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Chen Inequalities for Submanifolds of Real
Space Forms with a Semi-Symmetric
Non-Metric Connection

Cihan Özgür and Adela Mihai

Abstract. In this paper we prove Chen inequalities for submanifolds of real space forms endowed with

a semi-symmetric non-metric connection, i.e., relations between the mean curvature associated with

a semi-symmetric non-metric connection, scalar and sectional curvatures, Ricci curvatures and the

sectional curvature of the ambient space. The equality cases are considered.

1 Introduction

H. A. Hayden introduced the notion of a semi-symmetric metric connection on a

Riemannian manifold [10]. K. Yano studied a Riemannian manifold endowed with

a semi-symmetric metric connection [20]. Some properties of a Riemannian man-

ifold and a hypersurface of a Riemannian manifold with a semi-symmetric metric

connection were studied by T. Imai [11, 12]. Z. Nakao [18] studied submanifolds of

a Riemannian manifold with semi-symmetric metric connections. N. S. Agashe and

M. R. Chafle introduced the notion of a semisymmetric non-metric connection and

studied some of its properties and submanifolds of a Riemannian manifold with a

semi-symmetric non-metric connection [1, 2].

On the other hand, one of the basic problems in submanifold theory is to find

simple relationships between the extrinsic and intrinsic invariants of a submanifold.

B. Y. Chen [6, 7, 9] established inequalities in this respect, called Chen inequalities.

Afterwards, many geometers studied similar problems for different submanifolds in

various ambient spaces; see, for example, [3–5, 13, 14, 19].

Recently, the present authors studied Chen inequalities for submanifolds of real

space forms with a semi-symmetric metric connection and Chen inequalities for

submanifolds of complex space forms and Sasakian space forms endowed with semi-

symmetric metric connections [15, 16].

In the present paper, we study Chen inequalities for submanifolds of real space

forms with a semi-symmetric non-metric connection. The paper is organized as fol-

lows. In Section 2, we give a brief introduction about a semi-symmetric non-metric

connection, Chen lemma and Ricci curvature. In Section 3, for submanifolds of
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real space forms endowed with a semi-symmetric non-metric connection we estab-

lish a Chen first inequality. Section 4 gives a relation between the Ricci curvature

in the direction of a unit tangent vector and the mean curvature. In Section 5, we

state a relationship between the sectional curvature of a submanifold Mn of a real

space form Nn+p(c) of constant sectional curvature c endowed with a semi-symmetric

non-metric connection ∇̃ and the associated squared mean curvature ‖H‖2. Using

this inequality, we prove a relationship between the k-Ricci curvature of Mn and the

squared mean curvature ‖H‖2.

2 Preliminaries

Let Nn+p be an (n + p)-dimensional Riemannian manifold and ∇̃ a linear connection

on Nn+p. If the torsion tensor T̃ of ∇̃, defined by

T̃(X̃, Ỹ ) = ∇̃X̃Ỹ − ∇̃Ỹ X̃ − [X̃, Ỹ ],

for any vector fields X̃ and Ỹ on Nn+p, satisfies T̃(X̃, Ỹ ) = φ(Ỹ )X̃ − φ(X̃)Ỹ for a

1-form φ, then the connection ∇̃ is called a semi-symmetric connection.

Let g be a Riemannian metric on Nn+p. If ∇̃g = 0, then ∇̃ is called a semi-

symmetric metric connection on Nn+p. If ∇̃g 6= 0, then ∇̃ is called a semi-symmetric

non-metric connection on Nn+p.
Following [1], a semi-symmetric non-metric connection ∇̃ on Nn+p is given by

∇̃X̃Ỹ =
˚̃
∇X̃Ỹ + φ(Ỹ )X̃,

for any vector fields X̃ and Ỹ on Nn+p, where
˚̃
∇ denotes the Levi–Civita connection

with respect to the Riemannian metric g and φ is a 1-form. Denote by P = φ♯, i.e.,

the vector field P is defined by g(P, X̃) = φ(X̃), for any vector field X̃ on Nn+p.

We will consider a Riemannian manifold Nn+p endowed with a semi-symmetric

non-metric connection ∇̃ and the Levi–Civita connection denoted by
˚̃
∇.

Let Mn be an n-dimensional submanifold of an (n + p)-dimensional Riemannian

manifold Nn+p. On the submanifold Mn we consider the induced semi-symmetric

non-metric connection denoted by ∇ and the induced Levi–Civita connection de-

noted by ∇̊.

Let R̃ be the curvature tensor of Nn+p with respect to ∇̃ and
˚̃
R the curvature tensor

of Nn+p with respect to
˚̃
∇. We also denote by R and R̊ the curvature tensors of ∇ and

∇̊, respectively, on Mn.

The Gauss formulas with respect to ∇, respectively ∇̊ can be written as:

∇̃XY = ∇XY + h(X,Y ), X,Y ∈ χ(Mn),

˚̃
∇XY = ∇̊XY + h̊(X,Y ), X,Y ∈ χ(Mn),

where h̊ is the second fundamental form of Mn in Nn+p and h is a (0, 2)-tensor on

Mn. According to the formula (3.4) in [2],

(2.1) h = h̊.
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One denotes by H the mean curvature vector of Mn in Nn+p.

Let Nn+p(c) be a real space form of constant sectional curvature c endowed with a

semi-symmetric non-metric connection ∇̃.

The curvature tensor
˚̃
R with respect to the Levi–Civita connection

˚̃
∇ on Nn+p(c)

is expressed by

(2.2)
˚̃
R(X,Y,Z,W ) = c{g(X,W )g(Y,Z) − g(X,Z)g(Y,W )}.

Then the curvature tensor R̃ with respect to the semi-symmetric non-metric connec-

tion ∇̃ on Nn+p(c) can be written as [1]

(2.3) R̃(X,Y,Z,W ) =
˚̃
R(X,Y,Z,W ) + s(X,Z)g(Y,W ) − s(Y,Z)g(X,W ),

for any vector fields X,Y,Z,W ∈ χ(Mn), where s is a (0, 2)-tensor field defined by

s(X,Y ) = (
˚̃
∇Xφ)Y − φ(X)φ(Y ), ∀X,Y ∈ χ(Mn).

From (2.2) and (2.3) it follows that the curvature tensor R̃ can be expressed as

(2.4) R̃(X,Y,Z,W ) = c{g(X,W )g(Y,Z) − g(X,Z)g(Y,W )}

+ s(X,Z)g(Y,W ) − s(Y,Z)g(X,W ).

Denote by λ the trace of s. Using (2.1), the Gauss equation for the submanifold

Mn into the real space form Nn+p(c) is

˚̃
R(X,Y,Z,W ) = R̊(X,Y,Z,W ) + g(h(X,Z), h(Y,W )) − g(h(X,W ), h(Y,Z)).

Decomposing the vector field P on M uniquely into its tangent and normal compo-

nents PT and P⊥, respectively, we have P = PT + P⊥.

Let π ⊂ TxMn, x ∈ Mn, be a 2-plane section. Denote by K(π) the sectional

curvature of Mn with respect to the induced semi-symmetric non-metric connection

∇. For any orthonormal basis {e1, . . . , em} of the tangent space TxMn, the scalar

curvature τ at x is defined by

τ (x) =
∑

1≤i< j≤n

K(ei ∧ e j).

We recall the following algebraic lemma.

Lemma 2.1 ([6]) Let a1, a2, . . . , an, b be (n + 1) (n ≥ 2) real numbers such that

( n∑

i=1

ai

) 2

= (n − 1)
( n∑

i=1

a2
i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3 = · · · = an.
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Let Mn be an n-dimensional Riemannian manifold, L a k-plane section of TxMn,

x ∈ Mn, and X a unit vector in L. We choose an orthonormal basis {e1, . . . , ek} of

L such that e1 = X. One defines [8] the Ricci curvature (or k-Ricci curvature) of L

at X by RicL(X) = K12 + K13 + · · · + K1k, where Ki j denotes, as usual, the sectional

curvature of the 2-plane section spanned by ei , e j . For each integer k, 2 ≤ k ≤ n, the

Riemannian invariant Θk on Mn is defined by

Θk(x) =
1

k − 1
inf
L,X

RicL(X), x ∈ Mn,

where L runs over all k-plane sections in TxMn and X runs over all unit vectors in L.

3 Chen First Inequality

Recall that the Chen first invariant is given by

δMn (x) = τ (x) − inf{K(π) | π ⊂ TxMn, x ∈ Mn, dimπ = 2},

(see for example [9]), where Mn is a Riemannian manifold, K(π) is the sectional

curvature of Mn associated with a 2-plane section, π ⊂ TxMn, x ∈ Mn and τ is the

scalar curvature at x.

Denote by

(3.1) Ω(X) = s(X,X) + g(P⊥, h(X,X)),

for a unit vector X tangent to Mn at a point x. We remark that Ω does not depend on

X. Detailed explanations will be given in the proof of Theorem 3.1.

For submanifolds of real space forms endowed with a semi-symmetric non-metric

connection we establish the following optimal inequality, which we will call the Chen

first inequality.

Theorem 3.1 Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n + p)-dimen-

sional real space form Nn+p(c) of constant sectional curvature c, endowed with a semi-

symmetric non-metric connection ∇̃. We have

δMn (x) ≤ Ω + (n − 2)
[ n2

2(n − 1)
‖H‖2 + (n + 1)

c

2

]
−

1

2
(n − 1)λ−

1

2
(n2 − n)φ(H),

where π is a 2-plane section of TxMn, x ∈ Mn. Equality holds at a point x ∈ Mn if and

only if there exists an orthonormal basis {e1, e2, . . . , en} of TxMn and an orthonormal

basis {en+1, . . . , en+p} of T⊥
x Mn such that the shape operators of Mn in Nn+p(c) at x
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have the following forms:

Aen+1
=




a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ




, a + b = µ,

Aen+i
=




hn+i
11 hn+i

12 0 · · · 0

hn+i
12 −hn+i

11 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




, 2 ≤ i ≤ p,

where we define hr
i j = g(h(ei , e j), er) for 1 ≤ i, j ≤ n and n + 1 ≤ r ≤ n + p.

Proof From [2], the Gauss equation with respect to the semi-symmetric non-metric

connection is

(3.2) R̃(X,Y,Z,W ) = R(X,Y,Z,W ) + g(h(X,Z), h(Y,W ))

− g(h(Y,Z), h(X,W )) + g(P⊥, h(Y,Z))g(X,W )

− g(P⊥, h(X,Z))g(Y,W ).

Let x ∈ Mn and {e1, e2, . . . , en} and {en+1, . . . , en+p} be orthonormal bases of

TxMn and T⊥
x Mn, respectively. For X = W = ei ,Y = Z = e j , i 6= j, from the

equation (2.4) it follows that

(3.3) R̃(ei , e j , e j , ei) = c − s(e j , e j).

From (3.2) and (3.3) we get

c − s(e j , e j) = R(ei , e j , e j , ei) + g(h(ei , e j), h(ei , e j))

− g(h(ei , ei), h(e j , e j)) + φ(h(e j , e j)).

By summation after 1 ≤ i, j ≤ n, it follows from the previous relation that

(3.4) (n2 − n)c − (n − 1)λ = 2τ + ‖h‖2 − n2‖H‖2 + (n2 − n)φ(H),

where we recall that λ is the trace of s and denote by

‖h‖2
=

n∑

i, j=1

g
(

h(ei , e j), h(ei , e j)
)
, H =

1

n
trace h,

φ(H) =
1

n

n∑

j=1

φ(h(e j , e j)) = g(P⊥,H).
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One takes

(3.5) ε = 2τ −
n2(n − 2)

n − 1
‖H‖2 + (n − 1)λ− (n2 − n)c + (n2 − n)φ(H).

Then from (3.4) and (3.5) we get

(3.6) n2‖H‖2
= (n − 1)(‖h‖2 + ε).

Let x ∈ Mn, π ⊂ TxMn, dimπ = 2, π = sp{e1, e2}. We define en+1 =
H

‖H‖ , and

from the relation (3.6) we obtain

( n∑

i=1

hn+1
ii

) 2

= (n − 1)
( n∑

i, j=1

n+p∑

r=n+1

(hr
i j)

2 + ε
)
,

or equivalently,

(3.7)
( n∑

i=1

hn+1
ii

) 2

= (n − 1)
{ n∑

i=1

(hn+1
ii )2 +

∑

i 6= j

(hn+1
i j )2 +

n∑

i, j=1

n+p∑

r=n+2

(hr
i j)

2 + ε
}
.

By using Lemma 2.1, we have from (3.7)

2hn+1
11 hn+1

22 ≥
∑

i 6= j

(hn+1
i j )2 +

n∑

i, j=1

n+p∑

r=n+2

(hr
i j)

2 + ε.

The Gauss equation for X = W = e1,Y = Z = e2 gives

K(π) = R(e1, e2, e2, e1) = c − s(e2, e2) − g(P⊥, h(e2, e2)) +

p∑

r=n+1

[hr
11hr

22 − (hr
12)2]

≥ c − s(e2, e2) − φ(h(e2, e2)) +
1

2

[∑

i 6= j

(hn+1
i j )2 +

n∑

i, j=1

n+p∑

r=n+2

(hr
i j)

2 + ε
]

+

n+p∑

r=n+2

hr
11hr

22 −

n+p∑

r=n+1

(hr
12)2

= c − s(e2, e2) − φ(h(e2, e2))

+
1

2

∑

i 6= j

(hn+1
i j )2 +

1

2

n∑

i, j=1

n+p∑

r=n+2

(hr
i j)

2 +
1

2
ε +

n+p∑

r=n+2

hr
11hr

22 −

n+p∑

r=n+1

(hr
12)2

= c − s(e2, e2) − g(P⊥, h(e2, e2)) +
1

2

∑

i 6= j

(hn+1
i j )2 +

1

2

n+p∑

r=n+2

∑

i, j>2

(hr
i j)

2

+
1

2

n+p∑

r=n+2

(hr
11 + hr

22)2 +
∑

j>2

[(hn+1
1 j )2 + (hn+1

2 j )2] +
1

2
ε

≥ c − s(e2, e2) − g(P⊥, h(e2, e2)) +
ε

2
,
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which implies K(π) ≥ c− s(e2, e2)− g(P⊥, h(e2, e2)) + ε/2. Let {e1, e2, . . . , en} be an

orthonormal basis of TxMn. If we take π = sp{e1, e2}, the formula (3.1) implies that

Ω(e1) = Ω(e2). Analogously, for π ′ = sp{e1, e3}, we have Ω(e1) = Ω(e3). Therefore,

Ω(e1) = Ω(e2) = · · · = Ω(en). Thus Ω(X) does not depend on X and denote it

simply by Ω. By using (3.5) we get

K(π) ≥ τ−Ω−(n − 2)
[ n2

2(n − 1)
‖H‖2+(n+1)

c

2

]
+

1

2
(n−1)λ+

1

2
(n2−n)φ(H),

which represents the inequality.

The equality case holds at a point x ∈ Mn if and only if it achieves the equality in

all the previous inequalities and we have the equality in the lemma.

hn+1
i j = 0, ∀i 6= j, i, j > 2,

hr
i j = 0, ∀i 6= j, i, j > 2, r = n + 1, . . . , n + p,

hr
11 + hr

22 = 0, ∀r = n + 2, . . . , n + p,

hn+1
1 j = hn+1

2 j = 0, ∀ j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = · · · = hn+1

nn .

We may chose {e1, e2} such that hn+1
12 = 0 and we denote by a = hr

11, b = hr
22, µ =

hn+1
33 = · · · = hn+1

nn . It follows that the shape operators take the desired forms.

4 Ricci Curvature in the Direction of a Unit Tangent Vector

In this section, we establish a sharp relation between the Ricci curvature in the di-

rection of a unit tangent vector X and the mean curvature H with respect to the

semi-symmetric non-metric connection ∇̃.

Denote by N(x) = {X ∈ TxMn | h(X,Y ) = 0, ∀Y ∈ TxMn}.

Theorem 4.1 Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n + p)-dimen-

sional real space form Nn+p(c) of constant sectional curvature c endowed with a semi-

symmetric non-metric connection ∇̃.

(i) For each unit vector X in TxM we have

(4.1) ‖H‖2 ≥
4

n2

[
Ric(X) − (n − 1)c +

n − 1

2
λ

−
(n − 2)(n − 1)

2
s(X,X) +

1

2
(n2 − n)φ(H)

]
.

(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of (4.1) if

and only if X ∈ N(x).
(iii) The equality case of inequality (4.1) holds identically for all unit tangent vectors

at x if and only if either x is a totally geodesic point, or n = 2 and x is a totally

umbilical point.
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Proof (i) Let X ∈ TxM be a unit tangent vector at x. We choose an orthonormal

basis e1, e2, . . . , en, en+1, . . . , en+p such that e1, e2, . . . , en are tangent to M at x, with

e1 = X.
From (3.4) we obtain n2‖H‖2 = 2τ +‖h‖2 + (n− 1)λ− (n2 −n)c + (n2 −n)φ(H).

From Gauss equation (3.2) and the formula (3.3), for X = W = ei , Y = Z = e j ,

i 6= j, we get

Ki j = R̃(ei , e j , e j , ei) + g(h(ei , ei), h(e j , e j)) − g(h(ei , e j), h(ei , e j))

= c − s(e j , e j) +

n+p∑

r=n+1

[hr
iih

r
j j − (hr

i j)
2].

By summation and by using formula (3.4), it follows that

∑

2≤i< j≤n

Ki j =

n+p∑

r=n+1

∑

2≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2] +

∑

2≤i< j≤n

[c − s(e j , e j)]

=

n+p∑

r=n+1

∑

2≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2]

+
(n − 2)(n − 1)

2
c −

(n − 2)(n − 1)

2
s(e1, e1).

On the other hand,

n2‖H‖2
= 2τ +

1

2
n2‖H‖2 +

1

2

n+p∑

r=n+1

(hr
11 − hr

22 − · · · − hr
nn)2

− 2

n+p∑

r=n+1

∑

2≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2] + (n − 1)λ− n(n − 1)c + (n2 − n)φ(H).

Hence, we obtain

1

2
n2‖H‖2

= 2 Ric(e1) + 2
∑

2≤i< j≤n

Ki j +
1

2

n+p∑

r=n+1

(hr
11 − hr

22 − · · · − hr
nn)2

+ (n − 1)λ− n(n − 1)c + n2φ(H) − 2

n+p∑

r=n+1

∑

2≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2]

= 2 Ric(e1) + (n − 2)(n − 1)c − (n − 2)(n − 1)s(e1, e1)

+
1

2

n+p∑

r=n+1

(hr
11 − hr

22 − · · · − hr
nn)2

+ (n − 1)λ− n(n − 1)c + (n2 − n)φ(H)
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≥ 2 Ric(e1) − 2(n − 1)c + (n − 1)λ− (n − 2)(n − 1)s(e1, e1)

+ (n2 − n)φ(H).

Finally,

Ric(e1) ≤
1

4
n2‖H‖2 + (n−1)c−

n − 1

2
λ+

(n − 2)(n − 1)

2
s(e1, e1)−

1

2
(n2 −n)φ(H),

or, equivalently,

‖H‖2 ≥
4

n2

[
Ric(X)−(n−1)c +

n − 1

2
λ−

(n − 2)(n − 1)

2
s(X,X)+

1

2
(n2−n)φ(H)

]
,

for every unit vector X ∈ TxM, which represents to inequality to prove.

(ii) Assume H(x) = 0. Equality holds in (4.1) if and only if

hr
12 = · · · = hr

1n = 0, hr
11 = hr

22 + · · · + hr
nn, r ∈ {n + 1, . . . , n + p}.

Then hr
1 j = 0 for all j ∈ {1, . . . , n}, r ∈ {n + 1, . . . , n + p}, i.e., X ∈ N(x).

(iii) The equality case of (4.1) holds for all unit tangent vectors at x if and only if

hr
i j = 0, i 6= j, r ∈ {n + 1, . . . , n + p},

hr
11 + · · · + hr

nn − 2hr
ii = 0, i ∈ {1, . . . , n}, r ∈ {n + 1, . . . , n + p}.

We distinguish two cases:

• n 6= 2, then x is a totally geodesic point;
• n = 2, it follows that x is a totally umbilical point.

The converse is trivial.

5 k-Ricci Curvature

We first state a relationship between the sectional curvature of a submanifold Mn of

a real space form Nn+p(c) of constant sectional curvature c endowed with a semi-

symmetric non-metric connection ∇̃ and the associated squared mean curvature

‖H‖2. Using this inequality, we prove a relationship between the k-Ricci curvature of

Mn (intrinsic invariant) and the squared mean curvature ‖H‖2 (extrinsic invariant),

as another answer of the basic problem in submanifold theory which we mentioned

in the introduction.

Theorem 5.1 Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n + p)-dimen-

sional real space form Nn+p(c) of constant sectional curvature c endowed with a semi-

symmetric non-metric connection ∇̃. Then we have

(5.1) ‖H‖2 ≥
2τ

n(n − 1)
− c +

1

n
λ + φ(H).
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Proof Let x ∈ Mn and {e1, e2, . . . , en} an orthonormal basis of TxMn. The relation

(3.4) is equivalent to

(5.2) n2 ‖H‖
2
= 2τ + ‖h‖

2
+ (n − 1)λ− n(n − 1)c + (n2 − n)φ(H).

We choose an orthonormal basis {e1, . . . , en, en+1, . . . , en+p} at x such that en+1

is parallel to the mean curvature vector H(x) and e1, . . . , en diagonalize the shape

operator Aen+1
. Then the shape operators take the forms

Aen+1
=




a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 . . . an


 ,

Aer
= (hr

i j), i, j = 1, . . . , n, r = n + 2, . . . , n + p, trace Ar = 0.

From (5.2), we get

(5.3) n2‖H‖2
=

2τ +

n∑

i=1

a2
i +

n+p∑

r=n+2

n∑

i, j=1

(hr
i j)

2 + (n − 1)λ− n(n − 1)c + (n2 − n)φ(H).

On the other hand, since

0 ≤
∑

i< j

(ai − a j)
2
= (n − 1)

∑

i

a2
i − 2

∑

i< j

aia j ,

we obtain

n2‖H‖2
=

( n∑

i=1

ai

) 2

=

n∑

i=1

a2
i + 2

∑

i< j

aia j ≤ n

n∑

i=1

a2
i ,

which implies
n∑

i=1

a2
i ≥ n‖H‖2.

We have from (5.3)

n2‖H‖2 ≥ 2τ + n‖H‖2 + (n − 1)λ− n(n − 1)c + (n2 − n)φ(H)

or, equivalently,

‖H‖2 ≥
2τ

n(n − 1)
− c +

1

n
λ + φ(H).

Using Theorem 5.1, we obtain the following.
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Theorem 5.2 Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n + p)-dimen-

sional real space form Nn+p(c) of constant sectional curvature c endowed with a semi-

symmetric non-metric connection ∇̃. Then for any integer k, 2 ≤ k ≤ n, and any point

x ∈ Mn, we have

(5.4) ‖H‖2(p) ≥ Θk(p) − c +
1

n
λ + φ(H).

Proof Let {e1, . . . , en} be an orthonormal basis of TxM. Denote by Li1···ik
the k-

plane section spanned by ei1
, . . . , eik

. By the definitions, one has

τ (Li1···ik
) =

1

2

∑

i∈{i1,...,ik}

RicLi1···ik
(ei),

τ (x) =
1

Ck−2
n−2

∑

1≤i1<···<ik≤n

τ (Li1...ik
).

From (5.1) and the above relations, one derives

τ (x) ≥
n(n − 1)

2
Θk(p),

which implies (5.4).
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[13] K. Matsumoto, I. Mihai, and A. Oiagă, Ricci curvature of submanifolds in complex space forms. Rev.

Roumaine Math. Pures Appl. 46(2001), no. 6, 775–782.

https://doi.org/10.4153/CMB-2011-108-1 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972700039873
http://dx.doi.org/10.1007/BF01236084
http://dx.doi.org/10.1017/S0017089599970271
https://doi.org/10.4153/CMB-2011-108-1
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