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Abstract

We prove that if a space X with a rank 2-diagonal either has the countable chain condition or is star
countable then the cardinality of X is at most c.
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1. Introduction

Diagonal properties are useful in estimating the cardinality of a space. For example,
in 1977, Ginsburg and Woods [5] proved that the cardinality of a space with countable
extent and a Gδ-diagonal is at most c. However, the cardinality of a regular ccc-space
(defined below) with a Gδ-diagonal need not have an upper bound [7, 8]. In 2005,
Buzyakova [3] proved that the cardinality of a ccc-space with a regular Gδ-diagonal
is at most c. Rank 2-diagonal is stronger than Gδ-diagonal. However, the relationship
between rank 2-diagonal and regular Gδ-diagonal is still not clear. A natural question
then arises.

Question 1.1. Is the cardinality of a ccc-space with a rank 2-diagonal at most c?

In this paper, we prove that if X is a ccc-space or a star countable space with a
rank 2-diagonal, then the cardinality of X is at most c. This gives a positive answer to
Question 1.1.

2. Notation and terminology

All spaces are assumed to be Hausdorff unless otherwise stated.
The cardinality of a set X is denoted by |X|, and [X]2 will denote the set of two-

element subsets of X. We write ω for the first infinite cardinal and c for the cardinality
of the continuum.
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A space X has a rank 2-diagonal if there exists a sequence {Un : n ∈ ω} of open
covers of X such that for each x ∈ X, {x} =

⋂
{St2(x,Un) : n ∈ ω}. A space X has a

strong rank 1-diagonal if there exists a sequence {Un : n ∈ ω} of open covers of X
such that for each x ∈ X, {x} =

⋂
{St(x,Un) : n ∈ ω}. Clearly, rank 2-diagonal implies

strong rank 1-diagonal. A space X has the countable chain condition (abbreviated as
ccc) if any disjoint family of open sets in X is countable, that is, the Souslin number
(or cellularity) of X is at most ω. A space X is star countable if whenever U is an
open cover of X, there is a countable subset A of X such that St(A,U) = X, where
St(A,U) =

⋃
{U ∈ U : U ∩ A , ∅}.

All notation and terminology not explained here is given in [4].

3. Results

We will use the following countable version of a set-theoretic theorem due to Erdős
and Radó.

Lemma 3.1 [6, Theorem 2.3]. Let X be a set with |X| > c and suppose that [X]2 =
⋃
{Pn :

n ∈ ω}. Then there exist n0 < ω and a subset S of X with |S | > ω such that [S ]2 ⊆ Pn0 .

Proposition 3.2. Let X be a space with a rank 2-diagonal. If |X| > c, then there exists
an uncountable closed discrete subset of X which has a disjoint open expansion.

Proof. Since X has a rank 2-diagonal, there exists a sequence {Um : m ∈ ω} of open
covers of X such that {x} =

⋂
{St2(x,Um) : m ∈ ω} for every x ∈ X. We may assume

that St2(x,Um+1) ⊆ St2(x,Um) for any m ∈ ω. For n ∈ ω let

Pn = {{x, y} ∈ [X]2 : n = min{m ∈ ω : St(x,Um) ∩ St(y,Um) = ∅}}.

Thus, [X]2 =
⋃
{Pn : n ∈ ω}. Then by Lemma 3.1 there exists a subset S of X with

|S | > ω and [S ]2 ⊆ Pn0 for some n0 ∈ ω.
We now show that S is closed and discrete and it has a disjoint open expansion.

Fact 1. Clearly, {St(x,Un0 ) : x ∈ S } is an uncountable pairwise disjoint family of
nonempty open sets of X.

Fact 2. S is closed and discrete. If not, let x ∈ X and suppose that x is an accumulation
point of S . Since X is T1, each neighbourhood of x meets infinitely many members of
S . Therefore there exist distinct points y and z in S ∩ St(x,Un0 ). Thus y, z ∈ St(x,Un0 );
by symmetry, x ∈ St(y,Un0 ) and x ∈ St(z,Un0 ), which is a contradiction. Thus S has
no accumulation points in X; equivalently, S is a closed and discrete subset of X. This
completes the proof. �

Corollary 3.3. Let X be a ccc-space with a rank 2-diagonal. Then the cardinality of
X is at most c.
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With the aid of the following lemma, we can deduce a further corollary.

Lemma 3.4 [1]. Suppose that X has an uncountable closed discrete subspace S whose
points can be separated by pairwise disjoint open sets. Then X is not star countable.

Corollary 3.5. Let X be a star countable space with a rank 2-diagonal. Then the
cardinality of X is at most c.

Note that ‘rank 2-diagonal’ cannot be weakened to ‘strong rank 1-diagonal’ in
Corollary 3.3, as can be seen in the following example.

Example 3.6. For any cardinal κ, there exists a Tychonoff ccc-space X with a strong
rank 1-diagonal and |X| > κ.

Proof. By [8, Corollary], for any cardinal κ, there exists a Tychonoff Fσ-discrete ccc-
space X with |X| > κ. We now show that X has a strong rank 1-diagonal. Since X is a
countable union of closed discrete subspaces, it is a σ-space. By [6, Theorem 4.6] that
every regular σ-space has a strong rank 1-diagonal, we obtain the conclusion. This
completes the proof. �

Corollary 3.7. Let X be a star countable Moore space. Then the cardinality of X is
at most c.

Proof. This follows since every Moore space has a rank 2-diagonal [2,
Proposition 1.1]. �
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