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Abstract. We revisit the problem of the secular dynamics in two-planet systems in which the
planetary orbits exhibit a high value of the mutual inclination. We propose a ‘basic hamiltonian
model’ for secular dynamics, parameterized in terms of the system’s Angular Momentum Deficit
(AMD). The secular Hamiltonian can be obtained in closed form, using multipole expansions in
powers of the distance ratio between the planets, or in the usual Laplace-Lagrange form. The
main features of the phase space (number and stability of periodic orbits, bifurcations from the
main apsidal corotation resonances, Kozai resonance etc.) can all be recovered by choosing the
corresponding terms in the ‘basic Hamiltonian’. Applications include the semi-analytical deter-
mination of the actual orbital state of the system using Hamiltonian normalization techniques.
An example is discussed referring to the system of two outermost planets of the ν-Andromedae
system.
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1. Introduction

The dynamics of exoplanetary systems with two planets in orbits with non-zero mutual
inclination is a very interesting topic in view of the discovery, in the last 20 years, of
several such systems (see Naoz (2016) and references therein, as well as Libert & Tsiganis
(2009)). In the present short review we do a preliminary discussion of the phase space
structures observed in such systems; a more complete study will be presented in a separate
work. In particular we discuss below two distinct characteristic regimes. The first, called
the nearly-planar regime, is characterized by small values of the mutual inclination, high
values of the planetary eccentricities and by the predominance of orbits (periodic or quasi-
periodic) linked to apsidal corotations. The second regime, called Kozai-Lidov regime,
is characterized, instead, by a high value of the mutual inclination, small values of the
eccentricities and by the instability of the circular orbit for the inner planet. We will
finally discuss the sequence of bifurcations that connect the two regimes.

2. Hamiltonian model

The Hamiltonian of the three-body problem in Poincaré heliocentric canonical variables
takes the form:
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H(r2, r3, p2, p3) =
p2

2

2m2
− Gm0m2

r2
+

p3
2

2m3
− Gm0m3

r3︸ ︷︷ ︸
Keplerian part

+
(p2 + p3)2

2m0︸ ︷︷ ︸
”Indirect” part

− Gm2m3

|r2 − r3|︸ ︷︷ ︸
”Direct” part

,

(2.1)
where m0 = mass of the star, and mi , pi , ri , i= 2, 3 are the masses, barycentric
momenta and heliocentric position vectors of the planets. Starting from (2.1), a secu-
lar Hamiltonian is arrived at by averaging the above Hamiltonian with respect to all
short period terms. We consider two distinct types of expansion, i.e. i) series expansions
in powers of the planets’ eccentricities and inclinations and ii) closed-form averaging. In
both cases, we end up with a secular Hamiltonian model of the form

Hsec = −Gm0m2

2a2
− Gm0m3

2a3
+ Rsec(a2, a3, e2, e3, i2, i3, �2, �3,Ω2,Ω3). (2.2)

In the Hamiltonian (2.2) the ‘fast’ angles λi =Mi +�i, i= 2, 3 , are ignorable, a fact
implying the constancy of the semi-major axes under the secular model. The total angular
momentum L = r2 × p2 + r3 × p3 is an exact first integral of the system, a fact implying
that the Hamiltonians (2.1) and (2.2) depend on the angles Ω2, Ω3 only through the
difference Ω2 − Ω3. Using modified Delaunay canonical variables

Λj =Lj =mj

√Gm0 aj , λj = lj + gj + hj =Mj +�j ,

Γj =Lj −Gj = Λj

(
1 −

√
1 − e2j

)
, γj = −gj − hj = −�j , (2.3)

Θj =Gj −Hj = Λj

√
1− e2j (1− cos(ij)) , ϑj = −hj = −Ωj ,

the secular Hamiltonian Hsec(Γ2, Γ3,Θ2,Θ3, γ2, γ3, ϑ2, ϑ3) has 4 degrees of freedom.
However, the existence of two independent integrals in involution (i.e. the components
Lz and Lplane of the total angular momentum L ) allows to reduce the number of
degrees of freedom by two, a process known as ‘Jacobi’s reduction of the nodes’. We
propose a novel method to perform Jacobi’s reduction with respect to the one followed
by Libert & Henrard (2007). Our method leads to an explicit analytic control of all
small parameters appearing in the problem, by taking advantage of the symmetries of
the Hamiltonian expressed in Keplerian heliocetric elements with respect to the Laplace
reference frame. In particular setting, as usual, Ω3 − Ω2 = π and observing that the
Hamiltonian depends only on the mutual inclination, Hsec = Hsec(a2, a3, e2, e3, cos(i2 +
i3), ω2, ω3,Ω3 − Ω2 = π ), we introduce two book-keeping parameters, ε and η (with
numerical values ε= η= 1 ), via the relations

cos(i2) cos(i3) = ε2η (cos(i2) cos(i3) − 1) + 1 , sin(i2) sin(i3) = ε2η sin(i2) sin(i3) .
(2.4)

In view of these book-keeping parameters, the Hamiltonian takes the form

Hsec = Hplane + ηHspace

=
∑
s2�0

εs2hs2(a2, a3, e2, e3, ω2 − ω3)

+ η
∑
s2�2

εs2 ĥs2(a2, a3, e2, e3, cos(i2) cos(i3), sin(i2) sin(i3), ω2, ω3) ,

where, in the last passage, all powers ηs1 with s1 � 1 are replaced simply by η (this is a
possible simbolic operation since η= 1 ). Finally, setting

sin(i2) sin(i3) = cos(i2) cos(i3) +
G2

2G3
+

G3

2G2
− C2

2G2 G3
, (2.5)

https://doi.org/10.1017/S1743921321001368 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921321001368


Secular dynamics in extrasolar systems with two planets 193

Figure 1. Poincaré surfaces of section in the plane (e2 cos(ω2), e2 sin(ω2)) with Lz fixed
and different values of energy (from left to right), top E =−6.62 · 10−5,−2.94 · 10−5,−1.92 ·
10−5,−1.18 · 10−5,−2.73 · 10−6, bottom E =−6.67 · 10−5,−2.53 · 10−5,−1.9 · 10−5,−1.17 ·
10−5,−2.61 · 10−6 . The top row shows the surfaces of section as computed by a numerical
integration of trajectories in the Hamiltonian expanded with Laplace coefficients up to order
10 in the eccentricities. The bottom rows shows the corresponding sections with a Hamiltonian
averaged in closed form with a multipolar expansion truncated at degree 5 and expanded up to
order 10 in the eccentricities.

where C =Lz and Gj =mj

√Gm0 aj

√
1 − e2j j = 2, 3 , the Hamiltonian takes the form

Hsec(a2, a3, e2, e3, ω2, ω3;Lz) = Hplane(Γ2, Γ3, ω2 − ω3) + ηHspace(Γ2, Γ3, ω2, ω3;Lz) .
We note that Eq. (2.4) explicitly keeps track of all the small quantities of the problem:
these are the planetary eccentrities e2, e3 and the inclinations i2, i3 . However, in our
approach the dependence of the Hamiltonian on the inclinations is accounted for through
powers of the quantities sin(i2) sin(i3) and cos(i2) cos(i3) − 1 . Finally it is possible to
express the secular Hamiltonian in the form of a polynomial Hsec(X2, X3, Y2, Y3; AMD),
where the canonical pairs (X2, Y2), (X3, Y3) are Poincaré variables Xi = −√

2Γi cos ωi,
Yi = −√

2Γi sin ωi , while the ‘Angular Momentum Deficit’ AMD = Λ2 + Λ3 −Lz is
constant. We checked the precision of each type of expansion against numerical exper-
iments; in particular we compared the Poincaré section Y3 = 0 , Ẏ3 � 0 obtained from
the Hamiltonian expanded as in both methods above. This allows to specify which is a
sufficient order of truncation of the multipolar expansion and of the small parameters;
Figure 1 shows an example of such comparison, allowing to see that we need to reach
degree 5 of the multipolar expansion to obtain the same phase portraits as in the
Laplace expansion up to order 10 in the eccentricities.

3. Dynamics

3.1. Phase portraits

In order to analyze the most important phenomena in the phase portrait of the
Hamiltonian Hsec(X2, X3, Y2, Y3; AMD) , we consider, as a representative example, the
value AMD = 0.016 in a fictitious system with two planets same as the planets c and
d of the system ν-Andromedae. In particular we chose m0 = 1.31M� , m2 = 13.98MJ ,
m3 = 10.25MJ , a2 = 0.829AU , a3 = 2.53AU (according to Table 13 of McArthur et al.
(2010)) and e2 = 0.2445 , e3 = 0.316 , i2 = 11.347◦ and i3 = 25.609◦ (according to Table 1
of Deitrick et al. (2015)). Figure 2 shows the Poincaré section Y3 = 0 , Ẏ3 ≥ 0 for different
values of the energy E = Hsec . Since the AMD is fixed, altering the values of the planets’
eccentricities implies that the inclinations also change to keep the AMD constant to its
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Figure 2. Poincaré surfaces of section in the representative plane (e2 cos(ω2), e2 sin(ω2)) with
Lz fixed and for different values of the energy (from left to right) E =−6.67 · 10−5,−4.26 ·
10−5,−2.53 · 10−5,−1.9 · 10−5,−1.17 · 10−5,−2.61 · 10−6 .

pre-selected value. The maximum values of e2 and e3 allowed for a specific value of the
AMD can be computed using the Lagrange multiplier method. In the same way we find
the allowed region (X2min

, X2max
) for the phase portrait corresponding to each section.

3.2. Nearly-planar regime

The first two panels in the Figure 2 are representative of the phase portrait obtained in
the nearly-planar regime. This is similar to the phase portrait found in the exact planar
case, in which the averaged Hamiltonian turns to be integrable (see Figure 3c). In fact
the 3D Hamiltonian can be decomposed as

Hsec = Hplane(Γ2, Γ3, ω2 − ω3) + ηH0space
(Γ2, Γ3, ω2 − ω3)︸ ︷︷ ︸

Integrable part:=Hint

+ηH1space
(Γ2, Γ3, ω2, ω3) .

Of particular importance in the integrable part Hint are the periodic orbits called anti-
aligned (mode A ) and aligned (mode B ) apsidal corotation (see Laughlin et al. (2002),
Lee & Peale (2003), Beaugé et al. (2003)). In order to compute all possible (symmetric or
asymmetric) apsidal corotations for given energy and angular momentum it is particularly
convenient to express the integrable part of the Hamiltonian Hint in Weyl variables,
defined as

σ0 =
1

2

(
X2

2 + Y 2
2 +X2

3 + Y 2
3

)
, σ1 =X2X3 + Y2Y3 ,

σ2 = Y2X3 − Y3X2 , σ3 =
1

2

(
X2

2 + Y 2
2 −X2

3 − Y 2
3

)
,

where Xi, Yi i= 2, 3 are the canonical Poincaré variables defined above. These variables
satisfy the Poisson algebra relations {σi, σj} = −2εijkσk , where εijk is the Levi-Civita

https://doi.org/10.1017/S1743921321001368 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921321001368


Secular dynamics in extrasolar systems with two planets 195

Figure 3. Examples of apsidal corotations calculated by imposing the tangency condition
between the sphere Sσ0 and the cylindrical energy surface Cσ0,E . The right panel shows the

positions of the apsidal corotations in the surface of section Y3 = 0, Ẏ3 � 0 in the representative
plane (e2 cos(ω2), e2 sin(ω2)) , obtained considering only the Hint term in the Hamiltonian.
Note the absence of a separatrix between the two stable modes. This is due to the fact that the
system’s reduced phase-space has the topology of the 3D-sphere.

symbol, when i, j, k= 1, 2, 3 and εijk = 0 if one of the i, j, k is equal to 0 . We easily
verify that the Hamiltonian Hint does not depend on σ2 . Consider the surfaces

Sσ0
= {(σ1, σ2, σ3) ∈R

3 : σ2
1 + σ2

2 + σ2
3 = σ2

0}
Cσ0,E = {(σ1, σ2, σ3) ∈R

3 : Hint(σ0, σ1, σ3) = E} . (3.1)

It can be proved that the periodic orbits of Hint are given by the points of tangency
of the surfaces Sσ0

and Cσ0,E . Using this property we can compute analytically all the
apsidal corotations corresponding to a fixed energy E (varying the angular momenta of
the planets, i.e. σ0 ), or fixed σ0 (varying E ). Figure 3 shows a particular example.

Having specified, now, the coordinates of the apsidal corotations, it is possible to apply
a Birkhoff normal form of the Hamiltonian in order to compute the quasi-periodic orbits
around one of the two modes. Details of this construction are given in a separate study.
We emphasize the method’s utility in order to provide a semi-analitycal representation
of the long term time series of the orbital elements for the planetary trajectories.

3.3. Sequences of bifurcations

As shown in Figure 2, the nearly-planar regime is followed by a sequence of bifur-
cations occurring for a fixed value of the AMD as the energy increases (from left to
right), implying that the maximum allowed mutual inclination between the planets also
increases. Starting with the basic apsidal corotations (A, B), a saddle-mode bifurcation
generates the orbits C1, C2 which correspond to an orbital configuration with non-
zero mutual inclination. Furthermore, as the mutual inclination increases, the orbit C2

becomes unstable by the “Kozai mechanism”(see Kozai (1962)), as shown in the last
picture of Figure 2.

3.4. Kozai-Lidov regime

In the last two pictures of Figure 2 we can see the transition of C2 from stable to
unstable, accompanied by a large volume of the trajectories around C2 becoming chaotic.
The transition occurs at critical values of Lz , or, equivalently, of the mutual inclinations;
for example the limiting inclination in the case of an inner test particle and an outer

planet in circular orbits is cos−1
√

3
5 ∼ 39◦.2 (see Naoz (2016) for a review). These limits
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can be computed analytically in the simple case in which we have a secular Hamiltonian
developed up to a quadrupolar expansion; we proved that, depending on the value of L2

and e3 , there could exist up to three critical points for L2
z , defined as

A=
1

5

(
4L2

2 + 5L2
3(1 − e23) −L2

√
L2
2 + 60L2

3(1 − e23)

)
,

B =
1

5

(
4L2

2 + 5L2
3(1 − e23) +L2

√
L2
2 + 60L2

3(1 − e23)

)
,

C =L2
2 − 3L2

3(1 − e23) .

In the case L2 = e3 = 0 , corresponding to the critical value L2
z =B , we have cos(imut) =(

B−L2
2−L2

3

2L2L3

)
=
√

3
5 , recovering Kozai’s result. Instead, in a more general case, these limits

can be computed numerically through the Jacobian matrix of the quadratic Hamiltonian
vector field.
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