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Generating Curves of Minimal Ruled
Real Hypersurfaces in a Nonflat
Complex Space Form

Sadahiro Maeda,Hiromasa Tanabe, and Seiichi Udagawa

Abstract. We ûrst provide a necessary and suõcient condition for a ruled real hypersurface in a
non�at complex space form to have constant mean curvature in terms of integral curves of the
characteristic vector ûeld on it. _is yields a characterization of minimal ruled real hypersurfaces
by circles. We next characterize the homogeneous minimal ruled real hypersurface in a complex
hyperbolic space by using the notion of strong congruency of curves.

1 Introduction

It is possible in some cases to know properties of a submanifold by examining the be-
havior of some curves on the submanifold. In this paper, we study ruled real hyper-
surfaces M in a non�at complex space form M̃n(c), n ≥ 2, in terms of their generating
curves.
An n-dimensional non�at complex space form M̃n(c) of constant holomorphic

sectional curvature c is a complex n-dimensional complete and simply connected
Kähler manifold, all of whose holomorphic sectional curvatures take the same value
c(≠ 0). It is known that this space M̃n(c) is holomorphically isometric to a com-
plex projective space CPn(c) or a complex hyperbolic space CHn(c) according as
c > 0 or c < 0. A ruled real hypersurface M2n−1 in M̃n(c) is a real hypersurface
having a one-codimensional foliation whose leaves are totally geodesic complex hy-
perplanes M̃n−1(c) (for a precise deûnition, see Section 3). Such a hypersurface can
be constructed as follows: given an arbitrary regular smooth curve γ ∶ I → M̃n(c)
deûned on an open interval I(⊂ R), we attach a totally geodesic complex hyperplane
Ms ≅ M̃n−1(c) to each point γ(s) (s ∈ I) in such away that the planeMs is orthogonal
not only to γ̇(s) but to Jγ̇(s). _en the union Mγ ∶= ⋃s∈I Ms is a ruled real hypersur-
face in M̃n(c). We call this Mγ and the curve γ a ruled real hypersurface associated
with γ and a generating curve ofMγ , respectively. Note that every integral curve of the
characteristic vector ûeld on a ruled real hypersurface is a generating curve of it.

In the class of ruled real hypersurfaces, which is an abundant class as one can see
from the above construction, we have important examples that are minimal. Lohn-
herr and Reckziegel [6] characterized minimal ruled real hypersurfaces in a non�at
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complex space form M̃n(c), n ≥ 2, by the property that their generating curves
are totally real circles, that is, circles in some totally real totally geodesic real two-
dimensional submanifold RM2(c/4), in M̃n(c) (i.e., RP2(c/4) or RH2(c/4)), and
they classiûed such hypersurfaces in three families according to the shapes of gener-
ating curves. Also, Adachi, Bao, andMaeda [1] studied congruency ofminimal ruled
real hypersurfaces in M̃n(c) with respect to the action of its isometry group. Among
others, the homogeneous minimal ruled real hypersurface, the so-called Lohnherr
hypersurface, in CHn(c) is more signiûcant, because it is the only example of a ho-
mogeneous real hypersurface that is minimal in CHn(c) [4]. Here, a homogeneous
real hypersurface in M̃n(c) is an orbit of some subgroup of the full isometry group
I(M̃n(c)).

Inspired by these facts, we establish the following theorem.

_eorem 1.1 Let M be a ruled real hypersurface in a non�at complex space form
M̃n(c), n ≥ 2. _en M has constant mean curvature, i.e., TraceA is constant on M,
where A is the shape operator of M in M̃n(c), if and only if every integral curve of the
characteristic vector ûeld on M is a circle in M̃n(c).

Recently,M. Domínguez-Vázquez and O. Pérez-Barral [5] proved that there is no
ruled real hypersurface with nonzero constant mean curvature in non�at complex
space forms. Hence, combining the result in [5] with [6, _eorem 4] and our _eo-
rem 1.1, we have the following.

Corollary 1.2 For a ruled real hypersurface M in a non�at complex space form
M̃n(c), n ≥ 2, the following four conditions aremutually equivalent.

(i) M is minimal in M̃n(c).
(ii) M has constant mean curvature.
(iii) Every integral curve of the characteristic vector ûeld on M is a circle in M̃n(c).
(iv) An, hence every, integral curve of the characteristic vector ûeld on M is a totally

real circle in M̃n(c).

In order to describe_eorem 1.3, we explain the congruency of curves. Let I(M̃)
be a full isometry group of a Riemannian manifold M̃. We say that smooth curves
γ1 = γ1(s) and γ2 = γ2(s) in M̃ are congruent in the usual sense if there exist φ ∈ I(M̃)
and a constant s0 ∈ Rwith γ2(s) = (φ○γ1)(s+s0) for all s. If there exists φ ∈ I(M̃)with
γ2(s) = (φ ○ γ1)(s) for all s, we say that they are strongly congruent. We can ûnd that
a Riemannian manifold M̃ is congruent to either a Euclidean space or a Riemannian
symmetric space of rank one if and only if all geodesics on M̃ are strongly congruent
with each other by isometries of M̃.

Let M be an arbitraryHopf hypersurface (for deûnition, see Section 3) in a non�at
complex space form M̃n(c), n ≥ 2. It is easy to see that all integral curves of the char-
acteristic vector ûeld on M are strongly congruent with each other by holomorphic
isometries of M̃n(c) and that they are circles of the same curvature that lie in a totally
geodesic M̃1(c) in M̃n(c). For a ruled real hypersurface, we have the following.
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_eorem 1.3 Let M be a ruled real hypersurface in a non�at complex space form
M̃n(c), n ≥ 2. If all integral curves of the characteristic vector ûeld on M are strongly
congruent with each other by holomorphic isometries of M̃n(c), then the ambient space
M̃n(c)must be a complex hyperbolic spaceCHn(c) and the ruled real hypersurfaceM
is homogeneous andminimal in CHn(c).

As an application, we have the following.

Corollary 1.4 Let M be a ruled real hypersurface in a non�at complex space form
M̃n(c), n ≥ 2. If all integral curves of the characteristic vector ûeld on M are circles of
the same curvature in M̃n(c), then the ambient space M̃n(c)must be a complex hyper-
bolic spaceCHn(c) and the ruled real hypersurfaceM is homogeneous andminimal in
CHn(c).

2 Curves in a Nonflat Complex Space Form

First, we shall make a survey of the real curve theory in a non�at complex space form
M̃n(c), n ≥ 2. Let γ ∶ I → M̃n(c) be a smooth real curve parametrized by its arclength
s deûned on an open interval I(⊂ R) and put V1 ∶= γ̇. We then call the function
κ1(s) ∶= ∥∇̃γ̇V1(s)∥ the ûrst curvature of γ, where ∇̃ is the Riemannian connection of
M̃n(c). A point γ(s0) (s0 ∈ I)with κ1(s0) = 0 is said to be an in�ection point of γ. For
the curve γ having no in�ection points, one can deûne a unit vector ûeld V2 along γ
by V2 ∶= (1/κ1)∇̃γ̇V1. _en one ûnds

∇̃γ̇V1 = κ1V2 , ∇̃γ̇V2 = −κ1V1 +W

with some vector ûeldW along γ that is orthogonal to V1 and V2. If κ2 ∶= ∥W∥ van-
ishes at s0 ∈ I, we say γ is of proper order 2 at γ(s0). If κ2 = ∥W∥ does not van-
ish on I, we put V3 ∶= (1/κ2)W and consider ∇̃γ̇V3. Generally, a curve γ is said
to be a Frenet curve of proper order d (2 ≤ d ≤ 2n) if there exist an orthonormal
system {V1 = γ̇,V2 , . . . ,Vd} of vector ûelds along γ and positive smooth functions
κ1(s), . . . , κd−1(s) such that they satisfy the following

(2.1) ∇̃γ̇Vj(s) = −κ j−1(s)Vj−1(s) + κ j(s)Vj+1(s), 1 ≤ j ≤ d .
Here, κ0V0 and κdVd+1 are null vector ûelds along γ. _e functions κ1 , . . . , κd−1 and
the orthonormal frame {V1 ,V2 , . . . ,Vd} are called the curvatures and the Frenet frame
of the curve γ, respectively. Equation (2.1) is known as the Frenet formula.
For the Frenet frame {V1 , . . . ,Vd} of a Frenet curve γ of proper order d in M̃n(c),

we set τ i j(s) ∶= g(Vi(s), JVj(s)) with 1 ≤ i < j ≤ d and call them the holomorphic
torsions of γ, where g and J are the Riemannian metric and the Kähler structure of
M̃n(c), respectively. _e notion of holomorphic torsions plays a distinguished role in
the study of Frenet curves in M̃n(c). Recall the deûnition of “strong congruence” of
curves. _en the congruence theorem for Frenet curves in M̃n(c) can be described
in terms of curvatures and holomorphic torsions, as follows.

_eorem A ( [7]) Let γ = γ(s) and σ = σ(s) be two Frenet curves of proper or-
ders d and d′ in a complex space form M̃n(c), respectively. Let κγ

1 , . . . , κ
γ
d−1 (resp.
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κσ
1 , . . . , κ

σ
d′−1) be the curvatures of γ (resp. σ), and τγ

i j (resp. τσ
kl ) be holomorphic tor-

sions of γ (resp. σ). _en the two curves γ and σ are strongly congruent by a holomor-
phic isometry of M̃n(c) if and only if d = d′, κγ

i (s) = κσ
i (s) for 1 ≤ i ≤ d − 1 and

τγ
i j(0) = τσ

i j(0) for 1 ≤ i ≤ d.

A Frenet curve of proper order 2 with constant ûrst curvature κ1 = k(> 0), that is
to say, a curve that satisûes ∇̃γ̇ γ̇ = kV2 and ∇̃γ̇V2 = −kγ̇, is called a circle of curvature
k. We regard a geodesic as a circle of null curvature. For every ûxed point p ∈ M̃n(c),
each pair of orthonormal vectors X ,Y of TpM̃n(c), and an arbitrary positive constant
k, there exists locally a unique circle of curvature k satisfying the initial condition that
γ(0) = p, γ̇(0) = X, and (∇̃γ̇ γ̇)(0) = kY .

We ûnd that the holomorphic torsion τ12 of the circle γ with positive curvature k
is constant along γ as follows:

∇̃γ̇(g(V1 , JV2)) = g(∇̃γ̇ γ̇, JV2) + g(γ̇, J∇̃γ̇V2) = kg(V2 , JV2) − kg(γ̇, Jγ̇) = 0.

A circle of positive curvature in M̃n(c) is said to be totally real if its holomorphic tor-
sion τ12 vanishes. Such a circle lies on a totally real totally geodesic surfaceRM2(c/4)
of M̃n(c) (i.e., RP2(c/4) or RH2(c/4)).

3 Real Hypersurfaces in a Nonflat Complex Space form

In this section we summarize some fundamental notions on real hypersurfaces in a
non�at complex space form. Let M̃n(c) be an n (≥ 2)-dimensional non�at complex
space form furnished with standard Riemannian metric g and the canonical Kähler
complex structure J, and let M2n−1 be a real hypersurface of M̃n(c) through an iso-
metric immersion. Denote by N a unit normal local vector ûeld on M and by A the
shape operator of M in M̃n(c). We also denote by the same notation g the induced
Riemannian metric on M. _en the Riemannian connections ∇̃ of M̃n(c) and ∇ of
M are related by Gauss andWeingarten formulas

∇̃XY = ∇XY + g(AX ,Y)N, ∇̃XN = −AX

for vector ûelds X and Y tangent to M.
An odd-dimensional manifold M2n−1 is said to have an almost contact structure if

it admits a (1, 1)-tensor ûeld ϕ and a vector ûeld ξ with dual 1-form η, i.e., η(ξ) = 1,
such that ϕ2 = −I + η ⊗ ξ, where I denotes the identity map of the tangent bundle
TM of M. _e vector ûeld ξ is called the characteristic or Reeb vector ûeld and the
1-form η is called the contact form on M. _e structure satisûes ϕξ = 0 and η ○ ϕ =
0. In addition, if there exists a Riemannian metric g on M satisfying g(ϕX , ϕY) =
g(X ,Y) − η(X)η(Y), then we say that M has an almost contact metric structure.
For any real hypersurface M isometrically immersed into M̃n(c), n ≥ 2, an al-

most contact metric structure (ϕ, ξ, η, g) on M is naturally induced from the Kähler
structure J of the ambient space M̃n(c) as

ξ ∶= −JN, η(X) ∶= g(ξ, X) = g(JX ,N), and ϕX ∶= JX − η(X)N.
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Moreover, we have the following equations.

∇X ξ = ϕAX ,(3.1)
(∇Xϕ)Y = η(Y)AX − g(AX ,Y)ξ,(3.2)

(∇XA)Y − (∇YA)X = (c/4){η(X)ϕY − η(Y)ϕX − 2g(ϕX ,Y)ξ}.(3.3)

_e last one is known as Codazzi’s equation.
We call an eigenvalue and an eigenvector of the shape operator of A a principal

curvature and a principal curvature vector of M in M̃n(c), respectively. If the charac-
teristic vector ξ is a principal curvature vector at each point of M, the hypersurface
M is said to be aHopf hypersurface. Every homogeneous real hypersurface inCPn(c)
is aHopf hypersurface [9, 10], whereas there exist many non-Hopf homogeneous real
hypersurfaces in CHn(c) [4]. Ruled real hypersurfaces are typical examples of non-
Hopf hypersurfaces in M̃n(c).

Next, we give a precise deûnition of ruled real hypersurfaces in a non�at complex
space form and recall some basic results. Let M be a real hypersurface of M̃n(c),
n ≥ 2. We deûne the holomorphic distribution T0M on M by

T0M ∶= {X ∈ TM ∣ η(X) = 0},

where η is the contact form on M. A real hypersurface M is said to be ruled if the
distribution T0M is integrable and each of its leaves is locally congruent to a totally
geodesic complex hypersurface M̃n−1(c) of the ambient space. _e construction of
ruled real hypersurfaces stated in the introduction implies that a ruled real hypersur-
facemay have singularities in general. Hence, wemust omit such points.
For any real hypersurface M in M̃n(c), we deûne two functions µ, ν ∶ M → R by

µ ∶= g(Aξ, ξ), ν ∶= ∥Aξ − µξ∥,

where A denotes the shape operator of M in M̃n(c). We also deûne the subsets M0,
M∗ of M by

M0 ∶= {p ∈ M ∣ ν(p) = 0}, M∗ ∶= {p ∈ M ∣ ν(p) > 0}.

_en the following is well known.

Lemma 3.1 ( [8]) A real hypersurfaceM in M̃n(c) is ruled if and only if the following
holds. _e set M∗ is an open dense subset ofM and there exists a unit vector ûeld U on
M∗ that is orthogonal to ξ and satisûes

(3.4) Aξ = µξ + νU , AU = νξ, and AX = 0

for any tangent vector X orthogonal to both ξ and U .

One can easily see from (3.4) that a ruled real hypersurface M has three distinct
principal curvatures, (µ/2) ±

√
(µ2/4) + ν2 and 0, on M∗. A ruled real hypersur-

face M is minimal if and only if the function µ vanishes on M. Moreover, when the
ambient space is a complex hyperbolic space CHn(c), we have the following.
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_eoremB ( [1,4,6]) For a ruled real hypersurfaceM inCHn(c), n ≥ 2, the following
four conditions aremutually equivalent.

(i) M is homogeneous in CHn(c).
(ii) M has constant principal curvatures.
(iii) _e functions µ and ν satisfy µ ≡ 0 and ν ≡

√
∣c∣/2.

(iv) _ere exists a generating curve γ of M such that the curve γ is a totally real circle
of curvature

√
∣c∣/2 in CHn(c).

4 Proof of Theorems

_e proof will require some relations.

Lemma 4.1 Let M be a ruled real hypersurface of a non�at complex space form
M̃n(c), n ≥ 2. Denote by ∇ the Riemannian connection on M. _en on the open
dense subset M∗ = {p ∈ M ∣ ν(p) > 0} we have the following.

∇ξξ = νϕU ,(4.1)
∇ξ(ϕU) = −νξ + ϕ∇ξU ,(4.2)

Xµ = ξ(νg(X ,U)) + µνg(X , ϕU) − νg(∇ξX ,U) for X ∈ T0M ,(4.3)

Xν = {ν2 + (c/4)}g(X , ϕU) for X ∈ T0M ,(4.4)
(ϕU)µ = µν − νg(ϕ∇ξU ,U),(4.5)

Uµ = ξν.(4.6)

Proof Relations (4.1) and (4.2) immediately follow from (3.1), (3.2), and (3.4). Next,
by Codazzi’s equation (3.3) we have

(4.7) (∇XA)ξ − (∇ξA)X = −(c/4)ϕX for X ∈ T0M .

On the other hand, we decompose a vector X ∈ T0M into X = g(X ,U)U + X′ with
X′ ∈ T0M, X′ ⊥ U . Using (3.4) we ûnd for X ∈ T0M

(4.8) AX = νg(X ,U)ξ,

so that

(4.9) ∇X ξ = ϕAX = 0.

Furthermore, writing the vector ∇ξX for X ∈ T0M as

∇ξX = g(∇ξX , ξ)ξ + g(∇ξX ,U)U + Y

with some Y ∈ T0M, Y ⊥ U , we observe that

(4.10) A∇ξX = µg(∇ξX , ξ)ξ − νg(X ,∇ξξ)U + νg(∇ξX ,U)ξ
= µg(∇ξX , ξ)ξ − ν2g(X , ϕU)U + νg(∇ξX ,U)ξ
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by use of (3.4) and (4.1). We then see from (3.4), (4.1), (4.8), (4.9), and (4.10) that

(4.11) (∇XA)ξ − (∇ξA)X
= ∇X(Aξ) − A∇X ξ −∇ξ(AX) + A∇ξX

= ∇X(µξ + νU) −∇ξ(νg(X ,U)ξ)
+ µg(∇ξX , ξ)ξ − ν2g(X , ϕU)U + νg(∇ξX ,U)ξ

= (Xµ)ξ + (Xν)U + ν∇XU − ξ(νg(X ,U))ξ − ν2g(X ,U)ϕU
− µνg(X , ϕU)ξ − ν2g(X , ϕU)U + νg(∇ξX ,U)ξ.

Note that ν∇XU is orthogonal to both ξ and U . _en, taking the inner product of
(∇XA)ξ − (∇ξA)X with ξ and U , one can get relations (4.3) and (4.4) in our lemma
from (4.7) and (4.11). _e last two relations, (4.5) and (4.6), can be obtained from
(4.3) by putting X = ϕU , U .

We shall investigate the extrinsic shape of integral curves of the characteristic vec-
tor ûeld ξ on M. We argue on the open dense subset M∗ = {p ∈ M ∣ ν(p) > 0} of M.
Let γ be an integral curve of ξ that is contained in M∗. Since the unit vector ûeld U
can be deûned on M∗, it follows from (3.4), and (4.1) and the Gauss formula that

(4.12) ∇̃γ̇ γ̇ = νϕU + µN,

so that the ûrst curvature κ1 of γ, regarding γ as a curve in M̃n(c), is given by

(4.13) κ1(s) =
√

ν(γ(s))2 + µ(γ(s))2 .

As ν > 0 on M∗, the curve has no in�ection points and one can deûne a unit vector
V2 along γ by

(4.14) V2(s) ∶= (1/κ1(s)){ν(γ(s))ϕUγ(s) + µ(γ(s))Nγ(s)} .

We thus ûnd

(4.15) τ12(s) = g(γ̇(s), JV2(s))
= −(1/κ1(s))g(Jξγ(s) , ν(γ(s))ϕUγ(s) + µ(γ(s))Nγ(s))
= −µ(γ(s))/κ1(s).

Now we demonstrate_eorem 1.1.

Proof of_eorem 1.1 Let M be a ruled real hypersurface in a non�at complex space
form M̃n(c), n ≥ 2, and let γ be an integral curve of the characteristic vector ûeld ξ.

We ûrst assume that M has constant mean curvature. Let us consider the open
dense subset M∗. It then follows from the representation (3.4) of the shape operator
A on M∗ that µ is a constant function on M∗ (hence on the whole of M). _us rela-
tion (4.6) gives ξν = 0, that is, the function ν is constant along each integral curve γ of
ξ. From (4.13) we see the ûrst curvature κ1 is constant along γ. _en, by using Gauss
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andWeingarten formulas and (3.4), (4.2), and (4.14) we have

(4.16) ∇̃γ̇V2 = (ν/κ1)∇̃γ̇(ϕU) + (µ/κ1)∇̃γ̇N

= (ν/κ1){∇ξ(ϕU) + g(Aξ, ϕU)N} − (µ/κ1)Aξ
= (ν/κ1){−νξ + ϕ∇ξU} − (µ/κ1)(µξ + νU)
= −{(µ2 + ν2)/κ1} ξ + (ν/κ1)(ϕ∇ξU − µU).

We shall verify ϕ∇ξU = µU . First, it is clear that ϕ∇ξU is perpendicular to ξ. Sec-
ondly, ϕ∇ξU is perpendicular to ϕU , because

g(ϕ∇ξU , ϕU) = g(∇ξU ,U) − η(∇ξU)η(U) = 0.

So we can verify our assertion when n = 2. Next, when n ≥ 3, there exists a vector
Y(≠ 0) ∈ T0M satisfying Y ⊥ U and Y ⊥ ϕU . For such a vector Y , we can take a
vector X ∈ T0M with ϕX = Y . _is X is also perpendicular to U and ϕU . _en,
owing to (4.3), we ûnd νg(∇ξX ,U) = 0. Since ν ≠ 0, we have

0 = g(∇ξX ,U) = −g(X ,∇ξU)
= −g(ϕX , ϕ∇ξU) − η(X)η(∇ξU) = −g(Y , ϕ∇ξU).

Accordingly, ϕ∇ξU is perpendicular to Y . Lastly, under our assumption, (4.5) yields
g(U , ϕ∇ξU) = µ. We thus obtain ϕ∇ξU = µU . Consequently, (4.16) implies ∇̃γ̇V2 =
−κ1γ̇ for some constant κ1. Hence, every integral curve γ of the characteristic vector
ûeld ξ on M∗ is a circle in M̃n(c).

Let us consider the case that the curve γ has a point that is not contained in M∗.
As mentioned above, if the curve γ, deûned on a connected open interval I = (a, b),
is contained in M∗, then the function ν is constant along γ. Since ν is continuous on
thewhole ofM and ν(γ(s)) ≠ 0 on I,we see ν(γ(a)) and ν(γ(b)) cannot vanish and
hence the curve γ starting at a point p ∈ M∗ cannot intersect the subset

M0 = {p ∈ M ∣ ν(p) = 0}.
_erefore, we have only to examine an integral curve γ ∶ I → M of ξ that satisûes
γ(s) ∈ M0 for all s ∈ I. By the deûnition of ν, we have Aξγ(s) = µξγ(s), so that
∇̃γ̇ γ̇ = ∇ξξ + g(Aξ, ξ)N = ϕAξ + µN = µN. Recall that µ is constant on M. If µ = 0,
γ is a geodesic, that is, a circle of null curvature in M̃n(c). If µ /= 0, we ûnd

∇̃γ̇N = −Aξ = −µξ.

_us γ is a circle of curvature κ1 = µ. _e “only if ” part of_eorem 1.1 is proved.
We shall show the converse. Assume that every integral curve of the characteristic

vector ûeld ξ on M is a circle in M̃n(c). Take an arbitrary point p of M∗ and let γ
be an integral curve of ξ through p. We can use (4.12) ∼ (4.15). Since γ is a circle
in M̃n(c), the ûrst curvature κ1 and the holomorphic torsion τ12 of γ are constant
along γ (see Section 2). Hence, (4.13) and (4.15) imply that the functions µ and ν are
constant along γ, so that

(4.17) ξµ = ξν = 0 on M∗ .

Moreover, (4.16) is now valid. Noting that γ is of proper order 2 and ν ≠ 0, we have

(4.18) ϕ∇ξU = µU ,
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which, together with (4.1), yields

(4.19) ∇ξU = −µϕU .

In fact, we see that

µϕU = ϕ2∇ξU = −∇ξU + η(∇ξU)ξ = −∇ξU − g(∇ξξ,U)ξ = −∇ξU .

We now derive that the function µ is constant on M∗. It follows from (4.6) and (4.17)
that

(4.20) Uµ = 0.

_e following is immediate from (4.5) and (4.18):

(4.21) (ϕU)µ = 0.

If n ≥ 3, wemay choose a vector X(≠ 0) ∈ T0M that is orthogonal to U and ϕU . For
such a vector X, by (4.3) and (4.19) one can see that

(4.22) Xµ = −νg(∇ξX ,U) = νg(X ,∇ξU) = −νg(X , µϕU) = 0.

From (4.17), (4.20), (4.21), and (4.22)we conclude that µ is constant on M∗ as desired.
Hence Trace A is constant on an open dense subset M∗ and on the whole M by con-
tinuity. _erefore, we conclude that the ruled real hypersurfaceM has constant mean
curvature. _eorem 1.1 is now proved.

We next prove_eorem 1.3.

Proof of_eorem 1.3 Let M be a ruled real hypersurface in a non�at complex space
form M̃n(c), n ≥ 2. Suppose that all integral curves of the characteristic vector ûeld
ξ on M are strongly congruent with each other by holomorphic isometries of M̃n(c).
First of all, we note that any integral curve γ of ξ cannot be a geodesic in M̃n(c).

In fact, if there exists such an integral curve, by our hypothesis all integral curves of ξ
on M are geodesics in M̃n(c). _en ∇̃ξξ = 0. In particular, its tangential component
vanishes so that∇ξξ = ϕAξ = 0. _is means the characteristic vector ξ is principal at
any point ofM. However, it is impossible for ruled real hypersurfaces. Hence, the ûrst
curvature of each integral curve γ of ξ does not vanish and the holomorphic torsion
τ12 can be deûned.

Next, for arbitrary two points p, q in M∗ we choose integral curves γ1, γ2 of ξ that
are contained in M∗ and satisfy γ1(0) = p, γ2(0) = q. Since two curves γ1 and γ2 are
strongly congruent by holomorphic isometry of M̃n(c), from _eorem A we have

κγ1
1 (s) = κγ2

1 (s), τγ1
12(0) = τγ2

12 (0).
_ese, together with (4.13) and (4.15), yield

ν(γ1(s))2 + µ(γ1(s))2 = ν(γ2(s))2 + µ(γ2(s))2 ,
µ(γ1(0))/κγ1

1 (0) = µ(γ2(0))/κγ2
1 (0).

Hence, we obtain µ(p) = µ(q), ν(p) = ν(q) for any p, q ∈ M∗. Since the subset M∗
is open and dense in M, the functions µ and ν are constant on M. On the other hand,
substituting ϕU for X in (4.4) we get (ϕU)ν = ν2 + (c/4). Suppose that c > 0. We
then have (ϕU)ν > 0 from the above. But it contradicts the fact that ν is constant.
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_erefore, the ambient spacemust be a complex hyperbolic space CHn(c). _e con-
stancy of µ and ν implies that M has constant principal curvatures (see Section 3), and
accordingly, by virtue of_eorem B,we obtain the conclusion of our_eorem 1.3.

It remains to prove Corollary 1.4. Suppose that all integral curves of the character-
istic vector ûeld ξ on a ruled real hypersurfaceM are circles of the same curvature in
M̃n(c). ByCorollary 1.2, one ûnds that the real hypersurfaceM isminimal in M̃n(c).
Hence every integral curve of ξ on M is a totally real circle and its holomorphic tor-
sion τ12 vanishes. _en, in view of _eorem A and _eorem 1.3, our Corollary 1.4
follows.

_e following problem related to our _eorem 1.3 is still open.

Problem LetM be a ruled real hypersurface in a complexhyperbolic spaceCHn(c),
n ≥ 2. If all integral curves of the characteristic vector ûeld ξ on M are congruent in
the usual sensewith each other by holomorphic isometries ofCHn(c), is M homoge-
neous in this ambient space?

Acknowledgements _e authorswould like to express their appreciation to the ref-
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