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Abstract

We consider the contact between curves and hyperhorospheres in hyperbolic 4-space as an application of
the theory of singularities of functions. We define the osculating hyperhorosphere and the horospherical
hypersurface of the curve whose singular points correspond to the locus of polar vectors of osculating
hyperhorospheres of the curve. One of the main results is a generic classification of singularities of
horospherical hypersurfaces of curves.
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1. Introduction

In [2], we constructed some basic tools and applied singularity theory to local
differential geometry on hypersurfaces in hyperbolic space. These tools work very
well for hypersurfaces. The next step is to consider the case of submanifolds with
higher codimensions. In this paper, we stick to hyperbolic space curves, the simplest
case with higher codimensions. We study the contact between hyperbolic space curves
and hyperhorospheres as an application of singularity theory of smooth functions. One
of the basic tools that we gave in [2] is the notion of the horospherical height function
on a hypersurface. We define the horospherical height function of a hyperbolic
space curve. By using the techniques of singularity theory on such a function,
we define osculating horospheres along a hyperbolic space curve (see Section 3).
We also define the horospherical hypersurface of a hyperbolic space curve as the
discriminant set of the horospherical height function on the curve. Compared with
the case of curves in Euclidean space, the situation is rather different because the
horospherical hypersurface is defined in the lightcone. It might be considered as a
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kind of dual hypersurface of the curve. The main result in this paper is Theorem 2.1,
which gives a generic classification of singularities of horospherical hypersurfaces of
hyperbolic space curves. Moreover, we study the geometric meanings of singularities
of horospherical hypersurfaces of hyperbolic space curves and introduce a new
invariant σ(s). We show that σ(s) = 0 for all s if and only if the curve is located
on a hyperhorosphere, under a certain generic assumption (see Section 3).

All maps considered here are of class C∞ unless otherwise stated.

2. Basic notions and results

Let Rn+1 be an (n + 1)-dimensional vector space with typical element x or
(x0, x1, . . . , xn), where each xi ∈ R. The pseudo-scalar product of x and y in Rn+1

is defined by

〈x, y〉 = −x0y0 +

n∑
i=1

xiyi.

The space (Rn+1, 〈·, ·〉) is called Minkowski (n + 1)-space and is denoted by Rn+1
1 .

We say that a vector x in Rn+1 \ {0} is spacelike, lightlike or timelike when 〈x, x〉
is positive, zero, or negative, respectively. The norm of the vector x ∈ Rn+1 is defined
by ‖x‖ = |〈x, x〉|1/2. Given a vector n ∈ Rn+1

1 and a real number c, the hyperplane with
pseudo-normal n is given by

HP(n, c) = {x ∈ Rn+1
1 : 〈x, n〉 = c}.

We say that HP(n, c) is a spacelike, timelike or lightlike hyperplane when n is timelike,
spacelike or lightlike, respectively. The hyperbolic n-space Hn

+(−1) is defined by

Hn
+(−1) = {x ∈ Rn+1

1 : 〈x, x〉 = −1, x0 > 0}.

Given vectors a1, a2, . . . , an ∈ R
n+1
1 , we may define a new vector a1 ∧ a2 ∧ · · · ∧ an

as follows:

a1 ∧ a2 ∧ · · · ∧ an =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en

a1
0 a1

1 · · · a1
n

a2
0 a2

1 · · · a2
n

...
...

...
...

an
0 an

1 · · · an
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where {e0, e1, . . . , en} is the canonical basis of Rn+1
1 and ai = (ai

0, ai
1, . . . , ai

n) when
i = 1, . . . , n. It is easy to check that

〈a, a1 ∧ a2 ∧ · · · ∧ an〉 = det

 a
. . .
an

,
so a1 ∧ a2 ∧ · · · ∧ an is pseudo-orthogonal to all ai (where i = 1, . . . , n).
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We also define the set

LCa = {x ∈ Rn+1
1 : 〈x − a, x − a〉 = 0},

which is called the closed lightcone with vertex a. We denote

LC∗+ = {x = (x0, . . . , xn) ∈ LC0 : x0 > 0}

and call it the future lightcone at the origin.
If x = (x0, x1, . . . , xn) is a lightlike vector, then x0 , 0 and thus

x̃ =
1
x0

(x0, x1, . . . , xn) ∈ {y : 〈y, y〉 = 0, y0 = 1} = S n−1
+ .

The subset S n−1
+ is known as the lightcone (n − 1)-sphere. There are three kinds of

hypersurfaces in Hn
+(−1) that are given by intersections of Hn

+(−1) and hyperplanes
in Rn+1

1 . A hypersurface Hn
+(−1) ∩ HP(v, c) is called a hypersphere, an equidistant

hyperplane or a hyperhorosphere if HP(v, c) is spacelike, timelike or lightlike,
respectively. In particular, we write a hyperhorosphere as

HS n−1(v, c) = Hn
+(−1) ∩ HP(v, c).

If we consider a lightlike vector v and write v0 = (−1/c)v, then

HS n−1(v, c) = HS n−1(v0, −1).

We call v0 the polar vector of HS n−1(v0, −1).
Given a regular curve γ : I→ Hn

+(−1), parametrized by arc length, where I is an
open interval or the unit circle in the Euclidean plane, we define a pseudo-orthonormal
frame

{γ(s), t(s), n1(s), . . . , nn−1(s)}

for Rn+1
1 along γ that satisfies the following Frenet–Serret type formulae:

γ′(s) = n0(s),

n′0(s) = k1(s)n1(s) + γ(s),

n′1(s) = −k1(s)t(s) + k2(s)n2(s),

· · · = · · · ,

n′i(s) = −ki(s)ni−1(s) + ki+1(s)ni+1(s),

· · · = · · · ,

n′n−2(s) = −kn−2(s)nn−3(s) + kn−1(s)nn−1(s),

n′n−1(s) = −kn−1(s)nn−2(s),

where n0(s) = t(s), while ki(s) = ‖n′i−1(s) + ki−1 ni−2(s)‖ when i = 1, 2, . . . , n − 1, and

kn−1(s) = −
1

kn−1
1 (s)kn−2

2 (s) · · · k2
n−2(s)

det


γ(s)
γ′(s)
...

γ(n)(s)

.
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Consider the horospherical height function on γ,

H : I × LC∗+→ R

(s, v) 7→ 〈γ(s), v〉 + 1 = hv(s).

It is tedious but straightforward to show that

hv(s0) = h′v(s0) = · · · = h(n−1)
v (s0) = 0

if and only if v = v0 ∈ LC∗+, where

v0 = γ(s0) +

n−2∑
j=1

σ jn j(s0) ±
(
1 −

n−2∑
j=1

σ j

)1/2

nn−1(s0),

the σ j (where j = 1, . . . , n − 2) being real-valued functions that depend on the
functions k j and their derivatives (where j = 1, . . . , n − 3) and on kn−2. Moreover,

hv(s0) = h′v(s0) = · · · = h(n)
v (s0) = 0

if and only if v is as above and σn(s0) = 0, where σn is a real-valued function that
depends on the functions k j and their derivatives (where j = 1, . . . , n − 2) and on
kn−1. The function σn gives a measure of how much the curve γ is contained in a
hyperhorosphere. We conjecture that the function σn is a Lorentzian invariant of γ,
and we call it the hyperhorospherical torsion of γ.

In this paper, we treat the case where n = 4.
The horospherical flattenings of a curve γ immersed in H4

+(−1) are the zeros of
the hyperhorospherical torsion of γ. We consider the contact between hyperbolic
space curves and hyperhorospheres. This is a special subject in hyperbolic differential
geometry.

Let γ : I→ H4
+(−1) be a unit-speed hyperbolic space curve. We now define a map

HS γ : I × J × K→ LC∗+ by

HS γ(s, θ, φ) = γ(s) + cos θ n1(s) + sin θ cos φ n2(s) + sin θ sin φ n3(s),

where I and J are open intervals or the unit circle in the Euclidean plane. We call HS γ

the horospherical hypersurface of γ. We also introduce a hyperbolic invariant

σ(s) = ((k1k′′1 k2 − k2
1k3

2 − 2k′1
2k2 − k1k′1k′2)2 − (k1k2k3)2(k4

1k2
2 − k2

1k2
2 − k′1

2))(s).

The geometric meaning of these will be discussed in Section 3. For the definition
of Ak, where k = 2, 3, 4, see [1]. Our main result is the following theorem.

T 2.1. Let Emb(I, H4
+(−1)) be the space of proper embeddings γ : I→ H4

+(−1),
equipped with the Whitney C∞-topology. Then there exists an open dense subset O of
Emb(I, H4

+(−1)) such that for all γ ∈ O, the horospherical hypersurface HS γ of γ at
each singular point is locally diffeomorphic to a map germ of cusp type A2, swallow
tail type A3 or butterfly type A4.
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3. Horospherical height functions and invariants of hyperbolic space curves

In this section we introduce a family of functions on a curve that is useful for
the study of invariants of hyperbolic space curves. Given a hyperbolic space curve
γ : I→ H4

+(−1), we define the function H : I × LC∗+→ R by H(s, v) = 〈γ(s), v〉 + 1.
We call H the horospherical height function on γ. We write hv(s) = Hv(s) = H(s, v)
for all fixed vectors v ∈ LC∗+.

P 3.1. Let γ : I→ H4
+(−1) be a unit-speed hyperbolic space curve such that

k1k2(k4
1k2

2 − k2
1k2

2 − k′1
2)(s) , 0 for all s in I. Then the following hold.

First, hv0 (s0) = 0 if and only if there exist real numbers λ, µi (where i = 1, 2, 3) such
that λ2 +

∑3
i=1 µ

2
i = 1 and

v0 = γ(s0) + λt(s0) +

3∑
i=1

µini(s0).

Second, hv0 (s0) = h′v0
(s0) = 0 if and only if there exist θ0, φ0 ∈ (0, 2π] such that

v0 = γ(s0) + cos θ0 n1(s0) + sin θ0 cos φ0 n2(s0) + sin θ0 sin φ0 n3(s0). (3.1)

Third, hv0 (s0) = h′v0
(s0) = h′′v0

(s0) = 0 if and only if (3.1) holds and

σ1(s0) = cos θ0 =
1

k1(s0)
.

Fourth, hv0 (s0) = h′v0
(s0) = h′′v0

(s0) = h(3)
v0

(s0) = 0 if and only if (3.1) holds, and

σ1(s0) = cos θ0 =
1

k1(s0)
,

σ2(s0) = sin θ0 cos φ0 = −
k1
′(s0)

(k2
1k2)(s0)

,

σ3(s0) = sin θ0 sin φ0 = ±

(
1 −

1

k2
1(s0)

−
k1
′(s0)

(k1k2)2(s0)

)1/2

.

(3.2)

Fifth, hv0 (s0) = h′v0
(s0) = · · · = h(4)

v0
(s0) = 0 if and only if both (3.1) and (3.2) hold

and σ(s0) = 0, where

σ(s) = (k1k′′1 k2 − k2
1k3

2 − 2k′1
2k2 − k1k′1k′2)2(s) − (k1k2k3)2(k4

1k2
2 − k2

1k2
2 − k′1

2)(s). (3.3)

Sixth, hv0 (s0) = h′v0
(s0) = · · · = h(5)

v0
(s0) = 0 if and only if both (3.1) and (3.2) hold

and σ(s0) = σ′(s0) = 0.

P. This follows by direct calculation. �
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The function

σ(s) = ((k1k′′1 k2 − k2
1k3

2 − 2k′1
2k2 − k1k′1k′2)2 − (k1k2k3)2(k4

1k2
2 − k2

1k2
2 − k′1

2))(s)

on γ has a special geometric meaning, which we now try to understand. Let v be
a lightlike vector and w be a spacelike vector. A surface HS 3(v, −1) ∩ HP(w, 0) is
called a horosphere.

P 3.2. Let γ : I→ H4
+(−1) be a unit-speed hyperbolic space curve such that

k1k2(s) , 0 and (k4
1k2

2 − k2
1k2

2 − k′1
2)(s) ≥ 0 for all s ∈ I. We consider the vector field

along γ given by

v = γ(s) + cos θ n1(s) + sin θ cos φ n2(s) + sin θ sin φ n3(s),

where

cos θ =
1

k1(s)
,

sin θ sin φ = ±

(
1 −

1

k2
1(s)
−

(k1
′)2(s)

(k2
1k2)2(s)

)1/2

,

sin θ cos φ = −
k′1(s)

(k2
1k2)(s)

.

First, suppose that (k4
1k2

2 − k2
1k2

2 − k′1
2)(s) = 0 for all s. Then the following

conditions are equivalent:

(a) v(s) is a constant vector;
(b) k3(s) = 0 and σ(s) = 0 for all s;
(c) γ is a part of a horosphere.

Second, suppose that the set {s ∈ I : (k4
1k2

2 − k2
1k2

2 − k′1
2)(s) = 0} consists of isolated

points. Then the following conditions are equivalent:

(d) v(s) is a constant vector;
(e) σ(s) = 0 for all s, where σ is given by (3.3);
(f) γ is located on a hyperhorosphere.

P. Suppose that (k4
1k2

2 − k2
1k2

2 − k′1
2)(s) = 0 for all s. Then

v(s) = γ(s) +
1

k1(s)
n1(s) −

k′1(s)

(k2
1k2)(s)

n2(s),

so that

v′(s) =
(k1k2 + k3

1k′1k′2)(s)

k5
1k2

2(s)
n2(s) +

(k1
′′ + 2k′1

2k2 − k′1k3)(s)

k2
1k2(s)

n3(s).
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Therefore v(s) is constant if and only if k′1k3(s) = 0 and

(k2
1k3

2 − k1k′′1 k2 + 2k′1
2k2 + k1k′1k′2)(s) = 0

for all s. If k′1(s) = 0, then k1(s) = 0 or k2(s) = 0 because

(k2
1k3

2 − k1k′′1 k2 + 2k′1
2k2 + k1k′1k′2)(s) = 0;

this contradicts the assumption that k1k2(s) , 0. Thus k3(s) = 0 and

(k2
1k3

2 − k1k′′1 k2 + 2k′1
2k2 + k1k′1k′2)(s) = 0

for all s. This means that k3(s) = 0 and σ(s) = 0. We consider the horosphere

HS 3(v(s), −1) ∩ 〈γ(s), t(s), n1(s), n2(s)〉R

for all s ∈ I, where 〈γ(s), t(s), n1(s), n2(s)〉R is the space generated by γ(s), t(s), n1(s)
and n2(s). If v(s) is constant, then k3(s) = 0. This means that n3(s) is constant,
so that the hyperplane 〈γ(s), t(s), n1(s), n2(s)〉R is also constant. In this case the
hyperhorosphere HS 3(v(s), −1) is also constant. Thus the image of γ is a part of
the horosphere given by HS 3(v(s), −1) ∩ 〈γ(s), t(s), n1(s), n2(s)〉R. If γ is part of a
horosphere, then it is a hyperbolic plane curve. Therefore k3(s) = 0 for all s. This
completes the proof of the first assertion.

Now we consider the second assertion. If (k4
1k2

2 − k2
1k2

2 − k′1
2)(s) , 0, then

v = γ(s) +
1

k1(s)
n1(s) −

k′1(s)

(k2
1k2)(s)

n2(s) ±
(
1 −

1

k2
1(s)
−

(k1
′)2(s)

(k4
1k2

2)(s)

)1/2

n3(s).

Hence

v′(s) = −
σ(s)

(k3
1k2

2)(s)
n2(s) ∓

k′1(s)σ(s)

(k5
1k3

2)(s)
n3(s).

Therefore, v′(s) = 0 if and only if σ(s) = 0. Conditions (d) and (e) are equivalent for
these s.

By assumption, the set of points s where (k4
1k2

2 − k2
1k2

2 − k′1
2)(s) , 0 is an open dense

subset of I. Therefore, conditions (d) and (e) are equivalent at all points of I.
We now consider the horospherical height function H(s, v) on γ. If γ is located on a

hyperhorosphere HS 3(v0, c), then we may choose c = −1. This means that H(s, v0) = 0
for all s. By the fifth assertion of Proposition 3.1,

((k1k′′1 k2 − k2
1k3

2 − 2k′1
2k2 − k1k′1k′2)2 − (k1k2k3)2(k4

1k2
2 − k2

1k2
2 − k′1

2))(s) = 0

for all s. This means that condition (f) implies condition (e). If v(s) is a constant vector
v0, then γ is located on HS 3(v0, −1). �
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R 3.3. Let γ : I→ H4
+(−1) be a unit-speed hyperbolic space curve such that

(k4
1k2

2 − k2
1k2

2 − k′1
2)(s) = 0 and k1(s) ≥ 1 for all s. We consider the vector field along

γ given by v = γ(s) + cos θ n1(s) + sin θ n2(s), where cos θ = 1/k1(s).
First, suppose that k1(s) = 1 for all s. Then γ is a part of a horocycle.
Second, suppose that the set {s ∈ I : k1(s) = 1} consists of isolated points. Then γ is

located on a horosphere (see [3]).

Let F : H4
+(−1)→ R be a submersion and γ : I→ H4

+(−1) be a regular curve. We
say that γ and F−1(0) have at least k-point contact at t0 if the function g(t) = F ◦ γ(t)
satisfies

g(t0) = g′(t0) = · · · = g(k−1)(t0) = 0.

If γ and F−1(0) have at least k-point contact at t0 and g(k)(t0) , 0, then we say that γ
and F−1(0) have k-point contact when t = t0. If a hyperhorosphere HS 3(v0, −1) and a
hyperbolic space curve γ have at least four-point contact at t0, we call HS 3(v0, −1) the
osculating hyperhorosphere of γ at γ(t0).

P 3.4. Let γ : I→ H4
+(−1) be a unit-speed hyperbolic space curve.

First, there exists an osculating hyperhorosphere of γ at a point γ(s0) if and only if
(k4

1k2
2 − k2

1k2
2 − k′1

2)(s0) > 0.
Second, suppose that (k4

1k2
2 − k2

1k2
2 − k′1

2)(s0) > 0. Then the osculating hyperhoro-
sphere and γ have five-point contact at s = s0 if and only if σ(s0) = 0 and σ′(s0) , 0.

P. Define the function H : H4
+(−1) × LC∗+→ R by

H(x, v) = 〈x, v〉 + 1.

For all v ∈ LC∗+, hv0 (x) = H(x, v0) is a submersion and h−1
v0

(0) is a hyperhorosphere.
Moreover, each hyperhorosphere may be realized as the zero level set of hv0 for some
v0 ∈ LC∗+. Now hv0 ◦ γ(s) = h(s), where h(s) = H(s, v0), for all γ. Therefore h−1

v0
(0) is

an osculating hyperhorosphere of γ at γ(s0) if and only if

h(s0) = h′(s0) = h′′(s0) = h(3)(s0) = 0.

By Proposition 3.1, this condition is equivalent to the condition that

v0 = γ(s0) + σ1(s0)n1(s0) + σ2(s0)n2(s0) + σ3(s0)n3(s0),

where

σ2(s0) = sin θ0 cos φ0 = −
k1
′(s0)

(k2
1k2)(s0)

,

σ3(s0) = sin θ0 sin φ0 = ±

(
1 −

1

k2
1(s0)

−
k1
′2(s0)

(k4
1k2

2)(s0)

)1/2

.

By Proposition 3.2,

1 −
1

k2
1(s0)

−
(k1
′)2(s0)

(k4
1k2

2)(s0)
> 0,

that is, (k4
1k2

2 − k2
1k2

2 − k′1
2)(s0) > 0.
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[9] Singularities of horospherical hypersurfaces 97

The second assertion follows from the fourth and fifth assertions of
Proposition 3.1. �

R 3.5. The osculating hyperhorosphere of γ is located in de Sitter 4-space S 4
1 if

and only if (k4
1k2

2 − k2
1k2

2 − k′1
2)(s0) < 0, where

S 4
1 = {x ∈ R5

1 : 〈x, x〉 = 1}.

However, we do not consider this case in this paper.

Theorem 2.1 asserts that the set of singular points of the horospherical hypersurface
of γ is the locus of the polar vectors of osculating hyperhorospheres of γ. Moreover,
the butterfly point of the horospherical hypersurface of γ corresponds to the point γ(s0)
where the osculating hyperhorosphere and γ have 5-point contact.

On the other hand, we consider the hyperhorosphere

HS 3(v(s0), −1) ∩ 〈γ(s0), t(s0), n1(s0), n2(s0)〉R

at a point s0 ∈ I at which (k4
1k2

2 − k2
1k2

2 − k′1
2)(s0) > 0. We call it the osculating

hyperhorosphere of γ at γ(s0). The first assertion of Proposition 3.1 suggests
that the invariants ki(s0), where i = 1, 2, 3 describe the contact between curves and
hyperhorospheres. We do not, however, study this topic here.

4. Generating families and generic properties

Proposition 3.1 means that the discriminant set of the horospherical height function
H is given by

DH =

{
v : v = γ(s) +

3∑
i=1

σi ni(s), σi ∈ R,
3∑

i=1

σ2
i = 1, s ∈ I

}
,

which is the image of the horospherical hypersurface along γ. Therefore a singular
point of the horospherical hypersurface is a point

v0 = v = γ(s) +

3∑
i=1

µi ni(s0),

at which
∑3

i=1 µ
2
i = 1. We now explain the reason why such a correspondence exists

from the viewpoint of contact geometry. Given a point v = (v0, v1, . . . , v4) ∈ LC∗+, we
take the projective cotangent bundle

π : PT ∗(LC∗+)→ LC∗+

with its canonical contact structure. We review the geometric properties of this
space. Consider the tangent bundle τ : TPT∗(LC∗+)→ PT ∗(LC∗+) and the differential
map dπ : TPT∗(LC∗+)→ TLC∗+ of π. For all X ∈ TPT∗(LC∗+), there exists an element
α ∈ T ∗(LC∗+) such that τ(X) = [α]. For an element V ∈ Tx(LC∗+), the property α(V) = 0
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does not depend on the choice of representative of the class [α]. Thus we may define
the canonical contact structure on PT ∗(LC∗+) by

K = {X ∈ TPT∗(LC∗+) : τ(X)(dπ(X)) = 0}.

Via the coordinates (v0, v1, . . . , v4), there is a trivialization

PT ∗(LC∗+) � LC∗+ × P(R3)∗,

and ((v0, v1, . . . , v4), [ξ0 : ξ1 : · · · : ξ4]), where [ξ0 : ξ1 : · · · : ξ4] are the homogeneous
coordinates of the dual projective space P(R3)∗, are known as homogeneous
coordinates.

It is easy to show that X ∈ K(x,[ξ]) if and only if
∑4

i=1 µiξi = 0, where dπ(X) =∑4
i=1 µi∂/∂vi. An immersion i : L→ PT ∗(LC∗+) is said to be Legendrian if dim L = 4

and diq(TqL) ⊂ Ki(q) for all q ∈ L. The map π ◦ i is also called the Legendrian map and
the set W(i) = image π ◦ i is called the wave front of i. Moreover, i (or its image) is
called the Legendrian lift of W(i).

For additional definitions and basic results on generating families, we refer to [2]
or [1]. By the previous arguments, the horospherical hypersurface HS γ is the
discriminant set of the horospherical height function H.

P 4.1. Let H be the horospherical height function on γ. Then H is a Morse
family.

P. Write γ(s) = (x0(s), x1(s), . . . , x4(s)) and v = (v0, v1, . . . , v4), where

v0 = (v2
1 + v2

2 + v2
3 + v2

4)1/2,

x0(s) = (x2
1(s) + x2

2(s) + x2
3(s) + x2

4(s) + 1)1/2.

By definition, H(s, v) = −x0(s)v0 +
∑4

i=1 xi(s)vi. Thus, when i = 1, . . . , 4,

∂H/∂vi(s, v) = −vix0(s)/v0 + xi(s).

We now prove that the mapping

∆∗H = (H, ∂H/∂s)

is nonsingular at (u, v) in the singular set of the horospherical hypersurface. In fact,
the Jacobian matrix of ∆∗H is given by(

〈γ′, v〉 −x0v1/v0 + x1 −x0v2/v0 + x2 · · · −x0v4/v0 + x4

〈γ′′, v〉 −x′0v1/v0 + x′1 −x′0v2/v0 + x′2 · · · −x′0v4/v0 + x′4

)
.

We will show that the rank of the matrix

A =

(
x0v1/v0 + x1 x0v2/v0 + x2 · · · x0v4/v0 + x4

x′0v1/v0 + x′1 x′0v2/v0 + x′2 · · · x′0v4/v0 + x′4

)
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is two at (u, v) in the singular set of the horospherical hypersurface. Since the
vector v =

∑3
i=1 σi n(s) is lightlike, we may assume that σ1 , 0. We now write

a = (x0, x′0, n20 , n30 ) and bi = (xi, x′i , n2i , n3i ) where i = 1, . . . , 4, and

Ā =


x0v1/v0 + x1 x0v2/v0 + x2 · · · x0v4/v0 + x4

x′0v1/v0 + x′1 x′0v2/v0 + x′2 · · · x′0v4/v0 + x′4
n20 v1/v0 + n21 n20 v2/v0 + n22 · · · n20 v4/v0 + n24

n30 v1/v0 + n31 n30 v2/v0 + n32 · · · n30 v4/v0 + n34

,
where ni = (ni0 , ni1 , ni2 , ni3 , ni4 ) when i = 2, 3. Then

det Ā =
v0

v0
det


b1

b2

b3

b4

 − v1

v0
det


a
b2

b3

b4

 − · · · − v4

v0
det


b1

b2

b3

a

.
On the other hand,

(γ ∧ γ′ ∧ n2 ∧ n3) =

−det

b1

b2

b3

, −det

 a
b2

b3

, −det

b1

a
b3

 − det

b1

b2

a


.

Therefore

det Ā =

〈 1
v0

(v0, . . . , v4), γ ∧ γ′ ∧ n2 ∧ n3

〉
=

1
v0
〈v, γ ∧ t ∧ n2 ∧ n3〉 =

1
v0σ1

, 0

at (u, v) in the singular set of the horospherical hypersurface. Since A is a submatrix
of Ā, which consists of the first and second rows of Ā, the rank of the matrix A is two.
This means that the Jacobi matrix of ∆∗H is nonsingular at (u, v) in the singular set of
the horospherical hypersurface. �

We observe that these consideration allow us to assert that the horospherical
hypersurface HS γ is a wave front and the horospherical height function H on γ gives
a Minkowski canonical generating family for the Legendrian lift of HS γ.

We now consider generic properties of curves in H4
+(−1). Our principal tool is

a kind of transversality theorem. Denote by Emb(I, H4
+(−1)) the space of proper

embeddings γ : I→ H4
+(−1) with the Whitney C∞-topology. We also define the

functionH : H4
+(−1) × LC∗+→ R by

H(u, v) = 〈u, v〉 + 1.

We claim that Hu is a submersion for all u ∈ LC∗+, where Hu(v) =H(u, v). Now
H =H ◦ (γ × idLC∗+) for all γ ∈ Emb(I, H4

+(−1)), and the `-jet extension

j`1H : I × LC∗+→ J`(I, R)
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is defined by j`1H(s, v) = j`hv(s). We consider the trivialization

J`(I, R) ≡ I × R × J`(1, 1).

For each submanifold Q of J`(1, 1), we write Q̃ = I × {0} × Q. The following
proposition is a corollary of Wassermann [5, Lemma 6] (see also Montaldi [4]).

P 4.2. Let Q be a submanifold of J`(1, 1). Then the set

TQ = {γ ∈ Emb(I, H4
+(−1)) : j`1H is transversal to Q̃}

is a residual subset of Emb(I, H4
+(−1)). If Q is a closed subset, then TQ is open.

Let f : (R, 0)→ (R, 0) be a function germ with an Ak-singularity at 0. By the
well-known classification of Ak-singularities, there exists a diffeomorphism germ
φ : (R, 0)→ (R, 0) such that f ◦ φ(s) = ±sk+1. For all z = j` f (0) ∈ J`(1, 1), the orbit
L`(z) is given by the action of the Lie group of `-jets of diffeomorphism germs. If f
has an Ak-singularity, then the codimension of the orbit is k. Now we give another
characterization of versal unfoldings.

P 4.3. Let F : (R × Rr, 0)→ (R, 0) be an r-parameter unfolding of the
function germ f : (R, 0)→ (R, 0), which has an Ak-singularity at 0. Then F is a
versal unfolding if and only if j`1F is transversal to the orbit L̃`( j` f (0)) whenever
` ≥ k + 1. Here, j`1F : (R × Rr, 0)→ J`(R, R) is the `-jet extension of F given by
j`1F(s, x) = j`Fx(s).

We prove Theorem 2.1 as a corollary of Proposition 4.2.

P  T 2.1 For all ` ≥ 5, we consider the decomposition of the jet space
J`(1, 1) into L`(1) orbits. We now define the semialgebraic set Σ` to be the set of
all jets j` f (0) ∈ J`(1, 1) of functions f with an Ak-singularity where k ≥ 4. Then the
codimension of Σ` is five. Therefore, the codimension of Σ̃0 = I × {0} × Σ` is six. The
orbit J`(1, 1) − Σ` decomposes:

J`(1, 1) − Σ` = L`0 ∪ L`1 ∪ · · · ∪ L`4,

where L`k is the orbit through an Ak-singularity. Thus the codimension of L̃`k is k + 1.
We consider the `-jet extension j`1H of the horospherical height function H. By
Proposition 4.2, there exists an open and dense subset O of Emb(I, H4

+(−1)) such
that j`1H is transversal to L̃`k (here k = 0, 1, . . . , 4) and the orbit decomposition of Σ̃`.
This means that j`1H(I × LC∗+) ∩ Σ̃` = ∅ and H is a versal unfolding of h at each point
(s0, v0). By Proposition 4.1 and the Legendrian singularity theory of Arnold [1],
the discriminant set of H (that is, the horospherical hypersurface of γ) is locally
diffeomorphic to a cuspidal edge, a swallow tail or a butterfly if the point is singular. �
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