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REAL HYPERSURFACES IN COMPLEX TWO-PLANE
GRASSMANNIANS WITH PARALLEL SHAPE OPERATOR

YOUNG JIN SUH

In this paper we show that there do not exist any real hypersurfaces in a complex
two dimensional Grassmannians G2(C"+2) with parallel shape operator.

1. INTRODUCTION

In the geometry of real hypersurfaces in complex space form Mn (c) or in quater-
nionic space forms it can be easily checked that there do not exist any real hypersurfaces
with parallel shape operator A by virture of the equation of Codazzi.

Prom this point of a view many differential geometers have considered a much
more weaker notion such as a parallel second fundamental form, that is, VA = 0. In
particular, Kimura and Maeda [5] have proved that a real hypersurface M in a complex
projective space CPm satisfying V$A - 0 is locally congruent to a real hypersurface
of type Ai, A2, that is, a tube over a totally geodesic complex submanifold CPk .with
radius 0 < r < TT/2. The structure vector field £ mentioned above is defined by
£ = —JN, where J denotes a Kahler structure of CPm and N a local unit normal
field of M in CPm. Moreover, in a class of Hopf hypersurfaces Kimura [4] has asserted
that there do not exist any real hypersurfaces with parallel Ricci tensor, that is VS = 0,
where 5 denotes the Ricci tensor of a real hypersurface M in CPm.

On the other hand, in a quaternionic projective space QPm Perez [6] has considered
the notion of V^A — 0, i = 1,2,3, for real hypersurfaces in QPm and proved that M
is locally congruent to a hypersurface of A\, A2 -type, that is, a tube over QPk with
radius 0 < r < n/4. The almost contact structure vector fields {^1,̂ 21^3} are defined
by & = —JiN, i = 1,2,3, where Ji denotes a quaternionic Kahler structure of QPm

and N a unit normal field of M in QPm. Moreover, Perez and the present author [7]
have considered the notion of V^i? = 0, i = 1,2,3, where R denotes the curvature
tensor of a real hypersurface M in QPm, and proved that M is locally congruent to a
tube of radius TT/4 over QPk.
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Now let us denote by G 2 ( C m + 2 ) the set of all complex 2-dimensional linear sub-
space of C m + 2 . Then the situation mentioned above is not so simple if we consider a
real hypersurface in such a 2-dimensional complex Grassmannian G2(C7 n + 2) .

In this paper we study the analogous question in the complex Grassmann man-
ifold (?2(Cm + 2) of all two-dimensional linear subspaces in C m + 2 . This Riemannian
symmetric space has a remarkable geometrical structure. It is the unique compact ir-
reducible Riemannian manifold being equipped with both a Kahler structure J and a
quaternionic Kahler structure 3 not containing J. In other words, G2(Cm + 2) is the
unique compact, irreducible, Kahler, quaternionic Kahler manifold which is not a hy-
perkahler manifold. So, in G2(C m + 2 ) we have the two natural geometrical conditions
for real hypersurfaces that [£] = Span{£} or T)1- = Span{£i,£2,f3} is invariant under
the shape operator. From such a view point Berndt and the present author [2] have
proved the following.

THEOREM A. Let M be a connected real hypersurface in G 2 ( C m + 2 ) , m ^ 3.
Then both [£] and S)x are invariant under the shape operator of M if and only if

(1) M is an open part of a tube around a totally geodesic G2(Cm + 1) in
G2(C-+2),or

(2) m is even, say m — 2n, and M is an open part of a tube around a totally
geodesic H P " in G 2 ( C m + 2 ) .

In the proof of Theorem A we have proved that the one-dimensional distribution
[£] is contained in either the 3-dimensional distribution 33 x or in the orthogonal com-
plement 2) such that TXM — 'D®'Z)±. The case (2) in Theorem A is just the case that
the one dimensional distribution [£] is contained in 33X. Of course it is not difficult to
check that the second fundamental form of any real hypersurfaces given in Theorem A is
not parallel. Then it must be natural question to know that whether real hypersurfaces
in G2(C m + 2 ) whose second fundamental form is parallel can exist or not?

The main result of this paper is to prove the non-existence of all real hypersurfaces
in G2(C m + 2 ) with parallel second fundamental tensor in the following theorem.

THEOREM. There do not exist any real hypersurface M in G2(Cm + 2) with par-

allel second fundamental form, that is, VA = 0.

In Section 2 we recall the Riemannian geometry of two dimensional complex Grass-
mannian G 2 ( C m + 2 ) , and in Section 3 we shall show some fundamental properties of
real hypersurfaces in G 2 ( C m + 2 ) . The equation of Codazzi will be proved explicitly in
this section. In Section 4 we will give a complete proof of the main Theorem given in
the introduction.

The proof of our main Theorem also works for the more general case of Codazzi
hypersurfaces, that is, for hypersurfaces whose shape operator is a Codazzi tensor,
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which means that the covariant derivative of the shape operator is symmetric in all its

variables.

2. RlEMANNIAN GEOMETRY OF G 2 ( C m + 2 )

In this section we summarise basic material about G2 (Cm + 2), for details we refer
to [1, 2, 3]. By G2(Cm+2) we denote the set of all complex two-dimensional linear
subspaces in Cm + 2 . The special unitary group G = SU(m + 2) acts transitively on
G2(Cm+2) with stabiliser isomorphic to K = S(U(2) x U(m)) C G. Then G2(C

m+2)
can be identified with the homogeneous space G/K, which we equip with the unique
analytic structure for which the natural action of G on G2(Cm+2) becomes analytic.
Denote by g and £ the Lie algebra of G and K, respectively, and by m the orthog-
onal complement of C in g with respect to the Cartan-Killing form B of j . Then
g = t © tn is an Ad{K) -invariant reductive decomposition of g. We put o = eK
and identify ToG2(Cm+2) with m in the usual manner. Since B is negative defi-
nite on Q , its negative restricted to tn x m yields a positive definite inner product on
m. By Ad(K) -invariance of B this inner product can be extended to a G -invariant
Riemannian metric g on G2(Cm+2). In this way G2(Cm+2) becomes a Riemannian
homogeneous space, even a Riemannian symmetric space. For computational reasons
we normalise g such that the maximal sectional curvature of (G2(C

m+2),<7) is eight.
Since G2(C

3) is isometric to the three-dimensional complex projective space CP3 with
constant holomorphic sectional curvature eight we shall assume rn ^ 2 from now on.
Note that the isomorphism Spin(6) ~ SU(4) yields an isometry between G2(C4) and
the real Grassmann manifold Gj (K6) of oriented two-dimensional linear subspaces of
K6.

The Lie algebra I has the direct sum decomposition t = su(m) ©su(2) 091, where
9t is the centre of 6. Viewing 6 as the holonomy algebra of G2(Cm+2), the centre 0\
induces a Kahler structure J and the su(2)-part a quaternionic Kahler structure 0 on
G2(Cm+2). If Ji is any almost Hermitian structure in 3, then JJi — J\J, and JJi is
a symmetric endomorphism with {JJ\)2 = I and tr(JJ\) = 0. This fact will be used
frequently throughout this paper.

A canonical local basis Ji, J2,^3 of Z consists of three local almost Hermitian
structures Jv in Z such that JvJv+\ = Jw+2 = —JV+\JU, where the index is taken
module three. Since Z is parallel with respect to the Riemannian connection V of
(G2(Cm+2),g), there exist for any canonical local basis Ji, J2, J3 of Z three local
one-forms 91,172,93 such that

i — ql>+\{X)Jv+2

for all vector fields X on G 2 ( C m + 2 ) . Also this fact will be used frequently.
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Let p € G 2 (C m + 2 ) and W a subspace of T p G 2 (C m + 2 ) . We say that W is a
quaternionic subspace of r p G 2 ( C m + 2 ) if JW C W for all J € ZP- And we say that W
is a totally complex subspace of TPG2 (Cm + 2) if there exists a one-dimensional subspace
<U of ZP such that JW CW for all J € 9J and JW LW for all J € 5JX C 3 p . Here,
the orthogonal complement of 9J in Zp is taken with respect to the bundle metric
and orientation on Z for which any local oriented orthonormal frame field of Z is a
canonical local basis of Z- A quaternionic (respectively, totally complex) submanifold
of G2 ( C m + 2 ) is a submanifold all of whose tangent spaces are quaternionic (respectively,
totally complex) subspaces of the corresponding tangent spaces of G2(C m + 2 ) .

The Riemannian curvature tensor R of G2(Cm + 2) is locally given by

R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY - 2g(JX, Y)JZ

J»X, Y)JVZ)

Y, Z)JVJX - g{JvJX, Z)JVJY),

where Ji,J2, J3 is any canonical local basis of 3-

3. R E A L HYPERSURFACES IN G 2 (C m + 2 )

Let M be a real hypersurface of G 2 ( C m + 2 ) , that is, a hypersurface of G 2 (C m + 2 )
with real codimension one. The induced Riemannian metric on M will also be denoted
by g, and V denotes the Riemannian connection of (M, g). We denote by f) and X)
the maximal complex and quaternionic subbundle of the tangent bundle TM of M,
respectively. Let N be a local unit normal field of M and A the shape operator of
M with respect to N. The Kahler structure J of G 2 (C m + 2 ) induces on M a local
almost contact metric structure (<j>,€,ri,g), where <f>X is the tangential component of
JX, £ = —JN, and t](X) = g(X,£). Furthermore, let J i , J2, J3 be a canonical local
basis of Z- Then each Jv induces a local almost contact metric structure (<f>v,£v,T}u,g)
on M. Locally, f) is the orthogonal complement in TM of the span of £, and 2) is
the orthogonal complement of X)1- = Spanf^x ,^ ,^} in TM.

We shall now derive some basic equations involving the elements in these almost
contact metric structures. First of all, from the identity J 2 = - / we get for all X € TM

-X = J2X = J(<}>X + r](X)N) = J<]>X - r]{X)(, = <p2X +

The tangential and normal component of this equation imply
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LEMMA 3 . 1 . For all A" 6 TM we have

4>2X = -X + T)(X)Z and ri(<f>X) = 0 .

Next, we have

JJVX = J{4>VX + Tb(X)N) = J<t>vX - TIV

= <j>4>vx

and

Jv JX = JV{4>X + v(X)N) = Jv(j>X -

= <t>u<t>X + Vu

The tangential and normal component of the identity JJV = JVJ therefore gives

LEMMA 3 . 2 . For all X e TM we have

and

From the second equation in Lemma 3.2 we get

g(<f>vt,X) - -g{t,<t>vX) = -r)(<t>vX) = -r,v(<j>X) = -gfo,<f>X) = g(^v,X) ,

and hence we assert

COROLLARY 3 . 1 .

Next, we have

and

Since
(f>v+2X 4- TIV+2{X)N

the tangential and normal components of

imply the following
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LEMMA 3 . 3 . For all X e TM we have

and

Put t ing X = £„ and X — £„+! into the first equation of Lemma 3.3 yields

C O R O L L A R Y 3 . 2 . We have

We now investigate what the Kahler condition V J = 0 tells us. First, using the
Gauss formula we get

= JVXY + g(AX, Y)JN

+ ri(VxY)N - g(AX,

On the other hand, using the Weingarten formula, we obtain

- g(4>AX,Y)N+ (X • V(Y))N - r,(Y)AX .

Comparing the tangential and normal components of the previous two equations leads
to

LEMMA 3 . 4 . For all X, Y € TM we have

and

From the second equation in Lemma 3.4 we derive

5(VA:£, Y) = X- g(t, Y) - g(£, V*Y) = X • r,(Y) - V(VXY) = g(<j>AX, Y) ,

and hence

COROLLARY 3 . 3 . For all X e TM we have

= 4>AX .

In addition to these equalities we have the well-known equations of Gauss and
Codazzi. For us only the Codazzi equation will be relevant. Using the explicit expression
for the Riemannian curvature tensor R of G? (Cm+2) the Codazzi equation takes the
following form.
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LEMMA 3 . 5 . For all X, Y € TM we have

(VXA)Y - (VYA)X = v(X)<l>Y - r](Y)<f>X - 2g(<t>X, Y)t
3

j>vX - 2g{<j>vX,

3

v=l

4. PROOF OF THE MAIN THEOREM

In this section let us use the same notation as in Section 3. In order to prove our
theorem we shall use some basic formulas derived from the Codazzi equation for a real
hypersurface M in G2 (Cm + 2).

From the expression for the Riemannian curvature tensor R of G2 (Cm+2) we have
derived the Codazzi equation given in Lemma 3.5. If the shape operator A of M is
parallel, then the equation of Codazzi implies

0 - v(X)<j>Y - v(Y)<f>X - 2g(<j>X,

(4.1)

3

Putting X = £, then we have

3

(4.2) 0 = (/>Y + '%2{T)V(O4>VY - J

v=\

From this, taking an inner product with £, we have

3 3

v=l v=\
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This gives

3

(4.3) X>,(0^W = 0.

Here let us replace Y by <j>Y in (1.3). Then by Lemma 3.1 we have for any Yell

where I)1- = Span{£i,£2,£3}- Prom this we can consider the following two cases:

If 7/(y)^0 for some YeZ), then r)u(£) = 0 for any u - 1,2,3. This gives

that is, £ is orthogonal to £1,62,Ca-

lf r)(Y) = 0 for any FeS), then CsS1-. Thus we summarise this fact as follows:

PROPOSITION 4 . 1 . Let M be a real hypersurface in G2(C
m+2) satisfying

= 0, then £e£> or 1

CASE I. Let £€2). Now let us show that this case can not occur. Then the formula
(4.1) with X = £e33 implies

(4.4) 0 = 4>Y

for any YeTxM. From this, putting Y = £^, we have

From this and together with taking an inner product (4.4) with £M, we have

3

0 - r,MY) -2j29(<f>^Y)S^ + Vti{<f>Y) = Ati

So by putting Y — 0 ^ , 77̂  (</>2£M) = 0 implies a contradiction.

CASE II. Let ^SS)"1- — Span{£i,£2>£3}- Then there exists a quaternionic Kaehler

structure J i S j such that JiN — JN.

Now let us put £ = £i- Then by Lemmas 3.1, 3.2 and 3.3 and Corollaries 3.1 and

3.2 we know the following

(4.5)
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Here let us put £ = £1. Bearing this in mind, taking an inner product (4.1) with f, we
have

0 = -2g{<f>X, Y) + {- 2g(<fi1X, Y) + r,2(X)g(4>2Y, £)

,0 + m(X)g(<t>3Y, 0 - V3(Y)g(<f>3X,0}
( 4 6 )

+ m(ct>X)T,(<l>2<l>Y) - mitYWfctX) +

On the other hand, by using the formulas in (4.5) we know that

2,X) = V3(X),

a,x) = -mix),
v(<l>2<t>Y) = g(£,<h4>Y) = -

and

v(<t>3<l>Y) = g(^<i>3<t>Y) = -g{<t>3Zu<t>Y) = -

Substituting these formulas into (4.6) and also using the formula given in (4.5), we have

(4.7) - 2g(cf>X, Y) + {-2ff(</»1X, Y) + r,2(X)r,2(<l>Y) - T,2(Y)r,2(<fiX)}

{ } 2V2(X)r]3{Y) - 2m(Y)V3{X) = 0.

Prom this, putting X = £2 and Y = £3 and also using the formulas in (4.5), we have

= 0.

This makes a contradiction. So we are able to assert the complete proof of our Main
Theorem given in the introduction. D

REFERENCES

[1] J. Berndt, 'Riemannian geometry of complex two-plane Grassmannians', Rend. Sem. Mat.
Univ. Politec. Torino 55 (1997), 19-83.

[2] J. Berndt and Y.J. Suh, 'Real hypersurfaces in complex two-plane Grassmannians',
Monatsh. Math. 127 (1999), 1-14.

[3] J. Berndt and Y.J. Suh, 'Isometric flows on real hypersurfaces in complex two-plane
complex Grassmannians', Monatsh. Math. 137 (2002), 87-98.

[4] M. Kimura, 'Real hypersurfaces of a complex projective space', Bull. Austral. Math. Soc.
33 (1986), 383-387.

[5] M. Kimura and S. Maeda, 'On real hypersurfaces of a complex projective space II',
Tsukuba J. Math. 15 (1991), 547-561.

https://doi.org/10.1017/S000497270003728X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003728X


502 Y.J. Suh [10]

[6] J.D. Perez, 'Real hypersurfaces of quatemionic projective space satisfying Vu{A = 0', J.
Geom. 49 (1994), 166-177.

[7] J.D. Pe'rez and Y.J. Suh, 'Real hypersurfaces of quatemionic projective space satisfying
VuiR - 0', Differential Geom. Appl. 7 (1997), 211-217.

Kyungpook National University
Department of Mathematics
Taegu 702-701
Korea

ail: yjsuh@bh.knu.ac.kr

https://doi.org/10.1017/S000497270003728X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003728X

