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Abstract

We propose and analyze the spectral collocation approximation for the partial integro-
differential equations with a weakly singular kernel. The space discretization is based on
the pseudo-spectral method, which is a collocation method at the Gauss-Lobatto quadrature
points. We prove unconditional stability and obtain the optimal error bounds which depend
on the time step, the degree of polynomial and the Sobolev regularity of the solution.

1. Introduction

Let £2 be a rectangular domain in (R2 with boundary 9£2 (typically £2 = (— 1, 1 )2), and
let 7 e OS satisfy 0 < T < oo. We shall consider spectral methods for the following
integro-differential equation with a weakly singular kernel:

= I
Jo

u,-Au= I K(j - s)Bit, s)uis) ds + fix, t), (x, /) € Q x (0, 7],
Jo

u = 0 on9fi, t > 0,

M(-,0) = K0 in Q, (1.1)

where Bit, s) is a general partial differential operator of second order with smooth
coefficients

XJ
Bit, S) = -J2j- ( M * > t, s)-£-) + J^ buix, t, s)-£- + boix, t, s)I (1.2)

°X V X Xj=\
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[2] Spectral collocation methods for a partial integro-differential equation 409

and K is a weakly singular kernel such that

\K(t)\ <Cr" with 0 < / x < l , f o r r > 0 .

Further, throughout this paper, we shall assume that / is sufficiently smooth.
Partial integro-differential equations of this nature appear in applications such as

heat conduction in materials with memory, population dynamics, viscoelasticity and
theory of nuclear reactors (see the introduction in Yanik and Fairweather [13], where
references to studies of existence, uniqueness and regularity are also given).

For a numerical solution of (1.1), both the finite element and finite difference
methods have been considered by several authors. Thomee and Zhang [12], Chen et
al. [5] andPanie/a/. [9, 10] have derived optimal error estimates both for semidiscrete
and fully discrete finite elements and finite difference methods. In this paper, we
propose and analyze the spectral collocation approximation for the partial integro-
differential equations with a weakly singular kernel.

Spectral methods are classical and widely used techniques to solve differential
equations, both theoretically and numerically. These methods appear to be competitive
with both the finite difference methods and the finite element methods. They must
be decisively preferred to the latter whenever the solution is highly regular and the
geometric dimension of the domain becomes large. Moreover, by these methods,
it is possible to control easily the solution of those numerical problems affected
by oscillation and instability phenomena. The use of spectral and pseudo-spectral
methods in computations for many fields of engineering has been matched by deeper
theoretical studies [3, 6]. Recently, spectral methods have been studied by variational
techniques, to point out the dependence of the approximation error (for instance
in the L2-norm, or in the energy norm) on the regularity of the solution and the
discretization parameter. Indeed, often the solution is not infinitely differentiable
(see Canuto and Quarteroni [4]). Spectral methods involve expansions in the basis
of polynomials (or trigonometric polynomials) that are orthogonal with respect to
a weighted measure. The popularly used basis is either the family of Legendre
polynomials or the family of Chebyshev polynomials. In practice, spectral methods
are implemented via collocation techniques, which are discretizing methods involving
Gauss-type quadrature nodes. Particularly in the Chebyshev case, the use of the fast
Fourier transforms allows a less expensive computation time for the derivatives and
the nonlinear terms. The aim of this paper is the numerical analysis of the collocation
methods at the Gauss-Lobatto nodes including Legendre and Chebyshev nodes, for
some kinds of partial integro-differential equations in the square (—1, I)2.

An outline of this paper is as follows. In Section 2, we first introduce the weighted
Sobolev spaces on a square associated with the Jacobi weighted measure. We define
several projection operators from weighted spaces onto the space of polynomials with
degree less than an integer N. Section 3 is related to the approximation of (1.1) by the
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Galerkin spectral method and the Ritz-Volterra projection. As has been emphasized in
the literature, this method allows one to achieve high accuracy for smooth solutions. In
Section 4, we establish stability and convergence of the collocation method for (1.1).
Finally in Section 5, the pseudo-spectral solution is advanced in the time direction by
using the backward difference method.

2. Preliminaries

We introduce some definitions and recall some basic results which will be used
throughout the paper. We first introduce the weighted Sobolev spaces on the square
associated with the Jacobi weighted measure. For any x = (xi, x2) e £2, we set
wo(x) = (1 - x2)a(l - x2)a, where - 1 < a < 1. We define

L2
Wa(Q) = \v : Q. -+ I measurable; / v2(x)wa(x)dx < -fool ,

which is a Hilbert space for the scalar product

(u,v)Wa= I u(x)v(x)wa(x)dx.

For any integer m > 0, the weighted Sobolev space is defined by

Hwa<&)= J w e L ^ ( Q ) ; ^J^q 6 ^ ( f i ) , ( p , ? ) eN2,p+q <m\,

which is equipped with the norm

1/2

IML.^.n = 1 J2
\X2

and with the semi-norm

\v\m,Wa,n =

For a real number s > 0 which is not an integer, the Hilbert space H^(Q) is defined
by interpolation between H^(Q) and H^+l where [s] is the integer part of s, and its
norm is denoted by || • \\s,Wa,n. We denote by H^o(£2) the closure in H^(Q) of the
space Z)(£2) of all functions of C°° having a compact support in fi. Whenever there
is no confusion, we drop the subscript fi from || • \\m,w<,.ci and (•, -)m.w..n- Throughout
this paper, we denote by C generic constants independent of N.
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[4] Spectral collocation methods for a partial integro-differential equation 411

We set

AWa(u,v) = / VM • V(vwa)dx f o r a n y u,v e Hx (Q). (2.1)

A complete study of the properties of the bilinear form AWa(-, •) has been done in
[1] for one or two-dimensional problems. We report hereafter some results of this
analysis. There exists a positive constant fi such that

\AwJu, v)\ < P\\Vu\\wJVv\\Wa forany u, v e H^tt). (2.2)

Moreover, for any v e H^0(Q), there exists a constant c > 0 such that

\AWa(v,v)\>c\\Vv\\2
Wo.

We also recall the Poincare inequality

3 S > 0 : \\v\\Wa < S||Vv|L for any v e H^0(Q),

by which we deduce that AWa{-, •) is coercive, namely

3 c> 0 : AWa(v, v) > c\\v\\]Wa for all v e < . 0 ( « ) . (2.3)

For an integer N > 0, we set WN = PNxPN, where \PN is the space of the polynomials
of degree Af in single variables. Further, we set P°N(Cl) = j p e WN\p(x) = 0 on dQ}.

For our work, we require some spectral projection operators. First define the
orthogonal projection operator PN : L2

w t-» iP^(S2) by

(v - PNv, d>)Wa= 0, V ^ P ,

The projection error is estimated as follows (see [1, 4]):

\\v - PNv\\Wa < CN-°\\v\\a,Wn, Wv G H^(Q), a > 0.

We define the Ritz projection operator T\N : //J, 0 i-> P°N(Q) by

AWa(y - Unv, <f>) = 0, V0 e O f i ) . (2.4)

The error estimate of the Ritz projection can be found in [1, 2]: for all v e H° (fi) n
with o < M < ^̂  ^ > i

"\\v\\a.Wa, (2.5)

where e(/Li) = fj, if î < 1 and e{ix) = 2\x — 1 if fj, > 1.
We shall need the following two lemmas from [5].

https://doi.org/10.1017/S0334270000009474 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009474


412 Chang Ho Kim and U Jin Choi [5]

LEMMA 1 (Chen et al. [5]). Assume that y is a nonnegative function in L i (0, T) which
satisfies

y(0 < b(t) + 0 I (t - s)-"y(s) ds for 0 < t < T,
Jo

where b(t) > 0, ft > 0. Then there is a positive constant CT such that

y(t) < b(t) + CT I (t - s)-ab(s) ds for 0 < t < T.
Jo

LEMMA 2 (Chen et al. [5]). Let K e Li(0, T). Then for each e > 0 there is a positive
constant C( = Ce(\\K\\L,(0.T)) such that

T rt

K(t-s)f(s)f(t)dsdt
Jo Jo

<6 f f(t)2dt + Ce f \K(t-s)\ f f(sfdsdt.
Jo Jo Jo

3. Stability and convergence

Both spectral and pseudo-spectral methods are essentially the Ritz- Galerkin meth-
ods (combined with some integration formula in the pseudo-spectral case). It is well
known that, when Galerkin methods are used, the distance between the exact and the
discrete solution (approximation error) is bounded by the distance between the exact
solution and its orthogonal projection upon the subspace (projection error), or by the
distance between the exact solution and its interpolated polynomial at some suitable
points (interpolation error).

In this section, problem (1.1) is discretized only in the space variable. We consider
the semidiscrete problem of finding the following semidiscrete approximation uN(t) :
[0, oo) H> P°N(S2) such that

= / K(t-s)BWa(uN(s),X)ds
Jo

uN(0) = PNu0,
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where AWa(-, •) is the bilinear form on H^ 0(f2) defined by (2.1) and

BWa(u, v) = BWe(t,s;u, v)

dud(vwa) 1

Jn \fe dXi dxj wa

Y V ^ )(x)dx,Vu,v e //^

f

2 o \

YV(x, t,s)-^-v + bo(\, t,s)uv)wa

We shall assume that there is a unique generalized solution of (1.1) satisfying the
following regularity conditions.

m-.ue cao, r ] ; H2
Wa n //^ 0),«, e C([0, n ; ^ o ) n L'((0, r ] : H ^ n H^0),

u € ^ i n L ' ( [ O , T];H^r\H^0),u, e L'([0, T]; H°o), for some a > 2.

Chen e? a/. [5] have examined the theoretical question of existence and uniqueness
where the regularity condition ^ 1 applies with B independent oft. Problem (1.1) has
limited regularity due to the weakly singular kernel, and there may be some restriction
on a. Under the regularity assumption Ml, for each T > 0 and — 1 < a < 0, we
shall obtain the following error estimate for the spectral approximation of (1.1):

HMO - « ( 0 l k < CTN-° (llHolU,, + f ll«,IU.«te| forr < T.
I Jo J

First we consider the stability of the semidiscrete scheme (3.1).

THEOREM 1. Let uN be the solution o/(3.1). Then there exists a positive constant CT

such that

H M O I k < C r I HMO) I k + I \\f(s)\\wds\, t € (0, T].

PROOF. Taking x t o be uN(t) from (3.1), then by the coerciveness of AWa(-, •), we
have

I at

<cJ||/(0lkllM0lk
Integrating with respect to t and applying Lemma 2 with suitable e, we obtain

IIM0IGJI+ [ HMJ)HU^<C( | |M0 ) I I ^+ I
J [ Jo
[
o

[ (t-s)-» f ||
o Jo
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It follows from Lemma 1 that

/" \\uN(s)\\lulads<c(\\uN(O)\La + f \\f(s)Lads)sap\\uN(s)\U.
J0 \ J0 / s<t

Taking the supremum in both sides with respect to t, we have

< suplKC^L,, < CT \\\UN(O)\U + I \\f(s)\Lads\ .
s<t [ Jo J

We now introduce, following [7], the Ritz-Volterra projection operator V ,̂ defined
for an appropriately smooth function u by

V%u - « ) ( / ) , X)

= f K(t-s)BWaaV^u-u)(s),X)ds, Vx6fl^(n),/>0. (3.2)
Jo

We have the following error estimate for the Ritz-Volterra projection.

LEMMA 3. Let —1 < a < 0 and assume that u e H^(Q) D H^(Q) and that the
second-order partial differential operator B has smooth coefficients. Then we have
for the Ritz-Volterra projection operator V% that

-M - u)(t)\\Wa + ^UVa
Nu - u)(t)\u,Wa

< CN~a sup \\u(s)\\a,Wa < CN-" (\\uo\UWa + f H K ^ I L ^ ds) .
s<i \ Jo /

PROOF. Let p = V£u — u and FI^ be the Ritz projection defined by (2.4). From (2.5)
we obtain

\\(UNu - ii)(Olk + T7lKn/v" - «)(Olli.«fc < CN-MOWw (3-3)
A'

Using the definition of the Ritz-Volterra projection and the coerciveness of bilinear
form AWa (•, •), we have that with c > 0

2 zu - nNu)(t), (v%u -
, (v%u - nNu)(t))

= / K(t -s)Bw (P(S),(VNU ~ UNu)(t)ds
Jo

< cuv^u - n^xoih.^ / (/ - J)-"|
Jo
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and hence

l l ( p ( O I I . . ^ < \\(nNu - K ) ( O I I I . « * +C f ( t - ^ - " H P W I I I . ^ ds.
Jo

Lemma 1 implies

HPCOIII.^ < C r sup 11(11*11-KXS)!!,.^

<CTN'-a sup \\u(s)\\a,Wa
s<l

< CN]~° (\\U0\\a.Wl, + J Wu.isn^ ds) .

We next turn to the L2 estimate. By duality arguments, it is well known that for

II* - n w 0 | L o = sup / ( ( / > - UN4>)(x)x(x)wa(x)dx.
11x11.*=' Jn

For any given function g with \\g\\Wa = 1, we denote by <p the solution of the Dirichlet
problem

—Acp = gwa in Q,

(p = 0 on dQ.

Since gwa is in L\,w (S2), Theorem 3.1 of [1] implies that <p belongs to Hf/Wa(Q) D
H}/Wa0(Q) and satisfies

\\<P\\2A/wa<C\\g\U=C.

Letting i/r = <p/wa for each g € L2
W (Q) with ||g|Lo = 1, we have for XN €

/ p(x,t)gwa(x)dx = - / p(x,t)A(i/wa)dx
Jn Jn

,if) (3.4)

, ^ - XN) + AWa(p(t),

and

A».(j>(t), XN) = I K(t -s)BWa(p(s),XN)ds
Jo

= f K(t-s){BWo(p(s),XN-^) (3.5)
Jo
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Thus we have

p(\,t)gwa(\)dx = Csup|

+ C f (t-s)-"\\p(s)\\Wads. (3.6)
Jo

Furthermore, due to Lemma 4.7 of [1], for —1 < a < 0 and for any function i)/wa in
H^/Wa<Sl) n Hl/Wa0{Q.), we can choose XN e P^(fi) so that

M - XN)WO\\MW. <CN-l\\(p\\2MW..

Hence, applying Lemma 1 to (3.6), we obtain

< CN~" sup |
• ! < '

<CN~" ( | |MOL.^+ f ll«/(s)IU.»w
I Jo

which completes the proof.

We also need the following estimate for the time derivative of the error in the
Ritz-Volterra projection.

LEMMA 4. Under the assumptions of Lemma 3, we have, for p = V%u — u,

PROOF. We can rewrite the Ritz-Volterra projection of the form

A^iPtO, XN) = [ K(s)BWa(t,t-s;p(t-s),XN)ds, VXw € P°N(Q).
Jo

By differentiation with respect to /, we obtain that for all XN G W°N(Q),

(O, XN) = K(t)BWo(t,0; p(0), XN)

[ K(s) — BWa(t,t - s; p(t - s), XN)ds. (3.7)
Jo at

Let 6 be (V%u - n,,u),. Then with c > 0

C\\eh.u, [ (r -^ -" ( l lp^ l l , .^ + \\p,(s)\U.Wa)ds.
Jo
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Hence, we have

H0(Olli.u.o < c r " U p ( 0 ) I k + <

or

IIA(0I.IO«, < c?~M||p(0)||i,Wo + nn^M, — MJII.U,,,

+ Csup||p(j)||,.Wc, + C / (f-5)-M||p,(
sSi Jo

"llMolla.^ + \\u,U)\\a.wa +SUp||M(5)||ff,u

+ C [ (t-s)-'t\\pt(s)\\l.w.ds.
Jo

Integrating with respect to t and applying Lemma 1, we have

I llA(*)lli.«fc ds < CN'-° (\\uo\\a.Wa + I | |M,(*)L.^ ds\ .

We now turn to the L2
Wa estimate. Putting p, instead of p in (3.4), with the notation

of Lemma 3, and using (3.7), we obtain

(A(0, g)wa = AWa(p,(t), if) = AWa{p,{t), rff - XN) + AWo(P,(t),

+ K{t) {BWo(t, 0; p(0), XN - Vf) + (p(0), B*(t,

+ K(s)\—BWa(t,t-s;p(l-s),XN-i')

d
jjipit - s), B*(t, t - s)(\/fwa)/wa)w<i \ ds.

Taking suitable XN £ ^V^) a s m Lemma 3, we see that

llAlk < C\ ^llA(0lli.^ + r " (N-]\\p(0)\\UWa + ||p(0)lk)

+ f (t- s)-*1 (]- (HA(J)III .^ + IIP^)ll..Wo)Jo \N

•>\
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< CN~a \\uo\\a.Wii + rlMolL.uw + sup \\u(s)\\a,u

+ C±- f (t-s)-'l\\p,(s)h.w.ds + C [ ( t -
" Jo Jo

Integrating with respect to t and applying Lemma 1, we have

f \\pt(s)\\Wt,ds <CN-a \\\uo\\a,Wa+sup \\u(s)\UwJ+C-J- f Wpr
Jo [ s<< J N Jo

Thus we complete the proof from Lemma 3.

THEOREM 2. Let — 1 < a < Oand assume that the solution u of problem (1.1) satisfies
the regularity assumption &2 and that «^(0) = P^UQ is chosen so that

ll«*(0)-Hoik < CAT"IIKOIUW-

Then, for each T > 0, there is a positive constant Cr such that the solutions of (1.1)
and (3.1) satisfy

\\uN{t) - ii(r)lk < CTN~° ( i K I U . + / Wu.h.^ds} for t < T.
\ Jo )

PROOF. We write

uN - u = (uN - Va
Nu) + (V> -u)=6+p.

Lemma 3 immediately gives the desired estimate for p, so it remains to bound 0.
From our definitions, we directly have that

(0I,XU+AWO(0,X)= f K(t-s)BWa(e(s),x)ds-(pt,X)u,a, VX e \P°N(Q).
Jo

Applying the stability result of Theorem 1 with uN = 9 and / = — p,, we obtain

H0(Olk ^ Cr ho(O)\U + f l l A ( * ) l k ^ l . ' 6 ( 0 , T].

Hence, using Lemma 4 and noting V%u(0) = UNuo, that is, 6(0) = 0, we have

110(0Ik ^ CTH~" (ll«olU, + j II«,IL.^dt\.

This completes the proof of the desired estimate for 0, and thus the theorem follows.
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4. Semidiscrete collocation method

In this section, we discuss the spatial discretization based on the spectral collocation
methods with Jacobi weights for —1 < a < 0. Let £/"s be the nodes of the Gauss-
Lobatto integration formula of degree N relative to the Jacobi weight w(%) = (1 — £2)°
and w" the corresponding weight at f". Then, we see that

/ . :
w" for any p e [P2W-1. (4.1)

We define the interpolation operator IN : C°(Q) i->- PN(Q) by

INv(x«) = v(x^), 0 < i, j < N,

where AT?. = (|/*, | " ) for 0 < /, j < N. For any real fx, a such that 0 < fi < cr,
a > 1, the interpolation error is estimated as follows (see [4]):

llw - INVWW < C ^ - H u l U ^ , for all w e A/^(£2). (4.2)

Let fiw be an approximation to the operator B, in which the derivatives are taken via
collocation at the points *?. 's. We have

BNU = BN(t,s)U

+ IN(b0(x,t,s)U).

Thus our semidiscrete pseudo-spectral approximation of (1.1) is the following
collocation problem: We look for a mapping U € C'((P^(£2)) such that, for any
t € (0, T),

U,(x°)-AU(x°)= f K(t-s)BN(t,s)U(x"s)ds + f(x"),
Jo

1 <i,j< N - 1,

U(x°0J) = U{x%) = 0

U{x°, 0) = uoixfj), 0 < i, j < N. (4.3)

We now define a discrete inner product:

N

i.j=O
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By (4.1) it follows that

(</>, t)N = (</>, V^U, V0, f : <t> • xl/ G P>2*

Moreover,

(0, ir)N = (/„</>, f)N, V</>, ir G C°(£2). (4.4)

Thus, (4.3) can be rewritten as

(U,,<t>)N+aN(U,<(>)= f K(t-s)Ba
N(U(s),<t>)ds + (f,4>)N, W<peP°N(Q),

Jo (4.5)

where aN{<p, \j/) = (V</>, V(\l/wa)/wa)N for any f f e ^ ( f i ) and

\ 9x,J dxj wJN j ^

The discrete norm

is equivalent to the Lj^-norm, namely

II^IU < II^IU < 2 | | 0 l k , y<f> € P w (« ) (4.6)

(see [3]). It has been proved (see [3]) that the bilinear form aN(-, •) is continuous and
coercive over P°N(S2), that is, there exist positive constants c,, c2 such that

and

Finally, for any v e C°(Q), we define E(v) by

(£(u), 4>) = (v, <P)N - (v, </>)„„, V0 € C°(J2). (4.7)

It can be shown (see [1,3]) that

l(E(w), 0)1 < C{\\v - PN-M\w. + IIw - /wwlkJII^IU, V0 e FV,

from which, for w G H° 0(fi), we have

\(E(v),4>)\<CN-a\\v\\a.tvJ<p\\Wa, V 0 G I V (4.8)

To analyze the convergence properties of the semidiscrete collocation scheme (4.5),
we require the following error estimates for the collocation operator aN(-, •) and
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LEMMA 5. Let the coefficients of B be sufficiently smooth and V% be the Ritz-Volterra
projection. Then there exists a positive constant C depending on B such that for all

0 e On),

\aN(VXu,4>)-Aw.(.VNu,4>)\<CN1-\\u\\a.w,\\4>\\N

and

\Ba
N{Va

Nu, v) - BWa(VNu, v)\ < CNl-a\\u\\a.wJv\\N.

PROOF. Let u be V%u, and consider for a smooth function b,

. (4.9)

Noting that

du\ 3« du
^ ) - » ^ + ^ (4.10)

and using (4.4) and (4.6), we have

du du
dx, dxj u\i

From (4.2), (4.8) and Lemma 3, we obtain

Furthermore (see [1]), S7(vwa)/wo € OV(ft) for any v € P^(n) and

for any v e

Thus, taking an appropriate function instead of b in (4.9), we complete the proof.
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THEOREM 3. Let — 1 < a < 0. Assume that f(x, t) and the coefficients of B in (1.1)
are sufficiently smooth and that the solution u of problem (1.1) satisfies the regularity
assumption £#,2, u(x, •) e C2(Q) and u, e L'((0, T)\ C(£2)). Moreover, assume that
the initial data UQ is so smooth that

Then, for each T > 0, there is a constant CT such that for the solutions of (LI) and
(4.3),

\\U(t)-u(t)\\Wa <CTNi-a\\\u0\\a,Wa+ f | | M , | U . ^ ) + C r [ \\E(f(s))\\ds.
I Jo \ Jo

PROOF. Let u = V%u(t) for all t > 0. The u satisfies the variational equation: for all

,4>)= I K(t-s)Ba
N(u,4>)ds

Jo

+ f K(t - s)(Bw,(u,4>) - Ba
N(u,<P))ds

Jo
),0) (4.11)

+ (a/v(w, (/>) — AWa(u, <p)) + (/, 4>)Wa.

Letting e(t) = U(t) — u + u — u(t) = 9(t) + p(t) for t > 0 and comparing (4.5) with
(4.11), we have

f(9,,4>)N+aN(9,<p)= K(t-s)B%(9,
Jo

— (ii, - wf, #)„,„

(4.12)

Rewrite (4.12) as

(6,, <p)N + aN(9

+ f K{t-s)(Ba
N(u,(t>)-BWa(u,(l>))ds

Jo

Jo
( 4

Using (4.8) and the Cauchy-Schwarz inequalities, we can easily obtain the estimates
for /|, I2 and /3 as

(4.14)

(4-15)

(4.16)
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From Lemma 7, we have

|/4| = |(£(V«), V(<M,)M,)I < Ctf'- 'lHUJMkA, (4.17)

and

\Ba
N{u,(j>) - B^u,^ <CNx-"\\u\\a.WaU\\UN. (4.18)

Taking <p = 9{t) for any t > 0 in (4.12) and using the estimate (4.14)-(4.18), it
follows that

\T^2" + cm* N<C I {f- s)^\\e{s)\\] Nds + C-\\6{t)\\] N2 at Jo 4

+ J2 |/,| + CTN2"-? sup \\u\\2
nWti + ^||d(OII? N-

'=' i 5 ' (4.19)

Integrating over f, we have

\\0{j)\\\.NdT <sup||0(j)|L.

+ CN*~° f \\u,\Lw.dT + C I \\E{f{s))\\ds\ (4.20)
Jo Jo J

+ c7./v2( |-<7)supiMuo + c I I {T-sywef^dsdT.
s<i Jo Jo

Applying Lemma 1, we then have

* f \\e(T)\\l.NdT <CTN2"-°> sup \\u\\lWa + CT sup \\e\\J\\9(0)\\N
Jo s<i s<i I

W'-" I ||«,IU
Jo

I \\E(f{s))\\ds\. (4.21)
o J

Noting that ||0 (0)11 A, = \\nNu0-INu0\\Wii < CN^n\\uo\\a^,Wii and applying Lemma 3
and Lemma 4, we obtain

\\0{t)\\N<CTNx-°\\\uQ\\a.aa + j \\u,\\a,aadz\+CT I \\E(f(s))\\ds.

Now, using the triangle inequality

ll«(0 - £/(0lk < ll«(O -«(0 lk + I|0(OIU, for/ > 0

and by Theorem 2, we complete the proof.
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5. Full discretization schemes

The semidiscrete approximation (4.3) gives a system of ordinary differential equa-
tions in the time variable. Let h > 0 be a time step, and let U" € P°N(&) be the
approximation of the exact solution of (1.1) at time tn = nh. The time discretization
considered will be based on the backward difference quotient

d,U" = {U" -U"

For the integral term we use the product integration: we approximate 0 in

/„«>) = / K(tn-s)cP(s)ds
Jo

by piecewise constant function taking the value <p'{= 00})) in (tjt tj+i) and thus we
write the quadrature for Jn (0) as

n-l »;;+, n-l

i=0 •''; j=0

where

' K(s)ds.

For any <f> e C [0, T], we can easily show that

= \Qn(4>)-Jn(4>)\ < CJ2rn-j f \ct>,(s)\ds, (5.1)
j=0 J

where

-L
Our fully discretized scheme is now defined by

n - l

d,U?j - AU?j = J2Kn-jBN{tn, r*)t/* + ft}, for 1 < i, j < N - 1,

U£j = l/*0 = 0 for 0 < j , j < N, k>0,

U°j = uo(xfj) forO<i,j<N,

where U"j = U(x"j, tn) and x?. are defined in Section 4. Furthermore, we can rewrite
the above as in the variational form

(d,Un ,4>)N + aN(U" ,< />) =

U° =

n-l

j=0
-jBa

N(

forO

U-

<

',0)

ij

+

<

V0 € 1 > I,

(5.2)
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The following two lemmas are discrete versions of Lemma 1 and Lemma 2. For
details, we refer to Chen et al. [5].

LEMMA 6. Let {wn} be a sequence of nonnegative real numbers satisfying

n - l

Wn < 0Ln + « > 0,
i = 0

where an, fi > 0. Then for each T > 0 there is a positive constant CT such that

n < OLn + CT ^2 Tn-i<*i for nk < T.
1=0

LEMMA 7. Let Kn be a sequence of real numbers. Then for each € > 0 there is a
constant C( > 0 such that

N n - l N-\ n - l

n=\ j=0 n=\ n=l

We now give the stability result for the fully discretized scheme (5.2).

THEOREM 4 (Unconditional stability). The scheme (5.2) is stable, namely for any N
and any 0 < h < 1, there is a positive constant CT such that

PROOF. Take <f> = U" in (5.2). Then we have

< Ch lEl'-vNI^II'.tflltf'lli." + H/l

Summing from n = 1 to m and applying Lemma 7 with suitable e, we have

n = \

< \\U°\\2
N + C

n=l
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It follows from Lemma 6 that
m—\ i m l

WWWl N<CT\ \ \ U ° \ \ N + h T \\f"\\N m a x \\U"\\N.
' I TZ J nm

Hence, we have

\\Um\\N <maz\\Un\\N <CT(\\U0\\N + hf\\\f"\\N\ formh<T.
n<m

THEOREM 5 (Convergence). Let u and {(/"} be the solutions of (1.1) and (5.2) re-
spectively. Assume that the assumptions of Theorem 3 hold. Further, we assume that
u € C2((0, T)\ C1 (fi)). Then there exists a constant CT independent ofN and h such
that

(\\uQ\\a,Wa + j " \\u,\\a,Wtids\ +CThJ^\\E(f

+ CTh [(\\u\\Zw, + \\u,h.u,a + ||M,,IU) ds.
Jo

PROOF. For any t > 0, we set u = V%u, ek — Uk - uk + uk - uk = 8k + pk and recall
that u satisfies (4.11). Subtracting (4.11) from (5.2) at time t = tk,

*-l flk
= y Kk-jB

a
N(U', (p) + ( £ ( / * ) , (/>) — / K(tk — s)BWa(u,<p)ds

y=o ^ ° (5.3)

- (it* - uk, <p)Wa - (E(uk), 0 ) - (aN(uk, (p) - AWa(u
k,

It follows that
it-i

(3ft/*,0)A,+flA,(0*,0) =

+ {aw(«*,0)-AU)W(M*,0)} (5.4)

+ | 2_\Kk-jBa
N{u', (f>) — I K(tk — s)BWa(u, 4>)ds J .

l ; = o •'o " J
We denote Ix, 72 and /3 as follows:

= (wf - d,uk, <p)Wa - (d,pk, (j>)Wa - (E(dtp
k), <t>) - (E(d,uk), <p),
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and

/*(*) = I y^**-7 *«(«', 0 ) - [' K(tk-s)BWa(Z,<P)ds\

k-\

Taking <f> = Gk in (5.4), we have

2

YJ
J=° <=' (5.5)

Summing (5.5) from k = 1 to n and applying Lemma 7, we immediately have

n k—\kwi < \\e°w2 Y+ich J2 \\okwiN < \\e°w2
N + c Y, *n-k Y ii^'iii."+cSh

k=\ k=\ j=0 k=\

t=l k=\ 1=1

We now turn to the estimates for /,, I2, and /3. Since u e C2((0, T);
using the Taylor formula with the integral form of the remainder will give

I" \Ull\ds, k>
Jh-\

and

\(ECd,pk,(p)\ < \ T \\p,{s)\\Wads\\<p\\N

Hence, from (4.8), we have immediately

*=1
< E r

<C*max||0*|U fk^ Jo

[" \\u,\\a.Wa) .
o /
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Furthermore, using Lemma 7 and the inequality ab < 8a2 + 4/8b2, we have at
once the following estimate for /2:

-<" max | | I I * | | ^ + 8hJ^ \\0k\\2
UN.

k=\ ~ k=\

Finally, to estimate /3, using the fact that BWa(u,(/>) = (Bu(s),<t>)Wa and (5.1), we
have the following

j f ( i * + IIAIILW.) ds\\<t>\U.N

+ Y.Xk-i [J+\\\»h.u,. + \WA\i,Wa) ds\\<p\\N + CNl-a\\uk\\a,wJ\<f>\\UN.
j=0 J'j

Thus we get

k=\ k=\

\\\iN + Chmx*\\6k\\N I {\\u\\2.Wa + \\ut\\2.Wa) ds

+ Ch ( f " (llpll,.„,„ + IIA\\ t ,Wa) ds) + C N w - a ) h max ||«*\\2
a

Thus, (5.6) with suitable 8 gives that

C ^

ax ||0*|| J h V ||£(/*)L,, +

llA(*)lk^ + A / ll«lkw. +

„„ + ||All,..„) ds\

(5.7)
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Applying Lemma 6, we obtain that

110"II2* + h £ \\ek\\2
UN < C max ||0*|| J \\9°\\N + h £ l|E(/*)l

\\u,\\2.Wo + ||n,,(*)IL) ds+ h f (\\u\\2.W
Jo

+ f" \\P,(s)\U
Jo

+ Ch ( Y " (lip||I.*, + HA 11..̂ ) ds) + CNw-°>
\Jo J

o

+ CNw-°> max | | | | J „,

It follows from Lemma 3 and Lemma 4 that

1101* < sup 110*11*
k<n

N l - \\\uo\\a,Wa + j " \\u,\\a,Wa ds J + C Ih J2 \\E(fk

+ Ch / {\\u\\2.Wa + Wu.h.u. + ||«,,IL) ds.
Jo

)\\

This completes the proof.
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