
Canad. J. Math. Vol. 67 (1), 2015 pp. 3–27
http://dx.doi.org/10.4153/CJM-2013-039-4
c©Canadian Mathematical Society 2013

On the Local Convexity of Intersection
Bodies of Revolution
M. Angeles Alfonseca and Jaegil Kim

Abstract. One of the fundamental results in convex geometry is Busemann’s theorem, which states
that the intersection body of a symmetric convex body is convex. Thus, it is only natural to ask if
there is a quantitative version of Busemann’s theorem, i.e., if the intersection body operation actually
improves convexity. In this paper we concentrate on the symmetric bodies of revolution to provide
several results on the (strict) improvement of convexity under the intersection body operation. It is
shown that the intersection body of a symmetric convex body of revolution has the same asymptotic
behavior near the equator as the Euclidean ball. We apply this result to show that in sufficiently high
dimension the double intersection body of a symmetric convex body of revolution is very close to an
ellipsoid in the Banach–Mazur distance. We also prove results on the local convexity at the equator of
intersection bodies in the class of star bodies of revolution.

1 Introduction and Notation

A set S ⊂ Rn is said to be symmetric if it is symmetric with respect to the origin
(i.e., S = −S) and star-shaped if the line segment from the origin to any point in S is
contained in S. For a star-shaped set K ⊂ Rn, the radial function of K is defined by

ρK (u) = sup{λ ≥ 0 : λu ∈ K} for every u ∈ Sn−1.

A body in Rn is a compact set that is equal to the closure of its interior. A body
K is called a star body if it is star-shaped at the origin and its radial function ρK is
continuous. We say that a body K is locally convex at a point p on the boundary of
K if there exists a neighborhood B(p, ε) = {q ∈ Rn : |p − q| ≤ ε} of p such that
K ∩ B(p, ε) is convex. Furthermore, if p is an extreme point of K ∩ B(p, ε), then K is
said to be strictly convex at p.

In [10], Lutwak introduced the notion of the intersection body of a star body. The
intersection body IK of a star body K is defined by its radial function

ρIK (u) = |K ∩ u⊥| for every u ∈ Sn−1.

Here and throughout the paper, u⊥ denotes the central hyperplane perpendicular to
u. By |A|k, or simply |A| when there is no ambiguity, we denote the k-dimensional
Lebesgue measure of a set A. From the volume formula in polar coordinates for the
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section K ∩ u⊥, the following analytic definition of the intersection body of a star
body can be derived: the radial function of the intersection body IK of a star body K
is given by

ρIK (u) =
1

n− 1

∫
Sn−1∩u⊥

ρK (v)n−1dv =
1

n− 1

(
Rρn−1

K

)
(u), u ∈ Sn−1.

Here R stands for the spherical Radon transform. The more general class of inter-
section bodies is defined in the following way (see [4, 8]). A star body K is an in-
tersection body if its radial function ρK is the spherical Radon transform of an even
non-negative measure µ. We refer the reader to [4, 8, 9] for more information on
the definition and properties of intersection bodies and their applications in Convex
Geometry and Geometric Tomography.

In order to measure the distance between two symmetric bodies K and L, we use
the Banach–Mazur distance

dBM(K, L) = inf
{

r ≥ 1 : K ⊂ TL ⊂ rK for some T ∈ GL(n)
}
.

We note that the intersection bodies of linearly equivalent star bodies are linearly
equivalent (see [4, Theorem 8.1.6]), in the sense that I(TK) = |det T| (T∗)−1IK for
any T ∈ GL(n). This gives that dBM(I(TK), I(TL)) = dBM(IK, IL) for any T ∈ GL(n).

A classical theorem of Busemann [2] (see also [4, Theorem 8.1.10]) states that
the intersection body of a symmetric convex body is convex. In view of Busemann’s
theorem it is natural to ask how much of convexity is preserved or improved under
the intersection body operation. As a way to measure the “convexity” of a body, we
can consider the Banach–Mazur distance from the Euclidean ball. Hensley proved in
[6] that the Banach–Mazur distance between the intersection body of any symmetric
convex body K and the ball Bn

2 is bounded by an absolute constant c > 1, that is,
dBM(IK,Bn

2) ≤ c. Compared with John’s classical result, dBM(K,Bn
2) ≤

√
n for any

symmetric convex body K, we see that in many cases the intersection body operation
improves convexity in the sense of the Banach–Mazur distance from the ball (see [7]
for a similar discussion on quasi-convexity).

Given that the intersection body of a Euclidean ball is again a Euclidean ball, an-
other question about the intersection body operator I comes from works of Lutwak
[11] and Gardner [4, Prob. 8.6-7] (see also [5]). Are there other fixed points of the
intersection body operator? It is shown in [3] that in a sufficiently small neighbor-
hood of the ball in the Banach–Mazur distance there are no other fixed points of the
intersection body operator. However, in general this question is still open.

In this paper we concentrate on the symmetric bodies of revolution to study the
local convexity properties at the equator for intersection bodies. Throughout the
paper we assume that the axis of revolution for any body of revolution is the e1-axis.
In this case ρK (θ) denotes the radial function of a body K of revolution at a direction
whose angle from the e1-axis is θ. Then, following [4, Theorem C.2.9], the radial
function ρIK (θ) of the intersection body of K is given for θ ∈ (0, π/2] by

ρIK (θ) =
cn

sin θ

∫ π/2

π/2−θ
ρK (ϕ)n−1

[
1− cos2 ϕ

sin2 θ

] n−4
2

sinϕ dϕ(1.1)
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and

ρIK (0) =
∣∣ρK (π/2) Bn−1

2

∣∣ = cndn

√
π/(2n) ρK (π/2)n−1,(1.2)

where

cn =
n− 2

n− 1
· 2πn/2−1

Γ(n/2)
and dn =

n− 1

n− 2
·
√

n/2 Γ(n/2)

Γ((n + 1)/2)
→ 1 as n→∞.

Since a dilation of the body does not change its regularity or convexity, throughout
the paper we will replace cn by 1.

In Section 2 we introduce several concepts containing the equatorial power type
to describe quantitative information about convexity of bodies of revolution.

In Section 3 we investigate the equatorial behavior of symmetric intersection bod-
ies of revolution under the convexity assumption. We prove that if K is a symmetric
convex body of revolution, then the intersection body of K has uniform equatorial
power type 2, which means that its boundary near the equator is asymptotically the
same as the ball. Using this result, we prove in Section 4 that if K is a symmetric con-
vex body of revolution in sufficiently high dimension, then its double intersection
body is close, in the Banach–Mazur distance, to the Euclidean ball.

In Section 5 we will study the local convexity of intersection bodies at the equator
without the convexity assumption. We prove that the intersection body of a symmet-
ric star body of revolution in dimension n ≥ 5 is locally convex at the equator, with
equatorial power type 2.

2 Equatorial Power Type for Bodies of Revolution

The equator of a body K of revolution is the boundary of the section of K by the
central hyperplane perpendicular to the axis of revolution, i.e., ∂K ∩ e⊥1 . The goal of
this section is to introduce parameters to measure the local convexity at the equator
of bodies of revolution.

Definition 2.1 Let K be a body of revolution in Rn about the e1-axis and let 1 ≤
p <∞. Then the function ψK : R → R+ is defined by

(2.1) ψK (x) = ρK (θ)| sin θ| for θ = tan−1(1/x).

See Figure 1.
A body K of revolution is said to have equatorial power type p if there exist con-

stants c1, c2 > 0, depending on K, such that c1 < |ψK (x)− ψK (0)|/xp < c2 for every
0 < x < 1. If K is a symmetric convex body, then ψK is a continuous even function
that is non-increasing in [0,+∞) and with ψK (x) = O(1/x) as x tends to infinity.

The local convexity properties of the function ψK at x = 0 are the same as those
of the body K at the equator.
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1

ψK(x)

x

θ

ψK
K

x = cot θ

y = 1

axis of revolution

Figure 1: The function ψK

Formulas (1.1) and (1.2) provide a very nice relation betweenψK andψIK . Indeed,
(1.1) implies

ρIK (θ) sin θ =

∫ θ

0

[
ρK (π/2− φ) cosφ

] n−1[ 1

cos2 φ

] n−4
2
[

1− sin2 φ

sin2 θ

] n−4
2 dφ

cos2 φ

=

∫ θ

0

[
ρK (π/2− φ) cosφ

] n−1[
1− tan2 φ

tan2 θ

] n−4
2 dφ

cos2 φ

=

∫ tan θ

0
ψK (t)n−1

[
1− t2 cot2 θ

] n−4
2

dt.

Thus we have

ψIK (0) = ρIK (π/2) =

∫ ∞
0

ψK (t)n−1dt,(2.2)

ψIK (x) =

∫ 1/x

0
ψK (t)n−1[1− x2t2]

n−4
2 dt, x ∈ (0,∞).(2.3)

As another way to describe equatorial power type, we can consider the classical
modulus of convexity of a symmetric convex body K defined as

δK (ε) = inf
{

1−
∥∥∥x + y

2

∥∥∥
K

: x, y ∈ K, ‖x − y‖K ≥ ε
}
,

where ‖ · ‖K denotes the Minkowski functional of K. However, since we focus on the
convexity around the equator for bodies of revolution, it would be better to consider
the following related notion.

Definition 2.2 Let K be a symmetric convex body of revolution in Rn about the
e1-axis. The modulus of convexity of K at the equator is defined by

δe
K (ε) = inf

{
1−

∥∥∥x + y

2

∥∥∥
K

: x, y ∈ K, ‖x − y‖K ≥ 2ε, x − y ∈ span {e1}
}
.
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Equivalently δe
K can be expressed as

(2.4) δe
K (ε) =

ρK (π/2)− ρK (θ) sin θ

ρK (π/2)
=
ψK (0)− ψK (cot θ)

ψK (0)
,

where the angle θ is obtained from ε =
ρK (θ)
ρK (0) · cos θ.

It follows from (2.4) that a symmetric convex body K of revolution has equatorial
power type p if and only if there exist constants c1, c2 > 0 such that c1 < δe

K (ε)/εp <
c2 for all ε ∈ (0, 1]. Moreover, differently from the function ψK for a (star) body K of
revolution, we notice that the modulus of convexity for a convex body of revolution
is invariant for any dilations on the axis of revolution or its orthogonal complement.

For example, if K is the body of revolution in Rn obtained by rotating a 2-dimen-
sional `p-ball with respect to the axis e1, then it has equatorial power type p; more
precisely, δe

K (ε) = εp/p + o(εp).

Definition 2.3 For 1 ≤ p < ∞, a collection C of convex bodies of revolution is
said to have uniform equatorial power type p if every convex body in C has equatorial
power type p, and moreover there exist uniform constants c1, c2 > 0 such that

c1 <
δe

K (ε)

εp
< c2 for every ε ∈ (0, 1] and K ∈ C.

Now let us show some relation between δe
K and ψK when K is a symmet-

ric convex body. Fix ε ∈ (0, 1] and choose the angle θ ∈ (0, π/2) so that
ε = (ρK (θ)/ρK (0)) · cos θ. Then

(2.5) (1− ε)ρK (π/2) ≤ ρK (θ) sin θ ≤ ρK (π/2),

which can be obtained by applying the convexity property of K to three points on the
boundary of K with angles 0, θ, and π/2. Notice that for small ε > 0 (2.5) gives

cot θ =
ρK (0) · ε
ρK (θ) sin θ

=
ρK (0)

ρK (π/2)

(
ε + O(ε2)

)
.

Next it follows from (2.4) that

(2.6) δe
K (ε) =

ψK (0)− ψK (δ)

ψK (0)
, for δ =

ρK (0)

ρK (π/2)

(
ε + O(ε2)

)
.

In particular, we have δe
K (ε) ≈ 1 − ψK (ε) under the assumption that ρK (0) =

ρK (π/2) = 1.
In Section 3 we prove that the class of all intersection bodies of symmetric con-

vex bodies of revolution have uniform equatorial power type 2, and we also provide
an example showing that the convexity condition cannot be dropped. Thus, for star
bodies of revolution, it is not necessary to consider δe

K as an invariant quantity under
dilations on the axis e1 or its orthogonal complement; the functionψK will be enough
for star bodies. For symmetric convex bodies of revolution, we will use the modulus
δe

K (ε) of convexity at the equator to describe the power type or the asymptotic behav-
ior at the equator, and, moreover, the function ψK (x) can be used to compute δe

K (ε)
by (2.6).
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3 Uniform Equatorial Power Type 2 for Intersection Bodies

In this section we prove that the class of all intersection bodies of symmetric convex
bodies of revolution has uniform equatorial power type 2. Namely, if K is a symmet-
ric convex body of revolution, then IK has equatorial power type 2, and, moreover,
the coefficient of the quadratic term in the expansion of δe

IK (ε) is bounded above and
below by absolute constants.

First we need a specific formula for the function ψK in the case that K is a sym-
metric body of revolution obtained by rotating line segments.

Lemma 3.1 Let La,b ⊂ Rn be the symmetric body of revolution whose boundary is de-
termined by a line segment {(x, y) : ax + by = 1, 0 ≤ x ≤ 1/a} for a, b ≥ 0. Namely,
the body La,b can be given by

La,b =
{

(x, y) ∈ Rn = R × Rn−1 : a|x| + b|y| ≤ 1
}
.

Then the function ψLa,b , defined in (2.1), is equal to

(3.1) ψLa,b (x) =
1

a|x| + b
.

Moreover, if K ⊂ Rn is a symmetric convex body of revolution with ρK (0) =
ρK (π/2) = 1, then

(3.2)
1

|x| + 1
≤ ψK (x) ≤ min

(
1,

1

|x|

)
.

Proof Let x = cot θ > 0, and write L = La,b to shorten the notation. Then the point(
ρL(θ) cos θ, ρL(θ) sin θ

)
∈ R2

lies on the straight line
{

(p, q) ∈ R2 : ap + bq = 1
}

. Thus we have

x = cot θ =
ρL(θ) cos θ

ρL(θ) sin θ
=

(1− bρL(θ) sin θ)/a

ρL(θ) sin θ
=

1− bψL(x)

aψL(x)
,

which gives ψL(x) = 1/(ax + b).
Now, if K ⊂ Rn is a symmetric convex body of revolution with ρK (0) =

ρK (π/2) = 1, then we have B1 ⊂ K ⊂ B∞ where

B1 =
{

(x, y) ∈ Rn = R × Rn−1 : |x| + |y| ≤ 1
}
,

B∞ =
{

(x, y) ∈ Rn = R × Rn−1 : |x| ≤ 1, |y| ≤ 1
}
.

We also see that ψB1 ≤ ψK ≤ ψB∞ by definition of the function ψ. Here ψB1 and
ψB∞ can be obtained from (3.1):

ψB1 (x) = ψL1,1 (x) =
1

x + 1
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and

ψB∞(x) =

{
ψL0,1 (x) = 1, if 0 ≤ x ≤ 1,

ψL1,0 (x) = 1/x, if x ≥ 1,

which imply (3.2).

Inequality (3.2) in Lemma 3.1 gives an easy upper or lower bound for the function
ψK . However, we will need better bounds for high dimension given by the following
lemma.

Lemma 3.2 Let K ⊂ Rn be a convex body of revolution with ρK (π/2) = 1. For every
σ > 0 and t > 1,

(3.5) ψK (σt) ≤
[

1 + t
( 1

ψK (σ)
− 1
)]−1

.

Proof Let φ1 = tan−1(1/σ) and φ2 = tan−1(1/σt). Choose three points P0, P1,
P2 ∈ ∂K∩span {e1, e2}whose angles from the e1-axis are π/2, φ1 and φ2, respectively.
That is,

P0 = (0, 1),

P1 =
(
ρK (φ1) cosφ1, ρK (φ1) sinφ1

)
=: (x1, y1),

P2 =
(
ρK (φ2) cosφ2, ρK (φ2) sinφ2

)
=: (x2, y2).

Since 1−y2

1−y1
≥ x2

x1
by convexity of K,

1− ρK (φ2) sinφ2

1− ρK (φ1) sinφ1
≥ ρK (φ2) cosφ2

ρK (φ1) cosφ1
=
ρK (φ2) sinφ2 · cotφ2

ρK (φ1) sinφ1 · cotφ1
,

which implies
1− ψK (σt)

1− ψK (σ)
≥ ψK (σt)σt

ψK (σ)σ
.

Simplifying the above inequality, we have inequality (3.5).

The next lemma will be helpful for bounding the integral in (2.2) and controlling
its tail.

Lemma 3.3 For n ≥ 4, let K ⊂ Rn be a convex body of revolution with ρK (π/2) = 1
and let σK = ψ−1

K (1− 1/n). Then

(3.6) c1 ≤
1

σK

∫ ∞
0

ψK (t)n−1dt ≤ c2,

where c1, c2 > 0 are absolute constants. In addition, for every R > 1,∫ ∞
R

ψK (σKt)n−1dt = O
(

[1 + R/n]2−n
)
.

Here, f (ε) = O(ε) means that | f (ε)| ≤ cε for small ε > 0 and an absolute constant
c > 0.
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Proof For any t ≥ R, Lemma 3.2 gives

ψK (σKt) ≤
[

1 +
t

ψK (σK )
− t
]−1

=
[

1 +
t

n− 1

]−1
.

Thus,∫ ∞
R

ψK (σKt)n−1dt ≤
∫ ∞

R

[
1 +

t

n− 1

] 1−n
dt =

n− 1

n− 2

[
1 +

R

n− 1

] 2−n
.

Next we will show an upper bound in (3.6),∫ ∞
0

ψK (t)n−1dt =

∫ σK

0
ψK (t)n−1dt +

∫ ∞
σK

ψK (t)n−1dt

≤ σK + σK

∫ ∞
1

ψK (σKt)n−1dt

≤ σK + σK
n− 1

n− 2

[
1 +

1

n− 1

] 2−n
→ (1 + 1/e)σK as n→∞.

For a lower bound,∫ σK

0
ψK (t)n−1dt ≥

∫ σK

0

[
1− 1

n

] n−1
dt → σK

e
as n→∞.

Thus we have that c1σK ≤
∫∞

0 ψK (t)n−1dt ≤ c2σK for absolute constants c1, c2 > 0.

Next, Lemma 3.4 will allow us to estimate the integral in (2.3).

Lemma 3.4 For n ≥ 4, let K ⊂ Rn, for n ≥ 4, be a symmetric convex body of
revolution with ρK (π/2) = 1. Fix R > 1 and let σK = ψ−1

K (1 − 1/n). Then for each
x ≤ 1

RσK
,

ψIK (x)

σK
=

∫ R

0
ψK (σKt)n−1[1− σ2

K x2t2]
n−4

2 dt + O
(

[1 + R/n]2−n
)
.

Proof If x 6= 0, then

ψIK (x) =

∫ 1/x

0
ψK (t)n−1[1− x2t2]

n−4
2 dt

= σK

(∫ R

0
+

∫ (σK x)−1

R

)
ψK (σKt)n−1[1− σ2

K x2t2]
n−4

2 dt.

Lemma 3.3 gives an upper bound of the second integral, i.e.,∫ (σK x)−1

R
ψK (σKt)n−1

[
1− σ2

K x2t2
] n−4

2
dt ≤

∫ ∞
R

ψK (σKt)n−1dt

= O
(

[1 + R/n]2−n
)
.
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If x = 0, then

ψIK (0) =

∫ ∞
0

ψK (t)n−1dt = σK

[∫ R

0
ψK (σKt)n−1dt + O

(
[1 + R/n]2−n

)]
.

Now we are ready to prove the main result of this section.

Theorem 3.5 The class of intersection bodies of symmetric convex bodies of revolution
in dimension n ≥ 4 has uniform equatorial power type 2. Namely, if K is a symmetric
convex body of revolution in Rn for n ≥ 4, then its intersection body IK has modulus of
convexity at the equator of the form

δe
IK (ε) = cKε

2 + O(ε3),

where cK > 0 is a constant depending on K and bounded above and below by absolute
constants.

Proof The modulus of convexity at the equator is invariant for any dilations on the
axis of revolution or its orthogonal complement, so we can start with ρK (π/2) =
ρK (0) = 1. Fix a small number ε > 0 and choose the angle θ such that

ρIK (θ)

ρIK (0)
cos θ = ε.

Let δ = cot θ and σK = ψ−1
K (1− 1/n). By Lemma 3.3, we have

c1 ≤
1

σK

∫ ∞
0

ψK (t)n−1dt ≤ c2

for absolute constants c1, c2 > 0. By convexity of IK, as in (2.5),

(3.7) (1− ε)ρIK (π/2) ≤ ρIK (θ) sin θ ≤ ρIK (π/2).

Note that c1σK ≤ ρIK (π/2) ≤ c2σK and ρIK (θ) sin θ =
( ρIK (θ)
ρIK (0) cos θ

)
ρIK (0) tan θ =

(ε/δ)ρIK (0). Since ρIK (0)/
√
π/(2n) tends to 1 as n → ∞ by (1.2), the inequality

(3.7) implies that there exist absolute constants c ′1, c
′
2 > 0 such that

(3.8) c ′1σK
√

n ≤ ε/δ ≤ c ′2σK
√

n.

First consider the case of n ≥ 14. Formula (3.8) and Lemma 3.4 give that, for any R
with 1 ≤ R ≤ (σKδ)−1,

ψIK (δ)

σK
=

∫ R

0
ψK (σKt)n−1

[
1− (σKδt)2

] n−4
2

dt + O
([

1 + R/n
] 2−n)

(3.9)

=

∫ R

0
ψK (σKt)n−1

[
1− n− 4

2
(σKδt)2 + O

(∣∣n(σKδR)2
∣∣2)]dt

+ O
([

1 + R/n
] 2−n)
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and

ψIK (0)

σK
=

∫ R

0
ψK (σKt)n−1dt + O

([
1 + R/n

] 2−n)
.

Since σKδ is comparable to ε/
√

n by absolute constants by (3.8), we can take R =
ε−1/4 to control error terms of above equation. Then we have∣∣n(σKδR)2

∣∣2 = O(ε4R4) = O(ε3),

and for n ≥ 14,

(1 + R/n)2−n ≤ (1 + R/n)−12 =
[ n

1 + nε1/4

] 12
ε3,

(1 + R/n)2−n → e−R = e−ε
−1/4

as n→∞,

so the remainder part of (3.9) is O(ε3) for n ≥ 14. Thus,

ψIK (δ)

σK
=

∫ R

0
ψK (σKt)n−1dt − (n− 4)(σKδ)2

2

∫ R

0
ψK (σKt)n−1t2dt + O(ε3)

and
ψIK (0)

σK
=

∫ R

0
ψK (σKt)n−1dt + O(ε3).

Formula (2.6) gives the modulus of convexity at the equator as follows:

δe
IK (ε) =

ψIK (0)− ψIK (δ)

ψIK (0)
=
[ (n− 4)(σKδ/ε)2

2

∫ R

0
ψK (σKt)n−1t2dt

]
ε2 + O(ε3).

Since (n − 4)(σKδ/ε)2 is bounded above and below by absolute constants from

(3.8), it is enough to compute
∫ R

0 ψK (σKt)n−1t2dt . To get an upper bound, apply
Lemma 3.2. Then, for any t ≥ 1,

ψK (σKt) ≤
[

1 +
t

ψK (σK )
− t
]−1

=
[

1 +
t

n− 1

]−1
.

Thus,∫ R

0
ψK (σKt)n−1t2dx

≤
∫ 1

0
dt +

∫ ∞
1

t2
[

1 +
t

n− 1

] 1−n
dt = 1 + (n− 1)3

∫ ∞
n

n−1

(s− 1)2s1−nds

= 1 +
(

1− 1

n

) n−1 5n3 − 15n2 + 12n

(n− 2)(n− 3)(n− 4)
→ 1 +

5

e
as n→∞.
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For a lower bound,∫ R

0
ψK (σKt)n−1t2dt ≥

∫ 1

0
ψK (σKt)n−1t2dt

≥
∫ 1

0

[
1− 1

n

] n−1
t2dt → 1

3e
as n→∞,

which completes the proof for n ≥ 14.
Now consider the case of 4 ≤ n < 14. It follows from (2.2) and (2.3) that

ψIK (0)− ψIK (δ) =

∫ ∞
0

ψK (t)n−1dt −
∫ 1/δ

0
ψK (t)n−1(1− δ2t2)

n−4
2 dt

=

∫ ∞
1/δ

ψK (t)n−1dt +

∫ 1/δ

0
ψK (t)n−1

[
1− (1− δ2t2)

n−4
2

]
dt

= (I) + (II).

For (I), use the inequalities (3.2) from Lemma 3.1. Then

(I) ≤
∫ ∞

1/δ

1

tn−1
dt =

δn−2

n− 2
= O(δn−2)

and

(I) ≥
∫ ∞

1/δ

1

(t + 1)n−1
dt =

(1 + 1/δ)2−n

n− 2
= O(δn−2).

Since δ is comparable to ε by (3.8), we have that (I) is O(εn−2), which is at most O(ε3)
if n ≥ 5.

To get an upper bound of (II), use (3.2) again:

(II) ≤
∫ 1

0

[
1− (1− δ2t2)

n−4
2

]
dt +

∫ 1/δ

1
(1/t)n−1

[
1− (1− δ2t2)

n−4
2

]
dt

= (II-1) + (II-2),

where

(II-1) =

∫ 1

0

[
1−

(
1− n− 4

2
δ2t2

)]
dt + O(δ4) =

n− 4

6
δ2 + O(δ4)

and

(II-2) =

∫ 1/δ

1
(1/t)n−1dt −

∫ 1/δ

1

(1− δ2t2)
n−4

2

tn−4

dt

t3

=
1− δn−2

n− 2
− 1

2

∫ 1

δ2

(s− δ2)
n−4

2 ds =
1− δn−2 − (1− δ2)

n−2
2

n− 2

=
1

2
δ2 + O(δn−2).

https://doi.org/10.4153/CJM-2013-039-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-039-4


14 M. A. Alfonseca and J. Kim

A lower bound of (II) is given by

(II) ≥
∫ 1/δ

0

1− (1− δ2t2)
n−4

2

(t + 1)n−1
dt

=

∫ 1

0

1− (1− δ2t2)
n−4

2

(t + 1)n−1
dt +

∫ 1/δ

1

( t

t + 1

) n−1 1− (1− δ2t2)
n−4

2

tn−1
dt

≥ 1

2n−1

∫ 1

0

[
1− (1− δ2t2)

n−4
2
]

dt +
1

2n−1

∫ 1/δ

1

1− (1− δ2t2)
n−4

2

tn−1
dt

=
1

2n−1

[ n− 4

6
δ2 + O(δ4)

]
+

1

2n−1
(II-2) =

n− 1

3 · 2n
δ2 + O(δ4).

In summary, if n ≥ 5, then (I) is at most O(ε3) and (II) is asymptotically cδ2 + O(δ3).
In addition, if n = 4, then (II) disappears and (I) is cδ2 + O(δ3). Note that

δe
IK (ε) =

ψIK (0)− ψIK (δ)

ψIK (0)

and c1 < ψIK (0) < c2 by Lemma 3.3. Finally, we get

c ′1 < δe
IK (ε)/ε2 < c ′2,

where c ′1, c ′2 are positive absolute constants.

Remark 3.6 In general, Theorem 3.5 is not true in dimension 3. For example, the
intersection body of the double cone B1 ⊂ R3 does not have equatorial power type 2.

Proof It follows from Lemma 3.1 that the function ψK for the double cone K = B1

is given by ψB1 (x) = 1
x+1 . Let ε =

(
ρIB1

(θ)/ρIB1
(0)
)

cos θ for some angle θ and let
δ = cot θ. Then

ψIB1 (0) =

∫ ∞
0

ψB1 (t)2dt =

∫ ∞
0

(t + 1)−2dt = 1,

ψIB1 (δ) =

∫ 1/δ

0
ψB1 (t)2(1− δ2t2)−1/2dt =

∫ 1/δ

0

dt

(t + 1)2
√

1− δ2t2
.

So

δe
IB1

(ε) = 1− ψIB1 (δ) =

∫ ∞
0

1

(t + 1)2
dt −

∫ 1/δ

0

dt

(t + 1)2
√

1− δ2t2

=

∫ ∞
1/δ

1

(t + 1)2
dt +

∫ 1/δ

0

1

(t + 1)2

(
1− 1√

1− δ2t2

)
dt

=
(
δ − δ2

1 + δ

)
− δ

∫ 1

0

t2dt

(t + δ)2
√

1− t2(1 +
√

1− t2)

= δ − δ f (δ) + O(δ2),
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where

f (δ) =

∫ 1

0

t2dt

(t + δ)2
√

1− t2(1 +
√

1− t2)
.

Note that

f (0) =

∫ 1

0

dt√
1− t2(1 +

√
1− t2)

= 1

and

lim
δ→0

f (0)− f (δ)

δ
=

∫ 1

0

dt

t
√

1− t2(1 +
√

1− t2)
=∞,

Since δ is comparable to ε, we conclude that δe
IB1

(ε) = o(ε), but δe
IB1

(ε) 6= O(ε2).

Remark 3.7 The convexity condition of K in Theorem 3.5 is crucial to get the uni-
form boundedness of the constant cK . For t > 0, consider the star body of revolution
Kt , defined as the union Kt = Lt ∪ B∞ of two cylinders

Lt =
{

(x, y) ∈ Rn = R × Rn−1 : |x| ≤ e−1/t , |y| ≤ 1/t
}

and

B∞ =
{

(x, y) ∈ Rn = R × Rn−1 : |x| ≤ 1, |y| ≤ 1
}
.

If t > 0 is small enough, then the intersection body of Kt is almost the same as
that of B∞ around the equator. In other words, ψIKt (0) = ψIB∞(0) + O(e−1/t/tn−1)
and ψIKt (ε) = ψIB∞(ε) + O(e−1/t/tn−1) for small ε > 0. Nevertheless, note that
ρIB∞(0) = 1, but ρIKt

(0) = 1/tn−1, i.e., they have quite different radial functions on
the axis as t approaches to zero. So,

δe
IKt

(ε) =
ψIKt (0)− ψIKt (δ)

ψIKt (0)
=
ψIB∞(0)− ψIB∞(δ/tn−1)

ψIB∞(0)
+ O(e−1/t )

= δe
IB∞(ε/tn−1) + O(e−1/t ),

where

δ =
ρIKt

(0) ε

ρIKt
(π/2)

=
ρIB∞(0) ε

ρIB∞(π/2)
· 1

tn−1
+ O(e−1/t ).

Thus, δe
IKt

(ε)/δe
IB∞(ε) = O(t2−2n), which tends to infinity as t tends to zero. There-

fore, this example shows that the constant cK in Theorem 3.5 can be unbounded in
the case of star bodies.

4 Double Intersection Bodies of Revolution in High Dimension

Recently, Fish, Nazarov, Ryabogin, and Zvavitch [3] proved that the iterations of the
intersection body operator, applied to any symmetric star body sufficiently close to
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a Euclidean ball Bn
2 in the Banach–Mazur distance, converge to Bn

2 in the Banach–
Mazur distance. Namely, if K is a star body in Rn with dBM(K,Bn

2) = 1 + ε for small
ε > 0, then

lim
m→∞

dBM(ImK,Bn
2) = 1.

In the case of bodies of revolution in sufficiently high dimension, it turns out that it
is enough to apply the intersection body operator twice to get close to the Euclidean
ball in the Banach–Mazur distance, which will be shown in this section. The uni-
form boundedness of the constant cK by absolute constants in Theorem 3.5 plays an
important role in the following result.

Theorem 4.1 Let K be a symmetric convex body of revolution in Rn. Then the double
intersection body I2K is close to an ellipsoid if the dimension n is large enough. More
precisely, for every ε > 0 there exists an integer N > 0 such that for every n ≥ N and
any body K ⊂ Rn of revolution,

dBM(I2K,Bn
2) ≤ 1 + ε.

Proof By B we denote the unit ball in Rn (instead of Bn
2). It follows from Theorem 3.5

that δe
IK (ε) = cKε

2 + O(ε3) where c1 < cK < c2 for absolute constants c1, c2 > 0. Also
note that δe

B(ε) = ε2/2+O(ε3) for the unit ball B. Consider a linear transformation T
(dilation), which gives ρT(IK)(π/2) = 1 and ρT(IK)(0) = 1/

√
2cK . Denote L := T(IK).

Then

(4.1) ψL(t) = 1− δe
L

(
t/
√

2cK

)
+ O(t3) = 1− t2/2 + O(t3).

Also, it is not hard to compute the function ψB for the ball B,

(4.2) ψB(t) =
1√

1 + t2
= 1− t2/2 + O(t3).

Let

σL = ψ−1
L (1− 1/n) =

√
2/n + o(n−1/2),

σB = ψ−1
B (1− 1/n) =

√
2/n + o(n−1/2).

Fix ε > 0, and let R = −4 log ε, N = R2/ε4. Then we claim that for every n ≥ N,∣∣∣∣ρIL(θ)

ρIB(θ)
− 1

∣∣∣∣ = O(ε) ∀θ ∈ [0, π/2].

First, consider the case where the angle θ satisfies tan θ ≥ ε. For n ≥ N, since
(1 + R/n)2−n ≤ (e

R
2n )2−n ≤ e1−R/2 = eε2, we have[

1 +
R

n

] 2−n
= O(ε2).
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Note also that for n ≥ N, since σL, σB are bounded by
√

2/N =
√

2ε2/R,

σLR = O(ε2) and σBR = O(ε2).

For θ with tan θ ≥ ε, we have cot θ ≤ 1/(σLR). Applying Lemma 3.4 for x = cot θ,
we get

ρIL(θ) sin θ

σL
=

∫ R

0
ψL(σLt)n−1

[
1− σ2

Lt2

tan2 θ

] n−4
2

dt + O(ε2).

Note that ρIL(π/2) is comparable to σL by Lemma 3.3, and ρIL(0) ≈
√

π
2n is also

comparable to σL. So, by convexity of IL, the radial function for IL at any angle is
comparable to σL. Moreover, since

σLε
2 =

σL

ρIL(θ)
· ε2

sin θ
· ρIL(θ) sin θ ≤ σL

ρIL(θ)
· 2ε · ρIL(θ) sin θ

= O(ε) · ρIL(θ) sin θ,

we have

ρIL(θ) sin θ =

∫ σLR

0
ψL(t)n−1(1− t2/ tan2 θ)

n−4
2 dt + O(σLε

2)

= (1 + O(ε))

∫ σLR

0
ψL(t)n−1(1− t2/ tan2 θ)

n−4
2 dt.

Similarly, we have the same equality for IB. Without loss of generality, we can assume
σL ≥ σB. Then

ρIL(θ) sin θ = (1 + O(ε))

∫ σLR

0
ψL(t)n−1

(
1− t2/ tan2 θ

) n−4
2

dt,

ρIB(θ) sin θ = (1 + O(ε))

∫ σLR

0
ψB(t)n−1

(
1− t2/ tan2 θ

) n−4
2

dt

Moreover, (4.1) and (4.2) give( ψL(t)

ψB(t)

) n−1
=
[

1 + O(σ3
LR3)

] n−1
= 1 + O(nσ3

LR3).

Here, since nσ2
L ≤ 3, εR2 = 16ε(log ε)2 ≤ 1 and σLR = O(ε2), we get

nσ3
LR3 = (nσ2

L)(εR2)(σLR/ε) = O(ε).

Thus,
ρIL(θ)

ρIB(θ)
= 1 + O(ε) for each θ ≥ tan−1 ε.

Now consider the case of 0 < θ < tan−1 ε. Note that ρIL(0) = ρIB(0) and the above

statement gives ρIL(tan−1 ε)
ρIB(tan−1 ε) = 1 + O(ε). The convexity of IL and IB gives that

ρIL(θ)

ρIB(θ)
= 1 + O(ε) for 0 < θ < tan−1 ε.
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Remark 4.2 Theorem 4.1 says that the double intersection body of any body of
revolution becomes close to an ellipsoid as the dimension increases to the infinity.
However, it is not true if the intersection body operator is applied once, in general.
For example, consider the cylinder B∞. Then the Banach–Mazur distance between
IB∞ and Bn

2 does not converge to 1 as n tends to the infinity.

Proof The function ψB∞ for the cylinder B∞ is given by ψB∞(t) = min(1, 1/t) as in
the proof of Lemma 3.1. Note that ρIB∞(0) =

√
π/(2n) by (1.2), and

ρIB∞(π/2) =

∫ ∞
0

ψB∞(t)n−1 =

∫ 1

0
1dt +

∫ ∞
1

t1−ndt =
n− 1

n− 2
.

Choose the angle θ with tan θ =
ρIB∞ (π/2)

ρIB∞ (0) , and let x = cot θ. Then

x =
ρIB∞(0)

ρIB∞(π/2)
=

√
π

2n
· n− 2

n− 1
= O(1/

√
n).

In addition,

ρIB∞(θ) sin θ = ψIB∞(x) =

∫ 1/x

0
ψB∞(t)n−1(1− x2t2)

n−4
2 dt = (I) + (II),

where

(I) =

∫ 1

0
(1− x2t2)

n−4
2 dt and (II) =

∫ 1/x

1
t1−n(1− x2t2)

n−4
2 dt.

For the first term, note that

lim
n→∞

(I) = lim
n→∞

∫ 1

0

(
1− π

2

(n− 2)2

(n− 1)2
· t2

n

) n−4
2

dt

=

∫ 1

0
e−

π
4 t2

dt ≥
∫ 1

0
(1− πt2/4)dt = 1− π/12.

The second term

(II) =

∫ 1/x

1
t1−n(1− x2t2)

n−4
2 dt =

∫ 1/x

1

1

t3

( 1

t2
− x2

) n−4
2

dt

=
1

2

∫ 1−x2

0
s

n−4
2 ds =

1

n− 2
(1− x2)

n−4
2 =

1

n− 2

(
1− π

2

(n− 2)2

(n− 1)2
· 1

n

) n−4
2

converges to zero as n tends to infinity. Let L be the body of revolution obtained by
shrinking IB∞ by ρIB∞(0) on span {e1} and by ρIB∞(π/2) on e⊥1 . That is, ρL(0) =
ρL(π/2) = 1. Then

ρL(π/4) sin(π/4) =
ρIB∞(θ) sin θ

ρIB∞(π/2)
,
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and its limit as n→∞ is given by

lim
n→∞

(I) + (II)

(n− 1)/(n− 2)
≥ 1− π/12.

Thus, we get ρL(π/4) ≥
√

2(1 − π/12) > 1 for large n. Note that L is a symmetric
body of revolution about the axis e1 satisfying ρL(0) = ρL(π/2) = 1 and ρL(π/4) =
c > 1, which implies that dBM(L,Bn

2) ≥ c > 1 for large n. Therefore,

lim
n→∞

dBM(IB∞,B
n
2) = lim

n→∞
dBM(L,Bn

2) ≥ c > 1.

5 Local Convexity of Intersection Bodies of Star Bodies of
Revolution

Let K be a symmetric star body of revolution in Rn. Following the definition in
[4, Section 0.7], the radial function ρK is continuous, but it can attain the value zero,
and hence the origin need not be an interior point of K. In this section we will study
the local convexity at the equator of ρIK . The main result is an analogue of Theorem
3.5. In dimensions five and higher, the intersection body of a star body is locally
convex at the equator with equatorial power type 2. As observed in Remark 3.7, in
the convex case the constant cK is uniformly bounded, but if K is not convex cK can
be made arbitrarily big or close to zero by choosing K appropriately. As for the four-
dimensional case, IK is still locally convex at the equator, but it may not be strictly
convex (Example 5.5), or if it is, its modulus of convexity may not be of power type 2
(Example 5.6). However, if the origin is an interior point of K, then IK has equatorial
power type 2 (Theorem 5.7).

If ρK is not identically zero, we have from (1.1) that ρIK (π/2) is a positive number.
Applying a dilation, we will assume that ρIK (π/2) = 1. Thus, to study the equatorial
power type of IK, we can use the function ψIK as in Section 2.

We start with a characterization of local convexity at the equator in terms of the
radial function.

Lemma 5.1 Let K be a symmetric star body of revolution such that ρK ∈ C2[0, π]. If
ρK (π/2)− ρ ′ ′K (π/2) > 0, then K is locally convex at the equator.

Proof We express the boundary of K parametrically by 〈x(θ), y(θ)〉, where x(θ) =
ρK (θ) cos(θ) and y(θ) = ρ(θ) sin(θ). With this representation, the equator corre-
sponds to the point (0, ρK (π/2)). Since the boundary of K is of the class C2, we can
study the local convexity at the equator by means of the second derivative

d2 y

dx2
=

d
dθ

( dy
dθ /

dx
dθ

)
dx
dθ

= −ρK (θ)2 + 2(ρ ′K (θ))2 − ρK (θ)ρ ′ ′(θ)(
sin(θ)ρK (θ)− cos(θ)ρ ′K (θ)

) 3 .

At the equator, θ = π/2. Also, it follows from the central and axial symmetries that
ρ ′K (π/2) = 0. Therefore, the above expression simplifies to

d2 y

dx2
= −

(
ρK (π/2)− ρ ′ ′K (π/2)

)
(ρK (π/2))2
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Hence K is locally convex at the equator if ρK (π/2)− ρ ′ ′K (π/2) > 0.

Lemma 5.2 Let K be a symmetric star body of revolution in Rn, n ≥ 5, with radial
function ρK . Assume that the one-sided derivatives of ρK are finite for every θ ∈ (0, π/2)
(i.e., K has no spikes, except maybe at the axis of revolution or the equator). Let IK be
the intersection body of K. Then ρIK ∈ C2(0, π).

Proof The part of this lemma corresponding to even values of n was proven in [1,
Proposition 8], where it was shown that ρIK has continuous (n − 2)/2-th derivative
at every θ ∈ (0, π/2), and a continuous (n − 2)-th derivative at the point θ = π/2.
We will thus assume that n is odd, n ≥ 5.

At the point θ = π/2, we will use Definition 2.1 and prove that ψIK has a contin-
uous second derivative at x = 0. If n ≥ 7, differentiating with respect to x twice in
equation (2.3) gives

ψ ′ ′IK (x) = −(n− 4)

∫ 1/x

0
ψK (t)n−1 t2[1− x2t2]

n−6
2 dt

+ (n− 4)(n− 6)x2

∫ 1/x

0
ψK (t)n−1 t4[1− x2t2]

n−8
2 dt.

Since n ≥ 7 and ψK is a bounded function that satisfies ψK (t) = O(1/t) as t tends to
infinity, the integrals are convergent at infinity and

ψ ′ ′IK (0) = −(n− 4)

∫ ∞
0

ψK (t)n−1 t2 dt < +∞.

Thus, ψ ′ ′IK (0) is finite, and since ψIK (x) is extended evenly for negative values of x,
ψ ′ ′IK is continuous at 0. As for n = 5, the first derivative of ψIK is

ψ ′IK (x) = −x

∫ 1/x

0
ψK (t)4 t2

[
1− x2t2

]−1/2
dt,

we have
ψ ′IK (x)− ψ ′IK (0)

x
= −

∫ 1/x

0
ψK (t)4 t2

[
1− x2t2

]−1/2
dt,

which, when x approaches zero, tends to the convergent integral −
∫∞

0 ψK (t)4 t2dt .
We have thus shown that ψIK (x) has continuous second derivative at zero for every
n ≥ 5, which implies that ρIK has continuous second derivative at π/2.

Finally, we will show that ρIK has continuous second derivative at every θ ∈
(0, π/2). Setting x = sin θ, t = cosφ, r(t) = ρn−1

K (arccos(t)) and F(x) =
ρIK (arcsin x) in equation (1.1), we obtain the expression

(5.1) F(x) =
1

xn−3

∫ x

0
r(t)(x2 − t2)(n−4)/2 dt,
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for x ∈ (0, 1], and F(0) = cn r(0), where cn is a constant depending only on n.
Consider a point a ∈ (0, 1) such that r(x) is continuous but not differentiable at a.
Differentiating equation (5.1) (n− 3)/2 times, we obtain

F((n−3)/2)(x) =
∑

−1≤k≤n−4
k odd

pk(x)

∫ x

0
r(t)(x2 − t2)k/2 dt,

where each pk(x) is a rational function of the form c(n, k)/xb(n,k), for some constants
c, b. Note that the denominator of pk(x) is nonzero if x ∈ (0, 1). Therefore, every
term with positive k is a continuous function at a. For the term corresponding to
k = −1, we change variables by setting t = x sin u, so that

∫ x
0

r(t)√
x2−t2 dt becomes∫ π/2

0 r(x sin u) du =: G(x). Then

(5.2) lim
x→a−

G(x)− G(a)

x − a
=

∫ π/2

0
lim

x→a−

( r(x sin u)− r(a sin u)

x − a

)
du.

The limit inside the integral exists because of the assumption that ρK has finite one-
sided derivatives at every θ ∈ (0, π/2).

On the other hand, if x > a,

lim
x→a+

G(x)− G(a)

x − a
= lim

x→a+

( 1

x − a

∫ arcsin( a
x )

0

(
r(x sin u)− r(a sin u)

)
du

+
1

x − a

∫ π/2

arcsin( a
x )

(
r(x sin u)− r(a sin u)

)
du
)
.

Note that the first term tends to the right-hand side of (5.2), while the second term
tends to zero, because r is continuous at x = a. However, for the second derivative,
the corresponding term will tend to r ′+(a)− r ′−(a), which is not zero, and thus G does
not have a continuous second derivative at a. We have, in fact, shown that ρIK has
(n− 1)/2 continuous derivatives at any point θ ∈ (0, π/2).

Remark 5.3 We wish to note that the local convexity and regularity properties of
IK at the axis of revolution are the same as those of K at the equator. It is easily seen
by calculating the intersection body of a double cone that, in general, ρIK (θ) is not
differentiable at θ = 0. The general argument is as follows. Setting t = x sin u in
(5.1) gives

F(x) =

∫ π/2

0
r(x sin u)(cos u)n−3 du

for x ∈ (0, 1]. At x = 0, F(0) = r(0)(
∫ π/2

0 (cos u)n−3 du). Then

(5.3) lim
x→0+

F(x)− F(0)

x
=

∫ π/2

0

(
lim

x→0+

r(x sin u)− r(0)

x

)
(cos u)n−3 du
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and similarly for the left-hand side limit. If the function ρK (and hence r) is differ-
entiable at zero, then so is F. However, if the right and left-hand side limits of r take
different values, then the same will be the case for F. Observe also that (5.3) implies
that the local convexity of r at the equator and F at the axis present the same behavior.
In particular, if the body K is not locally convex at the equator, then IK will not be
locally convex at the axis of revolution.

Now we are ready to prove the result on local convexity of IK at the equator.

Theorem 5.4 Let K be a symmetric star body of revolution in Rn, n ≥ 5, whose radial
function ρK has finite one-sided derivatives for every θ ∈ (0, π/2). Then its intersection
body IK is strictly convex at the equator, with equatorial power type 2.

Proof By Lemma 5.2, ρIK (θ) has continuous second derivative for every θ ∈ (0, π/2].
Observe that (1 − (cos2 φ)/(sin2 θ)) < (1 − cos2 φ) for every θ < π/2. Using this
estimate in equation (1.1), we obtain

ρIK (θ) sin θ =

∫ π/2

π/2−θ
ρK (φ)n−1

[
1− cos2 φ

sin2 θ

] n−4
2

sinφ dφ

<

∫ π/2

π/2−θ
ρK (φ)n−1(1− cos2 φ)

n−4
2 sinφ dφ

≤
∫ π/2

0
ρK (φ)n−1(1− cos2 φ)

n−4
2 sinφ dφ = ρIK (π/2) = 1.

Therefore, 1 − ψIK (δ) = 1 − ρIK (θ) sin(θ) has a local minimum at δ = 0, and thus
−ψ ′ ′IK (0) = ρIK (π/2) − ρ ′ ′IK (π/2) > 0. By Lemma 5.1, IK is locally convex at the
equator.

Assume that ρIK (π/2)− ρ ′ ′IK (π/2) = 0. We claim that this contradicts the fact that
IK is an intersection body by using a variation of Koldobsky’s Second Derivative test
([8, Theorem 4.19]). Since ρIK may not be C2 at the axis of revolution, we cannot
use the Second Derivative Test directly. Instead, we proceed as in the proof of [1,
Proposition 6], where regularity is not needed everywhere.

Since IK is a body of revolution, if we consider the coordinates (x1, x) in Rn,
where x = (x2, . . . , xn) and x1 is in the direction of the axis of revolution, then the
Minkowski functional of IK is given by

‖(x1, x)‖−1
IK =

1√
x2

1 + x2
ρIK

(
arccos

( x1√
x2

1 + x2

))
,

and the condition of the Second Derivative test,

(5.4)
∂2(‖(x1, x)‖IK )

∂x2
1

(0, x2, . . . , xn) = 0,

is easily computed to be equivalent to ρIK (π/2)− ρ ′ ′IK (π/2) = 0. Besides, the conver-
gence of (∂2(‖x‖IK ))/(∂x2

1) to 0 as x1 approaches zero is uniform in a neighborhood
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of the equator by Lemma 5.2. Hence, letting

u(x) =
1

(2π)(n−1)/2
e−‖x‖2

2/2 and hm(x1) =
m√
2π

e−m2x2
1/2,

we have〈
‖(x1, x)‖−1

IK , u(x)h ′ ′m (x1)
〉

=

∫
Rn−1\{0}

u(x)

∫ ∞
−∞

h ′ ′m (x1)‖(x1, x)‖−1
IK dx1dx.

Integrating by parts twice, the terms at infinity vanish, and this equals

− 2

∫
Rn−1\{0}

u(x)

∫ ∞
−∞

hm(x1)
( ∂2(‖(x1, x)‖IK )

∂x2
1

‖(x1, x)‖−2
IK

− 2
∂(‖(x1, x)‖IK )

∂x1
‖(x1, x)‖−3

IK

)
dx1dx.

The second term of this integral is positive. We only need to check that the first one
approaches zero as m goes to infinity, but this follows from (5.4) and the fact that the
convergence is uniform in a neighborhood of the equator. We have now proved the
equivalent of [8, Lemma 4.20], and the rest of the argument follows now exactly as
in the proof of the Second Derivative test [8, p. 89]. Therefore, we get that IK is not
an intersection body, obviously a contradiction. Therefore, ρIK (π/2)−ρ ′ ′IK (π/2) > 0,
and IK is strictly convex at the equator, with equatorial power type 2.

In four dimensions, the result of Theorem 5.4 is not necessarily true, as the fol-
lowing two examples show.

Example 5.5 When the origin is not an interior point of K, IK need not be strictly
convex at the equator. Assume that ρK (φ) = 0 for all φ ∈ [0, α], α > 0. Then if
θ ∈ [π/2− α, π/2],

ρIK (θ) sin θ =

∫ π/2

π/2−θ
ρK (φ)3 sinφ dφ =

∫ π/2

0
ρK (φ)3 sinφ dφ = C.

Therefore, ρIK (θ) = C/ sin θ for all θ ∈ [π/2 − α, π/2], which means that IK is
cylindrical around the equator. Hence, IK is locally convex at the equator, but not
strictly convex.

Example 5.6 In this example we present a four-dimensional intersection body of a
star body, which is strictly convex but does not have modulus of convexity of power
type 2. Figure 2 shows the body of revolution K and its four-dimensional intersection
body IK. The radial function of K is

ρK (θ) =

{
(4 sin2 u/ cos5 u)1/3, if 0 ≤ θ ≤ π/2− arctan( 4

√
5),

A/ sin u, if π/2− arctan( 4
√

5) ≤ θ ≤ π/2.
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Figure 2: The bodies K (left) and IK (right) in Example 5.6.

The radial function of IK, which we calculated using Mathematica, is

ρIK (θ) =

{
B/ cos θ, if 0 ≤ θ ≤ arctan( 4

√
5),

(2(sin θ)2 − 1)/(sin θ)5, if arctan( 4
√

5) ≤ θ ≤ π/2,

where A,B are constants chosen appropriately so that ρK , ρIK are continuous. If we
compute the modulus of convexity at the equator for IK, we obtain

1− ψIK (δ) = 1− ρIK (θ) sin θ = 1− 2(sin θ)2 − 1

(sin θ)4
= (cot θ)4 = δ4,

where the last step comes from the Figure 1 of ψIK . Hence IK is strictly convex at the
equator, but has equatorial power type 4.

The bodies in Examples 5.5 and 5.6 have the common feature that the origin is not
an interior point of K. With the additional hypothesis that the origin is an interior
point of K, the intersection body of K has equatorial power type 2, even in the four-
dimensional case, as shown in the next theorem. Note that neither Theorem 5.4 nor
5.7 implies the other one. Theorem 5.4 assumes dimension n ≥ 5, but allows the
origin to be a boundary point of K, while the result of Theorem 5.7 applies for n ≥ 4,
while needing that the origin is interior to K. The proof of Theorem 5.7 uses similar
ideas as those in the proof of Theorem 3.5.

Theorem 5.7 Let K be a symmetric star body of revolution in Rn, for n ≥ 4, such that
the origin is an interior point of K. Then IK has equatorial power type 2.
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Proof Since the origin is an interior point, we can assume that ρK (0) = 1 and rB∞ ⊂
K ⊂ RB∞ for some constants r,R > 0 depending on K where

B∞ =
{

(x, y) ∈ Rn = R × Rn−1 : |x| ≤ 1, |y| ≤ 1
}
.

For θ ∈ [0, π/2], consider the symmetric convex body Kθ defined by

ρKθ
(ϕ) =

{
ρK (ϕ), 0 ≤ ϕ ≤ θ,
ρLθ (ϕ), θ ≤ ϕ ≤ π/2,

where Lθ is a body of revolution obtained by rotating the line containing two points
of angles 0, θ on the boundary of K, i.e.,

Lθ =
{

(x, y) ∈ Rn = R × Rn−1 : |x| + b|y| = 1
}

for b = b(θ) =
1− ρK (θ) cos θ

ρK (θ) sin θ
.

Then by (3.1) in Lemma 3.1, we have

ψKθ
(x) = ψLθ (x) =

1

x + b
, for every x ≥ cot θ,

and, moreover, from rB∞ ⊂ K ⊂ RB∞,

(5.5)
r

x
≤ ψKθ

(x) ≤ R

x
, for every x ≥ 1.

We need to compute ψIKθ
(0)− ψIKθ

(δ) for small δ:

ψIKθ
(0)− ψIKθ

(δ) =

∫ ∞
1/δ

ψKθ
(t)n−1dt +

∫ 1/δ

0
ψKθ

(t)n−1
[

1− (1− δ2t2)
n−4

2

]
dt

= (I) + (II).

If θ ≤ π/2 and δ < tan θ, then (5.5) gives upper/lower bounds of the first term:∫ ∞
1/δ

(r/t)n−1dt ≤ (I) ≤
∫ ∞

1/δ
(R/t)n−1dt.

So, the first term is bounded by (rn−1/(n− 2))δn−2 and (Rn−1/(n− 2))δn−2, which
are independent of θ. If n = 4, then (I) is asymptotically equivalent to δ2, and the
second term (II) is equal to zero. Assume n ≥ 5. Then the second term (II) is divided
into two parts as follows:

(II) =

∫ cot θ

0
+

∫ 1/δ

cot θ
ψKθ

(t)n−1
[

1− (1− δ2t2)
n−4

2

]
dt

= (II-1) + (II-2),
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where

(II-1) =

∫ cot θ

0
ψKθ

(t)n−1
[

1− (1− n− 4

2
δ2t2 + O(δ4))

]
dt

=
( n− 4

2

∫ cot θ

0
ψKθ

(t)n−1t2dt
)
δ2 + O(δ4)

and

(II-2) �
∫ 1/δ

cot θ

1− (1− δ2t2)
n−4

2

tn−1
dt =

∫ 1/δ

cot θ

1

tn−1
dt −

∫ 1/δ

cot θ

(1− δ2t2)
n−4

2

tn−4

dt

t3

=
(tan θ)n−2 − δn−2

n− 2
− 1

2

∫ tan2 θ

δ2

(s− δ2)
n−4

2 ds

=
(tan θ)n−2 − δn−2 − (tan2 θ − δ2)

n−2
2

n− 2
=

(tan θ)n−4

2
δ2 + O(δ4).

(Note that ψKθ
(t) in the second integral (II-2) is comparable to 1/t by (5.5)). Fur-

thermore, when n ≥ 5, the integral of (II-1) is bounded above and below by positive
constants independent of θ:∫ cot θ

0
ψKθ

(t)n−1t2dt ≤
∫ 1

0
Rn−1t2dt +

∫ ∞
1

(R/t)n−1t2dt =
n− 1

3(n− 4)
Rn−1,∫ cot θ

0
ψKθ

(t)n−1t2dt ≥
∫ 1

0
rn−1t2dt =

1

3
rn−1.

Finally, letting θ go to zero, we have equatorial power type 2 for the body K.
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