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ON A CRITERION FOR THE CLASS NUMBER OF
A QUADRATIC NUMBER FIELD TO BE ONE

MASAKAZU KUTSUNA

§0.

G. Rabinowitsch [3] generalized the concept of the Euclidean algorithm
and proved a theorem on a criterion in order that the class number of an
imaginary quadratic number field is equal to one:

THEOREM. It is necessary and sufficient for the class number of an
imaginary quadratic number field QW D), D =1 — 4m, m > 0, to be one
that x* — x + m is prime for any integer x such that 1< x<m — 2.

Rabinowitsch mentions there nothing on the case of real quadratic
number fields. So, we shall give a similar result by applying his method
to real quadratic number fields (Theorem 2, Cor. 1).

In §1, we shall define storend fractions and give a criterion for the
class number of a real quadratic number field to be one (Theorem 2). In
§ 2, we shall treat real quadratic number fields whose genus number is
equal to one and give a table of such real quadratic number fields together
with the effect of our criterion.

Notations. We denote by Latin letters a, b,c, - --, rational integers
and by Greek letters «, 8,7, ---, integers of a real quadratic field K =
Q(v' D) where D is a positive rational square-free integer. ¢y is the ring
of integers of K.

§1.
At first we give the following necessary and sufficient condition for

the class number of K to be one:

THEOREM 1. It is a necessary and sufficient condition for the class
number of K to be one that for any integers «, 8 of K, («/B, Bla & Ox), there
exist two integers &,7 of K such that
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(1) 0 <|N(a — )| < |NB|.
For the proof of Theorem 1, we need the following

LEmMA 1. If the class number of K is bigger than one, there exist an
indecomposable integer = and an integer o of K such that

(2) a = oy, nla, tfa;, o, €0, i=12.

Proof. If the class number of K is bigger than one, there is an
integer @ of K such that

O =TTty *++ T = 010y * ** Oy,

where 7,, 1 < i< k), and 0,, (1 <j < £), are distinct and indecomposable
integers. Put = = r,, then nfs,, (1 <j < ¥). Therefore, if zfa, - - - 7,, then
a, =0, and &, = g, - - - g, satisfy (2). If z|o,- - - g,, then there exists a natural
number m, 2 < m < ¢ — 1), such that =|¢,0,,, - -0, and #fo,,, - o,
Then «, = 0,, and o, = 0, - - - 0, satisfy (2).

Proof of Theorem 1. Sufficiency: Suppose that the class number of
K is bigger than one. By Lemma 1, there exist an indecomposable integer
7 and an integer « of K which satisfies (2). Let @« = 14 be the integer such
that the norm is the smallest among those integers satisfying (2) where
z is fixed. By the assumption of Theorem 1, there exist two integers & and
7 of K such that

|M@#é — 29)| <|Nz|,  |[N(=& — )| <|Na|.

Here, put g = n& — 2y, then z|pd, zfp, nf4 and |N(ud)| < |N(@24)|. This
is a contradiction.

Necessity: Let «, 8 be two integers of K such that «/B & Ok, Bla & 0.
Here, we consider two ideals («) and (f). Put (y) = (@, p), then (o) = (P(),
® = (1)(B,) and (a, f) = 1. There exist integers ¢ and » of K such that
s — By = 1. Then we have

|Mag — )| = |Ny| <|NB| .

DeriNrTION. Let «/8 be any fraction in K such that «/f e 0 and g/«
¢ 0. Then, we call «/p storend if there exist no integers &,y of K such
that 0 < [N(«/p-& — p)| < 1.

According to this definition, Theorem 1 is also expressed as follows:
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TurorREM 1. It is a necessary and sufficient condition for the class
number of K to be one that there exist no stérend fractions in K.

Lemma 2. 1°. If «/B is storend, then for any integer & of K, a/f + &
and «fB-£ (2 Ok) are also stérend.
2°. Any rational fraction a/b (¢ Z) is not storend.

Proof. 1° is obvious by the definition.
To prove 2°, put ¢ = bg + r, 0 <r < b. Then we have

0< N(@b—q=rb*<1.

ProrositioN 1. If the class number of K is not equal to one, then there
exists a storend fraction (@ — 9)[p such that 0 < a < p, where p is a rational
prime and

o li2iD— (D =1mod4),
vD (D= 2,3mod4).

Proof. If the class number of K is not equal to one, then by Theorem
1’ there is a stérend fraction «/f in K. Here, we rationalize the denomi-
nator of @/f. Then we have a storend fraction (A + C9)/p, where A, C,p
€Z, (A, C,p) =1 and p is a rational prime, by Lemma 2. Furthermore
we can take C such that (C,p) = 1. Therefore, there exist two rational
integers x and y such that Cx — py = —1. Hence (A + CY)/p-x — yI =
(Ax — 9)[p is a storend fraction by Lemma 2. Let a be a rational integer
such that Ax =a(modp) and 0 < a <p, then (a — Y/p is a desired
fraction.

Hereafter we put D = 1 + 4m when D = 1 (mod 4).

ProrosiTioN 2. If a fraction (a — 9)/p is storend and 0 < a < p, then
we have
{«/7n— (D =1mod4),
J - g—
wa)) (D =2,3mod4).
Proof. Since the absolute value of the norm of any stérend fraction
is not smaller than one, we have
P—a— D =1mod4),
P < IN@ — 9)| = {‘“ a-ml (D=Tmodd
la® — D (D=2,3mod4).

Hence
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' —a+a+m<m (D=1mod4),
P=1-¢+D<D (D=2 3mod4),

since 0 < a < p.
Proposition 1 is modified by Proposition 2 as follows:

ProposITION 3. If the class number of K is bigger than one, then there
exists a storend fraction (a — 9)[p such that p is a rational prime and

vm (D=1mod4),

0< <vm
—a<p‘{«/1) (D = 2,3 mod 4) .

We next consider the condition for a fraction (@ — 9)/p of K not to
be storend.

ProrosITION 4. If N(a — 9) is relatively prime to p or if there exists
a rational integer k such that |N(a + kp — 9)| < p?, then (a — /p is not
storend.

Proof. If N(a — 9) is relatively prime to p, then there exist rational
integers x and y such that N(e — 9)-x — yp = 1. Then we have

a— 39 1

(a—g)x——y=_,
b

where 9 denotes the conjugate of 9 in K. Hence, (¢ — 9)/p is not stérend
by Lemma 2.

If |N(e + kp — 9| < p?, then (@ + kp — 9)/p is not stérend. Therefore
(@ — 9)/p is not stérend.

From Proposition 3 and Proposition 4, we obtain immediately a cri-
terion for the class number of a quadratic field K = Q(+ D) to be one:

THEOREM 2. Case 1. D =1 (mod4), (D =1+ 4m).
If, for any given rational prime p such that 1 < p < /' m and for any given
rational integer a such that 0 < a < p, either N(a — 9) is relatively prime
to p or there exists a rational integer k such that |N(a + kp — 9)| < p?, then
there exists no storend fraction in K, and hence the class number of K is
equal to one.

Case 2. D = 2,3 (mod 4).
If, for any given rational prime p such that 1 < p < + D and for any given
rational integer a such that 0 < a < p, either N(a — 9) is relatively prime
to p or there exists a rational integer k such that |N(a + kp — 9)| < p*, then
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there exists no stérend fraction in K, and hence the class number of K is
equal to one.

CorOLLARY. In case of D=1 (mod4), (D =1+ 4m).
1°. If —x*+ x + m is a rational prime for any rational integer x such
that 1 < x <+ m — 1, then the class number of Q(v D) is equal to one.
2°. If m is odd and if (D[{) = —1 for any rational prime ¢ such that 2 <
¢ < v'm, then the class number of Q(v D) is equal to one.

Proof. 1° is trivial by Theorem 2, Proposition 3 and Proposition 4.
2° is proved as follows: If p = 2 then a = 0,1 and N(a — 9) = m is rela-
tively prime to p. If p > 2, then (D/p) = —1. On the other hand,

N(@ — 9) = 0 (mod p) < D = (2a — 1)’ (mod p) <= (D/p) % —1.

Therefore N(a — 9) is relatively prime to p. Hence the class number of
Q(v D) is equal to one by Theorem 2.

Remark. There exist following nine values of D smaller than 2,000
which satisfy the assumption of Cor. 1° or 2°:

D =5, 13, 21, 29, 53, 77, 173, 293, 437 .

§2.

In this section we investigate a quadratic number field @(v D) whose
genus number is one.

Lemma 3. Case 1. D=1 (mod4), (D =1+ 4m).
For any rational prime p and any rational integer a such that 0 < a <
(p — /2, (a — 9)|p is storend if and only if (p + 1 — a — I|p is storend.
Case 2. D = 2,3 (mod 4).
For any rational prime p and for any rational integer a such that 1 < a <
(p — /2, (a — I|p is storend if and only if (p — a — I[p is storend.

Proof. Case 1. Since N(s + t3) = N(s + t — t9), we have

Nl(a — Hlp-(s + tH + u + v9)
=Mp+1l—a—9)pG6+t—tH—(G6+t+u+uv)+ ¢+ v)9).
Therefore, lemma is obtained from Lemma 2.

Case 2. Since N(s + t3) = N(—s + t9), we have

N — Pfp-(s + tH + u + v9)
=Np-—a—PDp-(+tH—-s—u+ ¢+ v)9.
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Therefore, lemma is obtained from Lemma 2.

ProposiTioN 5. Case 1. D = ¢ =1 (mod4) prime', D=1+ 4m).
Let p be any rational prime such that 1 < p < 4/ m, and suppose that frac-
tions (@ — 9/p, 0 < a < p, are not stérend except at most one. Then all
of them are not storend.

Case 2. D = q or 29, q = 3 (mod 4) prime.
Fractions (@ — 9)/2, a = 0, 1, are not stérend. Let next p be any rational
prime such that 2 <p < 4 D, and suppose that fractions (@ — 9)p, 0 < a
< p, are not storend except at most one. Then all of them are not storend.

Proof. Case 1. Since p< 4/ m < D, we have ptD ie. (DJp) + 0.
Hence, if there exists a rational integer a such that N(a — 9) = 0 (mod p)
and 0 < a < p, then there exist two rational integers a such that N(a — 9)
=0(modp) and 0 < a <p. From the assumption of Proposition 5 and
Lemma 3, both of two fractions (¢ — 9)/p are not stérend for such two
values of a.

Case 2. In case of p = 2, it is well-known (Perron [2] p. 109) that the
Diophantine equation x* — Dy* = +2 is solvable when D = g or 2q where
q is a rational prime such that ¢ = 3 (mod 4). From this fact, it is easy
to prove that fractions (@ — 9)/2, a = 0,1, are not stérend. In case of
p > 2, lemma is proved similarly to Case 1.

Table 1

K=QWD), D=¢ =1+ 4m prime, p prime s.t. 1 < p < v m, h class
number of K (¥) means the effect of the criterion (Theorem 2, Propo-
sition 5) by 0

D \|m P —Na—-9=—-a*+a+m x| A
a=1 2 3 4 5 6 7 8 9

5| 1 01
13| 3 01
17| 4 2 4 2 0|1
29 | 7 2 7 0|1
3711 9 2,3 9 T 3 01
41 | 10 2,3 10 8 4 -2 011
53 | 13 2,3 13 11 0 1

https://doi.org/10.1017/5S0027763000018961 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018961

QUADRATIC NUMBER FIELD

Table 1 (continued)
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D\ m p —Na—-9=—-ad+a+m | A

61 | 15 2,3 15 13 9 3 0|1

73 | 18 2,3 18 16 12 6 —2 0|1

89 | 22 2,3 22 20 16 10 2 01

97 | 24 2,3 24 22 18 12 4 —6 1
101 | 25 2,3,5 25 23 19 13 5 01
109 | 27 2,3,5 27T 25 21 15 7 -3 0|1
113 | 28 2,3,5 28 26 22 16 8 -2 01
137 | 34 2,3,5 34 32 28 22 14 4 1
149 | 37 2,3,5 37 38 31 25 17 7 -5 0|1
157 | 39 2,8,5 39 37 33 27 19 9 -3 01
161 | 40 2,8,5 40 38 34 28 20 10 —2 01
173 | 43 2,8,5 43 41 37 31 0|1
193 | 48 2,8,5 48 46 42 36 28 18 6 —8 1
197 | 49| 2,3,5,7 49 47 43 37 29 19 7 01
229 | 57 | 2,8,5,7 57 55 51 45 37 27 15 1 —15 3
233 | 58 | 2,8,5,7 58 56 52 46 38 28 16 2 —14 0] 1
241 | 60 | 2,3,5,7 60 58 54 48 40 30 18 4 —12 1
257 | 64 | 2,8,5,7 64 62 58 52 44 34 22 8 -8 3
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