
outperformed an optimization approach based on modeling the quadratic loss as a
Gaussian Process and also performed better than maximin Latin hypercube
designs. However, the proposed methods do not scale well to a large number of
noise factors.

A method for robust parameter design using computer models was proposed
by Tan & Wu (2012) using a Bayesian framework and Gaussian process meta-
models. They proposed an expected quadratic loss criterion derived by taking
expectation with respect to the noise factors and the posterior predictive process.
An advantage of the approach is that it provides accurate Bayesian credible
intervals for the average quadratic loss. This is valuable because the practitioner
will benefit from not only a recommended set point for the control factors but also
an interval estimate for the quality loss. These credible intervals are constructed via
numerical inversion of the Lugannani–Rice saddlepoint approximation. A rela-
tionship between the quadrature method proposed here and the Tan and Wu
approach is that integration required for computing the credible intervals used a
three- or four-point quadrature method for evaluating the integral needed to find
the cumulative density function for quadratic loss. An important difference is that
Tan andWu assumed that the distribution of the noise factors is discrete, or can be
discretized. By contrast, the method proposed here assumes that the noise factors
are normally distributed or else that they are adequately represented for the
purpose of robust parameter design by their first two moments. Also, instead of
confidence intervals on quadratic loss, our method provides an estimate of mean
and variance of the error of its results.

Joseph et al. (2020) proposed a method for robust design with computer
experiments with particular emphasis on nominal, discrete, and ordinal factors.
The experimental designs are constructed to follow a maximum projection criter-
ion which can simultaneously optimize the space-filling properties of the design
points. This was an important development for instances when various types of
factors are mixed in the problem domain because the optimal design criterion
incorporating different types of input factors can produce much better experimen-
tal designs.

3. Motivation for this paper
The motivation for this paper is that LHS and HSS still require too many samples
for many practical engineering applications. Computer models of adequate fidelity
can require hours or days to execute. In some cases, changing input parameters to
the computer models is not an automatic process – it can often require careful
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attention to ensure that the assumptions and methods of the analysis remain
reasonable. It is also frequently the case that the results of computer models must
be reviewed by experts or that some human intervention is required to achieve
convergence. All of these considerations suggest a demand for techniques requir-
ing a very small number of samples. Although QFM is designed to meet these
needs, further improvements seem to be desirable.

Based on the considerations presented above, Frey et al. (2005) were motivated
to develop a technique for computer experiments requiring a very small number of
samples. They found that a five-point quadrature formula could be extended to
multiple dimensions resulting in a 4d þ 1 formula that provided generally very
good outcomes. Using case studies and amodel-based evaluation, they showed that
the quadrature technique can estimate the standard deviation within 5% in over
95% of systems which is far superior to LHS or HSS. Cubature performs somewhat
better than quadrature with a similar number of samples given low dimensional
problems, but cubature scales with the square of the dimension rather than linearly.

A concern regarding the quadrature-based technique is that its theoretical
foundations were unclear. In particular, the extension to multiple dimensions
seemed to be poorly justified. Therefore, the empirically demonstrated perform-
ance of the method presents a puzzle. This paper is the result of our efforts to
establish a theoretical foundation and enable practitioners to better understand the
assumptions required for its use.

4. Single variable Hermite–Gauss formula
As discussed in the introduction, robust parameter design requires a procedure to
estimate the variance of the response of an engineering system in the presence of
noise factors. Estimating the variance of a function involves computing an integral.
One basic integration technique is Hermite–Gaussian quadrature. First, let us
consider a one-dimensional case. Let us denote the response of the system as y
and a single noise factor as z. If the noise factor is a standard normal variate, then the
expected value of y can be estimated by a five-point Hermite–Gaussian quadrature
formula. Figure 2 describes the concept as applied to an arbitrary function y(z) and
depicting the noise factor z as having zero mean to simplify the graphic.

The function is sampled at five points. One sample is at themean of the variable
z which is zero for this example. The other four samples are distributed symmet-
rically about the origin at prescribed points. The values of the function y(z) are

Figure 2. Five-point Hermite–Gauss Quadrature applied to an arbitrary function
with the noise factor shifted and scaled to have zero mean and unit variance.

5/34

https://doi.org/10.1017/dsj.2021.24 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.24


weighted and summed to provide an estimate of the expected value. The sample
points and weights in the following equation are selected so that the Hermite–
Gaussian quadrature formula gives exact results if y(z) is a polynomial of degree
nine or less (Stroud & Seacrest 1966). The five-point Hermite–Gaussian quadra-
ture formula is

Ey zð ÞÞ¼
ð∞

�∞

1ffiffiffiffiffi
2π

p e�
1
2z

2
y zð Þdz≈

y 0ð Þþ 1ffiffiffi
π

p
A1 y ζ 1ð Þ� y 0ð Þ½ �þA1 y �ζ 1ð Þ� y 0ð Þ½ �þ
A2 y ζ 2ð Þ� y 0ð Þ½ �þA2 y �ζ 2ð Þ� y 0ð Þ½ �

" #
,

(1)

with weights A1 ¼ 0:39362 ¼ 1
60 7þ2

ffiffiffiffiffi
10

p� � ffiffiffi
π

p� �
, A2 ¼

0:019953 ¼ 1
60 7�2

ffiffiffiffiffi
10

p� � ffiffiffi
π

p� �
and sample points ζ1 ¼ 1:3556 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ffiffiffiffiffi

10
pp� �

and ζ2 ¼ 2:8570 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffiffiffi

10
pp� �

.

Estimating variance also involves computing an expected value, namely
E y zð Þ�E y zð Þ½ �ð Þ2� �

. By using Eq. (1) recursively, a variance estimate can be made
using the same five samples although the approach gives exact results only if y(z) is
a polynomial of degree four or less.

E y zð Þ�E y zð Þ½ �ð Þ2� �¼ ð∞
�∞

1ffiffiffiffiffi
2π

p e�
1
2z

2
y zð Þ�E y zð Þ½ �ð Þ2dz

≈ y 0ð Þ�E y zð Þð Þ½ �2þ

1ffiffiffi
π

p

A1 y ζ 1ð Þ�E y zð Þð Þð Þ2� y 0ð Þ�E y zð Þð Þð Þ2� �þ
A1 y ζ 1ð Þ�E y zð Þð Þð Þ2� y 0ð Þ�E y zð Þð Þð Þ2� �þ
A2 y ζ 2ð Þ�E y zð Þð Þð Þ2� y 0ð Þ�E y zð Þð Þð Þ2� �þ
A2 y �ζ 2ð Þ�E y zð Þð Þð Þ2� y 0ð Þ�E y zð Þð Þð Þ2� �

2
6666664

3
7777775

¼ 1ffiffiffi
π

p
A1 y ζ 1ð Þ� y 0ð Þð Þ2þ y �ζ 1ð Þ� y 0ð Þð Þ2� �þ
A2 y ζ 2ð Þ� y 0ð Þð Þ2þ y �ζ 2ð Þ� y 0ð Þð Þ2� �
" #

� 1ffiffiffi
π

p
A1 y ζ 1ð Þþ y �ζ 1ð Þð Þ�2 y 0ð Þð Þþ
A2 y ζ 2ð Þþ y �ζ 2ð Þð Þ�2 y 0ð Þð Þ

" #2
:

(2)

5. Multiple variables Hermite–Gauss formula
In the multidimensional case, estimation of integrals becomes more complex. A
variety of cubature formulae for Gaussian weightedm-dimensional integrals have
been derived (Stroud 1971). These cubature techniques all scale poorly with the
dimensionality of the integral despite recent improvements. For responses with
more than about 10 variables, cubature will require too many samples to meet the
stated goals.

To circumvent the problem of scaling in multidimensional integrals, it is
proposed that a one-dimensional quadrature rule can be adapted to m-dimen-
sional problems. The expected value of a function y is approximated by
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E y zð Þð Þ≈y zð Þþ
Xm
i¼1

Xi�1

j¼1

α jð Þ
i y D jð Þ

i eiþ z
� �

�y zð Þ
h i

,

ei ¼ δ1i δ2i ⋯ δni½ � and δni ¼
0 if i 6¼ j,

1 if i¼ j,

	
(3)

The variance of the function y is approximated by

σ2 y zð Þð Þ≈
Xm
i¼1

y zð Þþ
Xi�1

j¼1

α jð Þ
i y D jð Þ

i þ z
� �

� y zð Þ
h i !2

� y2 zð Þþ
Xm
i¼1

Xi�1

j¼1

α jð Þ
i y2 D jð Þ

i þ z
� �

� y2 zð Þ
h i" #" #

,

(4)

where D〈i〉 denotes the ith row of the design matrix D. For the quadrature-based
method with 4m þ 1 samples and the design matrix D is

D¼
þζ 1�I
�ζ 1�I
þζ 2�I
�ζ 2�I

" #
, I¼

1 0

⋱
0 1

2
64

3
75
m�m

: (5)

This requires 4mþ 1 samples. The values ofA1 andA2 and of ζ1 and ζ2 are the same
as in the one-dimensional case.

A graphical depiction of the design for three standard normal variables (m¼ 3)
and using 4m þ 1 samples is presented in Figure 3. The sampling scheme is
composed of one center point and four axial runs per variable. Thus, the sampling
pattern is similar to a star pattern in a central composite design.

6. Developing expressions for the method’s error
The accuracy of the Hermite–Gaussian quadrature method in estimating themean
and variance can be verified using a Taylor series expansion.

In accordance with the previous sections, the accuracy of the Hermite–
Gaussian quadrature method is first illustrated for a function of only one noise

Figure 3. The sampling arrangement of the proposed quadrature-based method.
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factor following a standard normal distribution. If the response function y(z) is
continuous and differentiable, then the Taylor series approximation of y(z) at z¼ 0 is

y zð Þ¼ y 0ð Þþ y 1ð Þ 0ð Þzþ y 2ð Þ 0ð Þ
2!

z2þ y 3ð Þ 0ð Þ
3!

z3þ⋯: (6)

For legibility reasons, fromnowon y ið Þ 0ð Þ
i! , which is the polynomial coefficient of zi, is

replaced by β ið Þ. With z~ N(0,1), if the coefficients were known, the exact expected
value of y(z) could be calculated as

E y zð Þ½ � ¼ 1ffiffiffiffiffi
2π

p
ð∞
�∞

e�
1
2z

2
X∞
n¼0

β nð Þzndz

¼ 1ffiffiffiffiffi
2π

p
X∞
n¼0

β nð Þ
ð∞

�∞

e�
1
2z

2
zndz

¼ 1ffiffiffiffiffi
2π

p
X∞
k¼0

β 2kð Þ
ð∞

�∞

e�
1
2z

2
z2kdz

¼
X∞
k¼0

2kð Þ!
2kk!

β 2kð Þ:

(7)

In contrast, the expected value of y(z) can also be estimated using the quadrature-
based method, again using the Taylor series of y(z),

E y zð Þð Þ¼
ð∞

�∞

1ffiffiffiffiffi
2π

p e�
1
2z

2
y zð Þdz

≈y 0ð Þþ 1ffiffiffi
π

p
A1 y ζ 1ð Þ� y 0ð Þ½ �þA1 y �ζ 1ð Þ� y 0ð Þ½ �þ
A2 y ζ 2ð Þ� y 0ð Þ½ �þA2 y �ζ 2ð Þ� y 0ð Þ½ �

" #

¼ y 0ð Þþ 2ffiffiffi
π

p
X∞
k¼1

β 2kð Þ A1ζ
2k
1 þA2ζ

2k
2

� �" #
:

(8)

Elaboration of Eq. (7) yields

E y zð Þ½ �exact ¼ β 0ð Þ þβ 2ð Þ þ3β 4ð Þ þ15β 6ð Þþ
105β 8ð Þ þ945β 10ð Þ þ10395β 12ð Þ þ⋯:

(9)

Elaboration of Eq. (8) yields

E y zð Þ½ �quadr ¼ β 0ð Þ þβ 2ð Þ þ3β 4ð Þ þ15β 6ð Þþ
105β 8ð Þ þ825β 10ð Þ þ6675β 12ð Þ þ⋯:

(10)

The coefficients of the first five terms are equal. Therefore, for polynomials of
degree less than 9 the quadrature method will give exact solutions.
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Substituting the Taylor series approximation of y(z) at z ¼ 0 allows the exact
value of variance of y(z) to be expressed as a function of the coefficients:

var y zð Þð Þ¼ 1ffiffiffiffiffi
2π

p
ð∞

�∞

e�
1
2z

2
y2 zð Þdz� 1ffiffiffiffiffi

2π
p

ð∞
�∞

e�
1
2z

2
y zð Þdz

2
4

3
5
2

¼
X∞
k¼0

2kð Þ!
2kk!

X2k
i¼0

β ið Þβ 2k�ið Þ �
X∞
k¼0

2kð Þ!
2kk!

β 2kð Þ
" #2

,

(11)

The variance of y(z) can also be estimated using the quadrature-based method,

var y zð Þð Þ≈ 1ffiffiffi
π

p
A1 y ζ 1ð Þ�y 0ð Þð Þ2þ y �ζ 1ð Þ� y 0ð Þð Þ2� �þ
A2 y ζ 2ð Þ�y 0ð Þð Þ2þ y �ζ 2ð Þ� y 0ð Þð Þ2� �
2
4

3
5

�1
π

A1 y ζ 1ð Þþ y �ζ 1ð Þ�2y 0ð Þð Þþ
A2 y ζ 2ð Þþ y �ζ 2ð Þ�2y 0ð Þð Þ

" #2

¼ 2ffiffiffi
π

p
X∞
k¼1

X2k�1

j¼1

β jð Þβ 2k�jð Þ
 !

A1ζ
2k
1 þA2ζ

2k
2

� �" #

�4
π

X∞
k¼1

β 2kð Þ A1ζ
2k
1 þA2ζ

2k
2

� �" #2
:

(12)

Elaboration of Eq. (11) yields

var y zð Þð Þexact ¼ β 1ð Þ
� �2

þ 6β 1ð Þβ 3ð Þ þ2 β 2ð Þ
� �2
 �

þ 30β 1ð Þβ 5ð Þ þ24β 2ð Þβ 4ð Þ þ15 β 3ð Þ
� �2
 �

þ

210β 1ð Þβ 7ð Þ þ180β 2ð Þβ 6ð Þ þ210β 3ð Þβ 5ð Þ þ96 β 4ð Þ
� �2
 �

þ

1890β 1ð Þβ 9ð Þ þ1680β 2ð Þβ 8ð Þ þ1890β 3ð Þβ 7ð Þ þ1800β 4ð Þβ 6ð Þ þ945 β 5ð Þ
� �2
 �

þ⋯:

Elaboration of Eq. (12) yields

var y zð Þð Þexact ¼ β 1ð Þ
� �2

þ 6β 1ð Þβ 3ð Þ þ2 β 2ð Þ
� �2
 �

þ 30β 1ð Þβ 5ð Þ þ24β 2ð Þβ 4ð Þ þ15 β 3ð Þ
� �2
 �

þ

210β 1ð Þβ 7ð Þ þ180β 2ð Þβ 6ð Þ þ210β 3ð Þβ 5ð Þ þ96 β 4ð Þ
� �2
 �

þ

1650β 1ð Þβ 9ð Þ þ1440β 2ð Þβ 8ð Þ þ1650β 3ð Þβ 7ð Þ þ1560β 4ð Þβ 6ð Þ þ825 β 5ð Þ
� �2
 �

þ⋯:

The coefficients of the first 10 terms are equal. Therefore, for polynomials of degree
less than 5, the quadrature method will give exact solutions for the variance.

Now consider the case for m random input variables, all independent and
following a standard normal distribution (without loss of generality because
scaling and shifting of the variable z is accomplished relatively simply). Assuming

the function is separable, y(z) can be written as
Pm
j¼1

y j z j
� �

.
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To simplify notation, from this point forward, 1i!
∂
iy

∂zij
0ð Þ, which is the polynomial

coefficient of zij, is replaced by β ið Þ
j .

In that case, the Taylor series approximation of y(z) around z ¼ (0, 0,…, 0) is

y zð Þ¼ y 0ð Þþ
X∞
n¼1

Xm
j¼1

β nð Þ
j znj

h i
: (13)

And corresponding with Eq. (7) the expected value of y(z) equals

E y zð Þ½ � ¼ y 0ð Þþ
X∞
k¼1

2kð Þ!
2kk!

Xm
j¼1

β 2kð Þ
j : (14)

Using the quadrature-based method, the expected value of y(z) can also be
estimated,

E y zð Þð Þ¼
Xm
j¼1

E y j z j
� �� �

≈ y 0ð Þþ 2ffiffiffi
π

p
Xm
j¼1

X∞
k¼1

A1ζ
2k
1 þA2ζ

2k
2

� �
β 2kð Þ
j

" #
:

(15)

Elaboration of both Eqs. (14) and (15) gives a similar result as in the one-
dimensional case. For continuous, differentiable and separable polynomials of
degree less than 10 the quadraturemethodwill give exact solutions for the expected
value.

The relative error mean is obtained by subtracting Eq. (15) from Eq. (14) and
then dividing by Eq. (14).

Rel_error¼
�Pm

j¼1 120β 10ð Þ
j þ3720β 12ð Þ

j þ…
h i

y zð ÞþPm
j¼1 β 2ð Þ

j þ3β 4ð Þ
j þ15β 6ð Þ

j þ105β 8ð Þ
j þ945β 10ð Þ

j þ10395β 12ð Þ
j þ…

h i : (16)

The coefficients in the numerator are typically very small. And it is also likely that
the term y(z) in the denominator is the dominating term in practical engineering
systems. Hence the quadrature-based method gives accurate results in estimating
the expected value for 10th or higher order separable polynomial systems.

Corresponding with Eq. (11), the variance of y(z) equals

var y zð Þð Þ¼
Xm
j¼1

X∞
k¼0

2kð Þ!
2kk!

X2k
i¼0

β ið Þ
j β

2k�ið Þ
j �

X∞
k¼0

2kð Þ!
2kk!

β 2kð Þ
j

" #2" #
: (17)

Using the quadrature-based method, the variance of y(z) can also be estimated

var y zð Þð Þ≈
Xm
j¼1

2ffiffiffi
π

p
X∞
k¼1

X2k�1

i¼1

β ið Þ
j β

2k�ið Þ
j

 !
A1ζ

2k
1 þA2ζ

2k
2

� �" #

�4
π

X∞
k¼1

β 2kð Þ
j A1ζ

2k
1 þA2ζ

2k
2

� �" #2

2
666664

3
777775: (18)
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The relative error mean is obtained by subtracting Eq. (18) from Eq. (17) and then
divided by Eq. (17)

εσ2 ¼
Xm
j¼1

�240 β 1ð Þ
j β 9ð Þ

j þβ 2ð Þ
j β 8ð Þ

j þβ 3ð Þ
j β 7ð Þ

j þβ 4ð Þ
j β 6ð Þ

j þ 1
2 β 5ð Þ

j

� �2
 �
�⋯

β 1ð Þ
j

� �2
þ 6β 1ð Þ

j β 3ð Þ
j þ2 β 2ð Þ

j

� �2
 �
þ 30β 1ð Þ

j β 5ð Þ
j þ24β 2ð Þ

j β 4ð Þ
j þ15 β 3ð Þ

j

� �2
 �
þ⋯

:

(19)

The coefficients in the numerator are again small. Hence the quadrature-based
method gives accurate results in estimating the variance for 5th or higher order
separable polynomial systems.

7. Statistical properties of error
For the following results, we assume continuous, differentiable and separable
polynomials with polynomial coefficients that are mutually independent and
normally distributed with zero mean and variances that decrease geometrically
at rate r with the increasing of polynomial order, that is, β ið Þ

j �N 0,rið Þ.
For polynomials satisfying these properties, we can derive exact formulas for

the expected value and the variance of the error εσ2 in Eq. (19). Essential to this
effort is a theorem proved by Magnus (1986), which will be presented in its
entirety here.

Theorem 1 (Magnus 1986)

Let x be a normally distributed n � 1 vector with mean μ and positive definite
covariance matrix Ω ¼ LLT. Let A be a symmetric n � n matrix and B a positive
semidefinite n � n matrix, B 6¼ 0. Let P be an orthogonal n � n matrix and Λ a
diagonal n � n matrix such that

PTLTBLP¼Λ, PTP¼ In

and define

A∗ ¼ PTLTALP, μ∗ ¼ PTL�1μ:

Then we have, provided the expectation exists, for s ¼ 1, 2, …

E xTAx
xTBx

h is
¼ e�

1
2μ
TΩ�1μ

s�1ð Þ!
P
ν
γs νð Þ� Ð∞

0
ts�1 Δj je12ξTξ Qs

j¼1
trR jþ jξTR jξ
� �n jdt,

where the summation is over all 1� s vectors ν¼ (n1, n2,…, ns) whose elements nj

are nonnegative integers satisfying
Ps
j¼1

jn j ¼ s,

γs νð Þ¼ s!2s
Qs
j¼1

n j! 2jð Þn j
� ��1

andΔ is a diagonal positive definite n� nmatrix,R a symmetric n� nmatrix and x
an n � 1 vector given by

Δ¼ Inþ2tΛð Þ�1
2, R¼ΔA∗Δ, ξ ¼Δμ∗:
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Let y(z1, z2, …, zm) be a continuous, differentiable, separable polynomial of
order n. Let xj be the vector of normally distributed polynomial coefficients of the

variable zj in increasing order, that is, x j ¼ β 1ð Þ
j ,β 2ð Þ

j ,…,β nð Þ
j

� �
. In that case, its

mean μ ¼ 0, ξ ¼Δμ∗ ¼ 0 and the covariance matrix Ω is a diagonal matrix with
[r, r2, …, rn] on its diagonal.

LetA be the n� nmatrix withAi1,i2 , i1 6¼ i2, is half the coefficient of β
i1ð Þ
j β i2ð Þ

j and

Ai,i is the coefficient of β ið Þ
j

� �2
in the numerator of Eq. (19). Let B be the n � n

matrix withBi1,i2 , i1 6¼ i2, is half the coefficient of β
i1ð Þ
j β i2ð Þ

j andBi,i is the coefficient of

β ið Þ
j

� �2
in the denominator of Eq. (19). Then

εσ2 ¼ xTAx
xTBx and we can apply Theorem 1 for s¼ 1, giving the expected value and for

s ¼ 2, giving the variance of εσ2 .

Theorem 2

Let y(z1, z2,…, zm) be a continuous, differentiable, separable polynomial of order n
with polynomial coefficients that are mutually independent and normally distrib-
uted with zero mean and variances that decrease geometrically at rate r with the

increasing of polynomial order, that is, β ið Þ
j �N 0,rið Þ.

Then the relative error εσ2 of the quadrature method has mean

E εσ2½ � ¼m
Ð∞
0

Qn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
1þ2tλi

p

 �m Pn

i¼1

1
1þ2tλið Þ

Pn
k¼1

Pn
l¼1

ffiffiffiffiffiffiffiffi
rkþl

p
Pk,iPl,iAk,l


 �
dt

and variance

E εσ2½ �2 ¼m
Ð∞
0

Qn
i¼1

tffiffiffiffiffiffiffiffiffiffi
1þ2tλi

p

 �m Pn

i1¼1

Pn
i2¼1

Xi1 i2

1þ2tλi1ð Þ 1þ2tλi2ð Þdt

with

Xi1i2 ¼
Pn
k1¼1

Pn
k2¼2

Pn
l1¼1

Pn
l2¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk1þk2þl1þl2

p
Pi1,l1Pi2,l2 2Pi2,k1Pi1,k2 þPi1,k1Pi2,k2ð ÞAl1,k1Al2,k2 :

Here λ is a vector of eigenvalues and P is amatrix whose columns correspond to the
eigenvectors of the matrixM¼ LTBL, with B the n� nmatrix with Bi1,i2 , i1 6¼ i2, is

half the coefficient of β i1ð Þ
j β i2ð Þ

j and Bi,i is the coefficient of β ið Þ
j

� �2
in the denom-

inator of Eq. (19) and L is a diagonalmatrix with
ffiffi
r

p
,
ffiffiffiffi
r2

p
,…,

ffiffiffiffi
rn

ph i
on its diagonal.

Proof

For s ¼ 1, we have ν¼ 1½ � and γ1 1½ �ð Þ¼ 1.

For s¼ 2, we have n1þ2n2 ¼ 2, that is, ν¼ 0,1½ � or ν¼ 2,0½ �, and γ2 0,1½ �ð Þ¼ 2 and
γ2 2,0½ �ð Þ¼ 1.
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Let L be the diagonal matrix with
ffiffi
r

p
,
ffiffiffiffi
r2

p
,…,

ffiffiffiffi
rn

ph i
on its diagonal, thenΩ¼ LLT

and let

M¼ LTBL:

Let P be an n � n matrix with the normalized eigenvectors of the matrix M as its
columns, then PTP ¼ In and

Λ¼ PTLTBLP

is the n� n diagonal matrix with the eigenvalues λ1,…, λn ofM on its diagonal. Let
Δ be defined by

Δ¼ Inþ2tΛð Þ�1
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tλ1

p
0 0 ⋯ 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tλ2

p
0 ⋯ 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tλ3

p
⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tλn

p

2
6666664

3
7777775

�1

:

Then its determinant equals Δj j ¼Qn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
1þ2tλi

p .

Let A* be defined by

A� ¼PTLTALP

Then R ¼ Δ A* Δ equals

R¼ Inþ2tΛð Þ�1=2PTLTALP Inþ2tΛð Þ�1=2:

The elements of R equal

Ri1,i2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tλi1ð Þ 1þ2tλi2ð Þp Pn

k¼1

Pn
l¼1

ffiffiffiffiffiffiffiffi
rkþl

p
Pi1,kPi2,lAl,k, i1, i2∈ 1,2,…,nf g:

The diagonal elements of R2 equal

R2
i1,i1

¼ Pn
i2¼1

Ri2i1Ri1i2 , i1∈ 1,2,…,nf g:

Then

E εσ2½ � ¼
Xm
j¼1

ð∞
0

Δj jtrRdt

¼m
ð∞
0

Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tλi

p
 !m Xn

i¼1

1
1þ2tλið Þ

Xn
k¼1

Xn
l¼1

ffiffiffiffiffiffiffiffi
rkþl

p
Pk,iPl,iAk,l

 !
dt

and
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E εσ2½ �2 ¼
Xm
j¼1

2
ð∞
0

t Δj j trR2
� �

dtþ
ð∞
0

t Δj j trRð Þ2dt

¼
Xm
j¼1

ð∞
0

t Δj j 2trR2þ trRð Þ2� �
dt

¼m
ð∞
0

Yn
i¼1

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tλi

p
 !m

2
Xn
i1¼1

Xn
i2¼1

Ri2i1Ri1i2 þ
Xn
i1¼1

Ri1i1

 !2 !
dt

¼m
ð∞
0

Yn
i¼1

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tλi

p
 !mXn

i1¼1

Xn
i2¼1

2Ri2i1Ri1i2 þRi1i1Ri2i2ð Þdt

¼m
ð∞
0

Yn
i¼1

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2tλi

p
 !mXn

i1¼1

Xn
i2¼1

Xi1i2

1þ2tλi1ð Þ 1þ2tλi2ð Þdt,

with

Xi1i2 ¼
Pn
k1¼1

Pn
k2¼2

Pn
l1¼1

Pn
l2¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk1þk2þl1þl2

p
Pi1,l1Pi2,l2 2Pi2,k1Pi1,k2 þPi1,k1Pi2,k2ð ÞAl1,k1Al2,k2 :

Assume that the function y(z) is a fifth-order separable polynomial and that the
polynomial coefficients are normally distributed with zeromean and their variance
that decreases geometrically at rate rwith the increasing of polynomial order. For a
fifth order polynomial, the numerator of Eq. (19) only consists of the term

120 β 5ð Þ
j

� �2
, so A5,5 ¼ 120 and Ai,j ¼ 0 otherwise. Then, with Theorem 2, the

relative error εσ2 of the quadrature method has mean

E εσ2½ � ¼�120r5m
Ð∞
0

Q5
i¼1

1ffiffiffiffiffiffiffiffiffiffi
1þ2tλi

p

 �m P5

i¼1

P2
5,i

1þ2tλið Þ


 �
dt

and variance

E εσ2½ �2 ¼ 1202r10m
Ð∞
0

Qn
i¼1

tffiffiffiffiffiffiffiffiffiffi
1þ2tλi

p

 �m Pn

i1¼1

Pn
i2¼1

Pi1,5Pi2,5 2Pi2,5Pi1,5þPi1,5Pi2,5ð Þ
1þ2tλi1ð Þ 1þ2tλi2ð Þ dt:

An interesting implication of Theorem 2 is that the expected value of error is
nonzero for polynomials of order 5 and higher and therefore the quadrature-based
method is biased in estimating the relative error εσ2 for a fifth or higher order
separable polynomial system.

Figure 4 presents results from Theorem 2 which can be used as a priori error
estimates. Plotted are the expected value of error and the standard deviation of
error for the quadrature-based method versus dimensionalitym for a few different
values of the parameter r. The plotted values were computed using Theorem 2 and
confirmed via Monte Carlo simulation. The results are plotted over a range of
values for the parameter r. It was shown empirically by Li & Frey (2005) via ameta-
analysis of published experiments that two-factor interactions are about 0.2 the size
of the main effects on average across large populations of factorial experiments.
This might suggest that 0.2 is a reasonable mean value for a prior probability of r,
but we also plotted results for somewhat higher and lower values of r.
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The expected value of error for quadrature is strictly negative; therefore the
estimates tend to be lower than the actual transmitted variance of the system,
although the error can be positive in individual uses of themethod. Themean error
decreases and the dimensionality of the problem increases, but it does not converge
asymptotically toward zero.

The first term in Eq. (17) is weighted bymwhile the second term is weighted by
m2 and the denominators of both terms are raised to the power m. An interesting
implication is that, if the function y is separable, the error variance of the method
decreases monotonically and tends to zero in the limit as the number of noise
factors,m, grows. Thismonotonicity and decay to zero hold for all values of the rate
of decay r less than unity.

8. Comparative assessment via hierarchical
probability models

The accuracy of the proposed method is determined by the relative size of single-
factor effects and interactions and by the number of interactions. Thus, an error
estimate might be based on a reasonable model of the size and probability of
interactions. The hierarchical probability model was proposed by Chipman et al.
(1997) as a means to more effectively derive response models from experiments
with complex aliasing patterns. This model was fit to data from 46 full factorial
engineering experiments (Li and Frey, 2005). The fitted model is useful for
evaluating various techniques for robust design with computer experiments.
Eqs. (20) through (27) comprise the model used here.

y¼
Xn
i¼1

βixiþ
Xn
j¼1

Xn
i¼1
i≤j

βijxix jþ
Xn
k¼1

Xn
j¼1
j≤k

Xn
i¼1
i≤j

βijkxix jxk (20)

xi �N 0,σ2
� �

, (21)

Figure 4. The scaling with dimensionality,m, of standard deviation of relative error, ε, for of the quadrature-
based method when applied to separable functions.
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where σ ¼ 10%.

f βi δijð Þ¼ N 0,1ð Þ if δi ¼ 0

N 0,10ð Þ if δi ¼ 1

	
(22)

f βij δij
��� �

¼ N 0,1ð Þ if δij ¼ 0

N 0,10ð Þ if δij ¼ 1

	
(23)

f βijk δijk
��� �

¼ N 0,1ð Þ if δijk ¼ 0

N 0,10ð Þ if δijk ¼ 1

(
(24)

Pr δi ¼ 1ð Þ¼ p (25)

Pr δij ¼ 1 δij ,δ j
� �¼

p00 if δiþδj ¼ 0

p01 if δiþδj ¼ 1

p11 if δiþδj ¼ 2

8><
>: (26)

Pr δijk ¼ 1 δij ,δ j,δk
� �¼

p000 if δiþδjþδk ¼ 0

p001 if δiþδjþδk ¼ 1

p011 if δiþδjþδk ¼ 2

p111 if δiþδjþδk ¼ 3

8>>><
>>>:

(27)

Eq. (20) expresses the assumption that the system response is a third order
polynomial. Eq. (21) defines the input variations as random normal variates. We
used a standard deviation of 10% because it represented a level of difficulty for the
methods comparable to that found in most case studies we have found in the
literature. Eqs. (22) through (24) assign probability distributions to the polynomial
coefficients. Polynomial coefficients βιwhose corresponding parameter δι¼ 1 have
a larger probability of taking on a large positive or negative value. The values of the
parameters δι are set in Eqs. (25) through (27). The values of the parameters in the
model are taken from an empirical study of 113 full factorial experiments [16] and
are p ¼ 39%, p00 ¼ 0.48%, p01 ¼ 4.5%, p11 ¼ 33%, p000 ¼ 1.2%, p001 ¼ 3.5%,
p011 ¼ 6.7% and p111 ¼ 15%.

For each integer n∈ 6,20½ �, one thousand systems were sampled from themodel
(Eqs. (20 through (27)) The expected value and standard deviation of the response
y was estimated in five ways:

(i) using the quadrature technique which required 4mþ1 samples,
(ii) generating 4mþ1 samples via LHS and computing their mean and standard

deviation,
(iii) generating 4mþ1 samples via HSS and computing their mean and standard

deviation,
(iv) generating 10� 4mþ1ð Þ samples via LHS and computing their mean and

standard deviation and
(v) generating 10� 4mþ1ð Þ samples via HSS and computing their mean and

standard deviation.
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The exact solution was also determined using Eqs. (9 and (10), enabling the
computation of the size of the error for each of the 1000 systems given each of the
three methods. These data were used to estimate the cumulative probability versus
error (Figure 4). In effect, this is a chart of confidence level versus error tolerance.
The preference is for methods that lie higher on the chart since this indicates
greater confidence that the given error tolerance will be satisfied than methods
lower on the chart.

Figure 5 shows that the quadrature technique estimated the standard deviation
within 5% for more than 95% of all systems sampled. Quadrature accomplished
this with only 4mþ1 samples. HSS and LHS were unable to provide comparably
good results with 4mþ1 samples. However, given 10 times the resources, HSS
achieved accuracy comparable to that of quadrature.

The model-based evaluation presented here assumes that the system response
is a polynomial. This is a significant limitation. This approach can reveal the error
due to the presence of interaction effects, but it cannot account for the errors due to
departure of a system from a polynomial response approximation. For this reason,
the case studies in the next section are an important additional check on the results.

9. Comparative assessment via case studies
This section presents five computer simulations of engineering systems to which
different methods for estimating transmitted variance are applied. One of the
engineering systems, the LifeSat satellite, has two different responses making six
responses total in the set of five systems. For each of the six responses, two designs
within the parameter space are considered – an initial design and an alternative

Figure 5. Cumulative probability versus error in estimating standard deviation for
five different sampling procedures.
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that exhibits lower transmitted variance (we will call this the “robust design”). As a
result, there were 12 cases in total to which the sampling methods were applied.

9.1. Case 1: continuous-stirred tank reactor

The engineering system in this case is a continuous-stirred tank reactor (CSTR)
which was used to demonstrate the advantages of HSS over LHS (McKay et al.
1979). The function of the CSTR system is to produce a chemical species B at a
target production rate (RB) of 60mol/min. Variations from the target (either above
or below target) are undesirable. The CSTR system is comprised of a tank into
which liquid flows at a volumetric flow rate (F) and initial temperature (Ti). The
liquid contains two chemical species (A and B) with known initial concentrations
(CAi and CBi). In addition to fluid, heat is added to the CSTR at a given rate (Q).
Fluid flows from theCSTR at the same rate it enters but at different temperature (T)
andwith different concentrations of the species A and B (CA andCB). The system is
governed by five equations.

Q¼ FρCp T�Tið ÞþV rAHRAþ rBHRBð Þ,

CA ¼ CAi

1þk0Ae
�EA=RTτ

,

CB ¼CBiþk0Ae
�EA=RTτCA

1þk0Be
�EB=RTτ

,

�rA ¼ k0Ae
�EA=RTCA,

�rB ¼ k0Be
�EB=RTCB�k0Ae

�EA=RTCA,

where the average residence time in the reactor is V/F and the realized production
rate (RB) is rBV which has a desired target of 60 mol/min.

Table 1 provides a listing of physical constants, input and output variables.
These values of physical constants and the input variables are taken directly from
Kalagnanam&Diwekar (1997)) with the exception that the values of T and Tiwere
swapped to correct for a typographical error in the previous paper pointed out to us
by its authors. Following the example of Kalagnam and Diwekar’s paper, we
assume that all the input variables are independent and normally distributed with
a standard deviation of 10% of the mean. We considered two different “designs”
(i.e., nominal values for the input variables) described in Kalagnam and Diwekar’s
paper – onewas an initial design and the other was an optimized robust designwith
greatly reduced variance in the response RB.

To check that the model was correctly implemented, the results at both points
were reproduced by Monte Carlo simulations with 106 trials each. Kalagnam and
Diwekar found a transmitted variance in the initial design of 1638 (mol/min)2 and
we computed a transmitted variance of 1625.7� 1.5 (mol/min)2. There was also a
small discrepancy in the transmitted variance of the robust design – the published
value was 232 (mol/min)2 and we computed 232.3 � 0.4 (mol/min)2. The
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discrepancy between our results and the previously published results is small (less
than 0.2%) and likely due to differences in implementation of the solver for the
system of equations.

Monte Carlo simulations were run using 106 samples to estimate the true
standard deviation of the response of the CSTR due to the six noise factors. Then,
six different methods were used to estimate the standard deviation of the response:
(1) the quadrature technique using 25 samples; (2) HSS using 25 samples; (3) LHS
using 25 samples; (4) QFM which required 33 samples; (5) HSS using 250 samples
and (6) LHS using 250 samples.

Table 2 presents the results. The error of the quadrature technique as applied to
the CSTR was about 5% for the initial design and improved substantially when the

Table 1. Parameters and their values in the continuous-stirred tank reactor
case study

Parameter Value Units Description

k0A 8.4 x 105 1/min Constant

k0B 7.6 x 104 1/min Constant

HRA �2.12 x 104 J/mol Constant
HRB �6.36 x 104 J/mol Constant
EA 3.64 x 104 J/mol Constant
EB 3.46 x 104 J/mol Constant
Cp 3.2 x 103 J/kg/K Constant
R 8.314 J/mol/K Constant

ρ 1180.0 kg/m3 Constant

Initial design

CAi 3118 mol/m3 Input variable
CBi 342 mol/m3 Input variable
Ti 300 K Input variable
Q 1.71 x 106 J/min Input variable
V 0.0391 m3 Input variable

F 0.0781 m3/min Input variable

Robust design

CAi 3119.8 mol/m3 Input variable
CBi 342.24 mol/m3 Input variable
Ti 309.5 K Input variable
Q 5.0 x 106 J/min Input variable
V 0.05 m3 Input variable

F 0.043 m3/min Input variable
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designwasmademore robust. Given that there were nine randomly varying inputs,
Theorem 2 suggested that the mean error would be about –0.5% and the standard
deviation of error would be about 0.5 to 1%. These results are consistent with
Theorem 2 at the robust set point, but the response to noise was unexpectedly
challenging for the initial set point. HSS with 25 samples outperformed quadrature
at the initial design, but then performed very poorly at the robust design. Cubature
had slightly lower error than quadrature at the initial design, but quadrature
performed much better than cubature at the robust design set point and also
required about half as many function evaluations.

9.2. Case 2: LifeSat satellite

The engineering system in this case is a LifeSat satellite which was used to
demonstrate the benefits of the Taguchimethod (Mistree et al. 1993). The objective
is to select a few key initial conditions at the start of a satellite de-orbit maneuver in
order to have the satellite land near a specified target while minimizing the
maximum acceleration and dynamic pressure during the de-orbit trajectory. The
satellite itself is modeled as a point mass subject to gravitational, drag, and lift
forces. The de-orbit sequence is as follows. First, the satellite is subjected to a

Table 2. Comparing the accuracy of sampling methods as applied to the
continuous-stirred tank reactor

Sampling
method # of samples μ(RB) σ(RB)

Error in estimate
of σ (%)

Initial design

Monte Carlo 106 60.434 40.320 –

Quadrature 25 60.208 38.149 �5.4
HSS 25 57.988 39.315 �2.5
LHS 25 61.616 42.991 6.6
QFM 33 58.366 33.227 �17.6
Cubature 57 60.114 38.76 �3.9
HSS 250 59.903 40.217 0.3

LHS 250 59.770 39.791 �1.3

Robust design

Monte Carlo 106 50.894 15.242 –
Quadrature 25 50.735 15.169 �0.5
HSS 25 51.142 11.702 �23.3
LHS 25 49.676 16.993 11.5
QFM 33 34.915 9.725 �36
Cubature 57 50.621 15.453 1.4
HSS 250 50.985 15.532 1.9

LHS 250 50.438 15.702 3.0
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prescribed thrust to set it on a de-orbit path. The initial state of the satellite after this
thrust is described by a three-dimensional position and a velocity vector. Next, the
satellite proceeds through a freefall stage whereby it experiences the effects of
gravity drag and lift forces until it contacts the earth’s surface. The states of
importance in the calculation of this trajectory are the landing position and a
measure representative of the maximum force that the satellite experiences during
free fall. The system is governed by three equations.

Ftot ¼�m μ=R2
� �

eRþ1
2
ρv2rAref cded , (28)

ρ≈ ρ0 � exp � h�hoð Þ=hs½ �, (29)

Table 3. Parameters and their values in the LifeSat case study

Parameter Value Units Description

hs 8.563 Km Constant

ρ0 1.2 kg/m3 Constant
g 9.81 m/s2 Constant

R0 6370 km Constant

Initial design

Parameter Mean Standard Deviation Distribution

Initial position: x –1360.4 km 5000 m Normal
Initial position: y –4548.8 km 5000 m Normal
Initial position: z 4427.5 km 5000 m Normal
Vehicle mass 1560.4 kg 1.667% Uniform
Atm. density 1.2 kg/m3 10% Normal
Drag coefficient 0.668 1.667% Normal
Initial speed: Vx –1559.1 m/s 0.667% Normal
Initial speed: Vy –5213.2 m/s 0.667% Normal

Initial speed: Vz –7168.8 m/s 0.667% Normal

Robust design

Initial longitude 106.65o 0.01o Normal
Initial latitude 43.783o 0.1o Normal
Initial altitude 12,1920 m 250m Normal
Vehicle mass 1460.0 kg 1.667% Uniform
Atm. density 1.2 kg/m3 10% Normal
Drag coefficient 0.668 1.667% Normal
Initial velocity 9846.5 m/s 0.667% Normal
Initial flight path angle –5.98o 0.1o Normal

Initial azimuth 180o 0.1o Normal
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μ¼ gR2
0: (30)

Table 3 provides a listing of physical constants and nine dispersed vehicle and
environmental parameters (Mistree et al. 1993).We considered two different designs
both described in the published case – one was an initial design and the other was an
optimized robust design with greatly reduced variance in the landing coordinate.

In order to validate the simulation code, a verification study was performed.
Mistree et al. (1993) found the landing position of –106.65° longitude and 33.71°
latitude. We obtained –106.65° longitude and 33.69° latitude.

Monte Carlo simulations were run using 104 samples to estimate the true
standard deviation of both landing longitude and latitude due to the nine noise
factors. Then, six differentmethods were used to estimate the standard deviation of
the response: (1) quadrature (Eqs. (4)–(6)) using 4n þ 1 or 37 samples; (2) HSS
using 37 samples; (3) LHS using 37 samples; (4) QFM which required 33 samples;
(5) HSS using 370 samples; and (6) LHS using 370 samples.

Tables 4 and 5 present the results. The error of the quadrature technique as
applied to the LifeSat satellite was less than 2% for the initial design and robust
design. Given that there were nine randomly varying inputs, Theorem 2 suggested
that the mean error would be about –0.5% and the standard deviation of error
would be about 0.5% to 1%. These results are generally consistent with Theorem
2 at both the robust set point and the initial set point. Quadrature outperformed

Table 4. Comparing the accuracy of sampling methods as applied to the LifeSat
satellite (longitude)

Sampling method # of samples μ σ
Error in

estimate of σ

Initial design

Monte Carlo 104 –106.65 0.056 –

Quadrature 37 –106.65 0.056 0%
HSS 37 –106.65 0.0545 –2.7%
LHS 37 –106.65 0.0591 5.5%
QFM 33 –106.65 0.0536 –4.3%
HSS 370 –106.65 0.0556 –0.7%

LHS 370 –106.65 0.0563 0.5%

Robust design

Monte Carlo 104 –106.65 0.0077 –
Quadrature 37 –106.65 0.0078 1.3%
HSS 37 –106.65 0.0071 –7.8%
LHS 37 –106.65 0.0073 5.2%
QFM 33 –106.65 0.0053 –31.2%
HSS 370 –106.65 0.0077 0%

LHS 370 –106.65 0.0076 –1.3%
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HSS, LHS, and QFM with similar samples at both the initial design and the robust
design. Cubature required three times as many function evaluations and yet
performed less well than quadrature.

9.3. Case #3: I Beam

The engineering system in this case is an I beamwhichwas used to demonstrate the
advantages of dimension reduction integration in uncertainty analysis (Huang &
Du 2005). The parameters in the model are depicted graphically in Figure 6.

The system is governed by the following three equations

Y ¼ g Xð Þ¼ σmax�S, (31)

σmax ¼Pa L�að Þd
2L � I , (32)

I¼ b f d
3� b f � tw
� �

d�2t f
� �3

12
, (33)

Table 5. Comparing the accuracy of sampling methods as applied to the LifeSat
satellite (latitude)

Samplingmethod # of samples μ σ
Error in estimate

of σ (%)

Initial design

Monte Carlo 104 33.5895 0.8260 –

Quadrature 37 33.5840 0.8122 –1.7
HSS 37 33.5231 0.8231 –0.4
LHS 37 33.5856 0.7088 –14.2
QFM 33 33.5815 0.5190 –37.2
Cubature 111 33.6101 0.6651 –19.5
HSS 370 33.5753 0.8262 0.02

LHS 370 33.5749 0.8719 5.6

Robust design

Monte Carlo 104 33.6992 0.2007 –
Quadrature 37 33.6979 0.2018 –0.5
HSS 37 33.7288 0.1698 –15.4
LHS 37 33.6936 0.2297 14.4
QFM 33 33.6978 0.1854 7.6
Cubature 111 33.6982 0.2225 9.8
HSS 370 33.7015 0.1893 –5.7

LHS 370 33.6979 0.1960 –2.3
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Table 6 provides a listing of eight random variables which are taken directly from
the published case study (Huang &Du 2005). We considered two different designs
– one was an initial design from the published case and the other was an optimized
robust design proposed here with greatly reduced variance in the output perform-
ance.

Table 6. Parameters and their values in the I beam case study

Parameter Mean Standard Deviation

Initial design

P 6070 200

L 120 6
a 72 6
S 170,000 4760
D 2.3 1/24
bf 2.3 1/24
tw 0.16 1/48

tf 0.16 1/48

Robust design

P 10,125 200
L 240 6
a 109 6
S 85,000 4760
D 4.6 1/24
bf 4.6 1/24
tw 0.32 1/48

tf 0.52 1/48

Figure 6. Parameters of an I-beam (adapted from Huang & Du (2005)).
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To check that the model was correctly implemented, the results at both points
were reproduced by Monte Carlo simulations with 106 trials each. Huang & Du
(2005) found the first and second estimatedmoments about zero using 106 samples.
The previously published value of the transmitted variance was 3.2137 � 108. We
computed the transmitted variance of 3.2048� 108. The discrepancy between our
results and the previously published results is small (less than 0.3%).

Monte Carlo simulations were run using 106 samples to estimate the true
standard deviation of the output performance due to the eight noise factors. Then,
six different methods were used to estimate the standard deviation of the response:
(1) quadrature (Eqs. (3) and (4)) using 4n þ 1 or 33 samples; (2) HSS using
33 samples; (3) LHS using 33 samples; (4) QFM which required 33 samples;
(5) HSS using 330 samples and 6) LHS using 330 samples.

Table 7 presents the results of the case study. The accuracy of the quadrature
technique as applied to the I-beam was excellent and generally as expected
according to Theorem 2. The error was less than 1% and improved slightly as
the design was made more robust. This level of accuracy was superior to any
method using a comparable number of samples. However, if HSS was afforded
10 times the number of samples as quadrature, it could also provide excellent
accuracy. Cubature required more than twice the function evaluations and

Table 7. Comparing the accuracy of sampling methods as applied to the I beam

Sampling method # of samples μ σ
Error in estimate

of σ (%)

Initial design

Monte Carlo 106 –19,825 17,902 –

Quadrature 33 –19,805 17,722 –1.0
HSS 33 –17,698 16,407 –8.4
LHS 33 –20,540 16,195 –9.5
QFM 33 –19,850 16,831 6.0
Cubature 73 –19,819 17,915 –0.1
HSS 330 –19,271 17,601 –1.7

LHS 330 –19,943 17,097 –4.5

Robust design

Monte Carlo 106 –19,818 5535.7 –
Quadrature 33 –19,825 5537.4 0.01
HSS 33 –18,969 4948.1 –10.6
LHS 33 –19,793 6003.3 8.5
QFM 33 –19,824 5470 –1.2
Cubature 73 –19,825 5541 0.1
HSS 330 –19,623 5418.2 –2.1

LHS 330 –19,829 5770.6 4.3
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performed better at the initial set point but worse than quadrature at the robust set
point.

9.4. Case #4: 10-bar truss

The engineering system in this case is a linear-elastic 10-bar truss structure which
was used to demonstrate the accuracy and efficiency of the univariate approxima-
tion method in higher-order reliability analysis (Rahman & Wei 2006). Two
concentrated forces are applied at nodes 2 and 3 of the structure as indicated in
Figure 7. The maximum displacement occurs at node 3 which is taken as the
performance function of interest. Although the components of the truss behave
linearly with applied load, the displacements of the structure are large enough to
bring about significantly nonlinear behavior of the structure.

Table 8 provides a listing of physical constants and 10 random variables which
are taken from the published case (Rahman & Wei 2006). We considered two
different “designs” – one was an initial design given in the published case and the
other was an optimized robust design proposed here with greatly reduced variance
in the output performance.

To check that the model was correctly implemented, the failure probability of
the 10-bar truss structure was reproduced by Monte Carlo simulations with 106

trials. Rahman found a failure probability of 0.1394 using 106 samples (Rahman &
Wei 2006) and we computed 0.1392 using 106 samples. The discrepancy between
our results and the previously published results are small (less than 0.2%).

Monte Carlo simulations were run using 106 samples to estimate the true
standard deviation of the output performance due to the 10 noise factors. Then, six
different methods were used to estimate the standard deviation of the response:
(1) quadrature (Eqs. (4)–(6)) using 4nþ 1 or 41 samples; (2) HSS using 41 samples;
(3) LHS using 41 samples; (4) QFM which required 33 samples; (5) HSS using
410 samples; and (6) LHS using 410 samples.

Table 9 presents the results. The error of the quadrature technique as applied to
the 10-bar truss was around 3% for both the initial design and the robust design.
Given that there were eight randomly varying inputs, Theorem 2 suggested that the
mean error would be about -0.5% and the standard deviation of error would be
about 0.5 to 1%. These results suggest that the 10-bar truss was somewhat

Figure 7. Parameters of a 10-bar truss (from Rahman & Wei (2006)).
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challenging case for quadrature. LHS and HSS outperform quadrature if they are
afforded 10 times number of samples but are substantially less reliable if they have
to use the same number of samples as quadrature. Note that in this case study, the
standard deviation of noise factor is 20% of the mean whereas in the model-based
evaluation of Section 4, the standard deviation of noise factor is 10% of the mean.
Cubature required more than three times as many function evaluations and had
similar performance as quadrature.

9.5. Case 5: operational amplifier

The engineering system in this case is an operational amplifier (op amp) which was
used by to demonstrate the use of orthogonal arrays for robust design with
computer simulations (Phadke 1989). The circuit is presented in Figure 7. The
op amp is to be manufactured on a single board using 15 circuit elements whose
parameters are to be chosen so that the offset voltage of the circuit is consistent
despite manufacturing variations. There are 21 noise factors which affect the offset
voltage (20 characterizing the circuit elements and one for the operating tempera-
ture) as shown in Table 10. Following the example of Phadke, we modeled some of
the noise factors as correlated and some as independent. Phadke defined sliding
levels to use in an L36 orthogonal outer array.We calculated the covariance matrix
for the noise exhibited in the L36 array, and then ran various sampling schemes

Table 8. Parameters and their values in the 10-bar truss case study

Parameter Value Units Description

Young’s modulus E 107 psi Constant

Load P 105 lb Constant

Length L 360 in Constant

Initial design

Parameter Mean Standard Deviation

Xi, i ¼ 1, …, 10 2.5 in 0.5 in

Robust design

X1 2.7272 0.5 in
X2 2.2727 0.5 in
X3 2.2727 0.5 in
X4 2.2727 0.5 in
X5 2.7156 0.5 in
X6 2.2727 0.5 in
X7 2.2727 0.5 in
X8 2.7500 0.5 in
X9 2.2727 0.5 in

X10 2.2727 0.5 in
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assuming the same covariance. Phadke also defined some noise factors as lognor-
mally distributed. We adapted different sampling methods by transforming those
input variables and then treating the transformed inputs as normally distributed
variates. We considered two different designs, an initial design and a robust design
as described in Table 10 (Phadke 1989).

We developed a simulation of the op amp circuit based on an Ebers-Mollmodel
of the transistors. To check that the model was correctly implemented, the results
were checked against Phadke’s published figures for the L36 outer array. Once the
simulation was verified, we tested sampling techniques on it.

Monte Carlo simulations were run using 3 � 104 samples to estimate the true
standard deviation of the response of the op amp due to the 21 noise factors. Then,
four different methods were used to estimate the standard deviation of the offset
voltage: (1) the quadrature technique (Eqs. (3)–(5)) using 2m þ 1 or 43 samples;
(2) HSS using 43 samples; (3) LHS using 43 samples; (4) HSS using 430 samples;
and (5) LHS using 430 samples.

Table 11 presents the results of the case study. The accuracy of the quadrature
technique as applied to the op ampwas excellent beginning at less than 1% error and
improving slightly as the design was made more robust. Given that there were
19 randomly varying inputs, Theorem 2 suggested that the accuracy would be

Table 9. Comparing the accuracy of sampling methods as applied to the 10-bar
truss

Sampling method # of samples μ σ
Error in estimate

of σ (%)

Initial design

Monte Carlo 106 16.3225 1.6334 –

Quadrature 41 16.3145 1.5913 –2.6
HSS 41 16.5797 1.7042 4.3
LHS 41 16.3307 1.5419 –5.6
QFM 33 16.3329 1.7685 8.3
Cubature 133 16.3138 1.5662 –4.1
HSS 410 16.3947 1.6570 1.4

LHS 410 16.3199 1.6824 3.0

Robust design

Monte Carlo 106 16.333 1.5102 –
Quadrature 41 16.3225 1.4670 –2.9
HSS 41 16.6898 1.5784 4.5
LHS 41 16.3848 1.9018 25.9
QFM 33 16.3468 1.6697 10.6
Cubature 133 16.3256 1.4784 –2.1
HSS 410 16.4137 1.5281 1.2

LHS 410 16.3343 1.5529 2.8
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improved compared to the other cases which is what we observed. The level of
accuracy attained by quadrature was superior to any method using a comparable
number of samples.However, ifHSSwas afforded 10 times the number of samples as
quadrature, it could also provide excellent accuracy. Unlike the other four systems
simulated, QFM was not run on the op amp. The method could not be scaled to
accommodate the large number of noise factors. Instead an L36 orthogonal array is
presented as a basis of comparison. TheL36providedgood results for this system, but
not as good as the quadrature technique. The cubature method required more than
10 times the function evaluations and performed less well than quadrature.

9.6. All the case studies as a set

The set of case studies presented here can be studied as a set. There were five
engineering systems and six different responses. For each response, there were an
initial and a robust design making 12 case studies in total. Given the accuracy of
each method applied across all the cases, it is possible to construct an empirical cdf

Table 10. Noise factors in the op amp case study, means and standard
deviations

Parameter Mean Tolerance (%) Units

RFM 71 1 kΩ

RPEM 15 21 kΩ

RNEM 2.5 21 kΩ

CPCS 20 6 μA

OCS 20 6 μA

RFP RFM 2 Ω

RIM RFM/3.55 2 Ω

RIP RFM/3.55 2 Ω

RPEP RPEM 2 Ω

RNEP RNEM 2 Ω

AFPM 0.9817 2.5 –

AFPP AFPM 0.5 –

AFNM 0.971 2.5 –

AFNP AFNM 0.5 –

AFNO 0.975 1 –

SIEPM 3.0E-13 Factor of 7 A

SIEPP SIEPM Factor of 1.214 A

SIENM 6.0E-13 Factor of 7 A

SIENP SIENM Factor of 1.214 A

SIENO 6.0E-13 Factor of 2.64 A

TKLEV 298 15 °K
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of its accuracy. These are presented in Figure 8 with the model-based cdf for the
4m þ 1 quadrature technique as previously presented in Figure 5.

A principal observation is that, for the 4m þ 1 quadrature technique, the
empirical cdf largely matches the model-based cdf. In the range of 3%–5% accuracy,
the empirical cdf indicated a somewhat lower probability than the model-based cdf,
but this deviation is within the 95% confidence range predicted by the model when
only 12 samples are used to construct a cdf (the 95% range is not depicted since
Figure 6 is already very dense). Note that the case studies make no assumption of
polynomial response behavior. Therefore we submit that the model-based approach
to evaluating the accuracy of the sampling methods has passed a stringent test.

Another important set of conclusions arise from comparing the empirical cdfs
for the different methods. As in the model-based evaluation, quadrature substan-
tially outperforms the previously available methods when they employ a compar-
able number of simulations. For the case studies, it appears that if 10 times the
number of simulations can be run, then quadrature provides slightly better results.

Also, note that in four out of five case studies, the accuracy of quadrature is
better for the robust design than for the initial design. It is not yet clear that this
phenomenon is reliable, but it would be useful if it were. As the outer optimization

Table 11. Comparing the accuracy of sampling methods as applied to the
operational amplifier

Sampling method # of samples μ σ
Error in estimate

of σ (%)

Initial design

Monte Carlo 3 � 104 –2.994 32.674 –

Quadrature 43 –2.7899 32.738 0.2
HSS 43 –16.041 22.265 –31.6
LHS 43 –3.796 28.263 –13.5
HSS 430 –4.433 33.187 1.6
LHS 430 –2.758 33.008 1.0
Cubature 507 –2.763 30.048 –8.0

L36 36 –2.862 33.282 1.9

Robust design

Monte Carlo 3 � 104 1.727 19.988 –
Quadrature 43 –1.611 20.014 0.1
HSS 43 –8.378 12.963 –35.1
LHS 43 –2.266 17.606 –11.9
HSS 430 –2.396 20.14 0.8
LHS 430 –1.607 20.414 2.1
Cubature 507 –1.610 18.672 –6.6

L36 36 –1.653 20.259 1.4
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loop begins to hone in on promising design candidates, the ability to make finer
distinctions becomes more valuable.

Overall, the case studies as a set are consistent with the principal claims from
themodel-based evaluation. The quadrature technique enables a 10-fold reduction
in the number of computational simulations needed for robust design while
providing reasonable accuracy. In addition, the accuracy of the method usually
improves as the design is made more robust which should be advantageous when
the method is used as an inner loop of a robustness optimization procedure.

10. Conclusions
This paper provides an alternative tool for practitioners to efficiently estimate
transmitted variance as part of Robust Parameter Design. This tool is based on
Hermite–Gaussian quadrature which, by exploiting the property of hierarchy and
compromising slightly on accuracy and bias, greatly reduces the number of
samples needed and scales linearly with the number of variables. This paper
provides an analysis of the accuracy of the estimated transmitted variance using
the quadrature-based method for separable polynomial response systems. It is
verified that the method gives exact transmitted variance if the response is up to a
fourth-order separable polynomial response. Closed form expressions were
derived for the error as well as for the statistical properties of the error (i.e., the
mean and variance of error).

The advantages of the quadrature-based method were demonstrated by means
of hierarchical probability models and a set of case studies. For typical populations
of problems, it is shown that themethod has good accuracy, providing less than 5%
error in 90% of the applications. The proposed method provides much better
accuracy than LHS or HSS, assuming these techniques are also restricted to using
4m þ 1 samples. Only if Hammersley Sequence Sampling is afforded at least
10 times the number of samples, can it provide approximately the same degree of
accuracy as the quadrature technique.

The limitations of the quadrature-based method should be emphasized. The
theorems and model-based evaluations in this paper are predicated on the

Figure 8. Empirical cumulative density functions based on the set of case studies. The
model-based cumulative density functions of the 4m þ 1 quadrature technique is
provided for comparison.
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assumption that the noise factors are all normally distributed and probabilistically
independent. To accommodate correlated noise factors, a linear transformation
can be applied to the noise variables to create a set of uncorrelated noise factors
before applying the equations in this paper. This approach was used in the op-amp
case study and it was effective in that application. More generally, theMahalanobis
transformationwill serve to create a set of independent random variables from a set
of normally distributed, correlated random variables (Härdle & Simar 2007).
However, it should be noted that the transformed, uncorrelated noise factors will
not always be probabilistically independent except under particular assumptions,
for example, when the noise factors are all normally distributed. We have not yet
determined how well the proposed quadrature method will work on correlated
variables that depart significantly from a normal distribution.

It’s an interesting fact that the quadrature-based method had improved accur-
acy at the robust set point (as compared to the initial design) in most of the case
studies. This potential regularity has yet to be verified and would require more case
studies to develop confidence in its existence and reliability. However, it seems
reasonable that as a system becomes more robust to a set of noise factors, its
response to noise also becomes more nearly separable. For a set point to exhibit
substantial robustness as compared to other set points, the response surface
(to noise factors, not control factors) has to be relatively flat, relatively smooth,
and nearly devoid of salient features. It stands to reason that response surfaces
matching this description might also be separable in their response to noise. If so,
this would be an auspicious development for the quadrature method. As the robust
design process searches for robust set points, it also improves the degree to which
the assumptions needed for quadrature are satisfied.

It is hoped that the advantages of the quadrature-based method will prove
helpful for engineering designers facing the demands of real-world pressures such
as time and resource limitations. The proposed quadrature-based method adds
value to the practitioner’s toolbox. When practical engineering problems have less
separability and smaller numbers of input variables, a cubature method might be a
reasonable choice. A cubature method such as proposed by Lu & Darmofal (2005)
will afford advantages when there are practically significant noise by noise inter-
actions. The meta-model based approach proposed by Tan &Wu (2012) may offer
advantages when a Gaussian process model can closely fit the true underlying
response of the engineering system. However, when practitioners face engineering
problems with larger numbers of input variables, the quadrature-based method
can estimate the transmitted variance efficiently and accurately as compared to
other approaches. The developments in this paper also provide a priori error
estimates that appear to be reliable, so the method can be applied with confidence.
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