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Abstract

The calibration of probability or confidence judgments concerns the association between the judgments and some
estimate of the correct probabilities of events. Researchers rely on estimates using relative frequencies computed by
aggregating data over observations. We show that this approach creates conceptual problems, and may result in the
confounding of explanatory variables or unstable estimates. To circumvent these problems we propose using probability
estimates obtained from statistical models—specifically mixed models for binary data—in the analysis of calibration. We
illustrate this methodology by re-analyzing data from a published study and comparing the results from this approach
to those based on relative frequencies. The model-based estimates avoid problems with confounding variables and
provided more precise estimates, resulting in better inferences.
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1 Introduction

There is a substantial literature about the quality of prob-
ability and confidence judgments (see Erev, Wallsten, &
Budescu, 1994; Griffin & Brenner, 2004; Harvey, 1997;
Kahneman, Slovic, & Tversky, 1982; Keren, 1991; Mc-
Clelland & Bolger, 1994; Murphy & Winkler, 1992;
Wallsten & Budescu, 1983). A specific property of the
probability judgments—their calibration—has been ac-
cepted as the “common standard of validity” in the em-
pirical literature (Wallsten & Budescu, 1983). Judgments
are said to be calibrated if p(100)% of all events that
are assigned a subjective probability of p materialize.'
This paper focuses on some conceptual and methodolog-
ical problems associated with standard calibration anal-
yses. After reviewing some of the problems associated
with this approach we propose and illustrate an alterna-
tive model-based approach to assess the calibration of
probability judgments that overcomes these problems.

Both authors contributed equally and the ordering is alphabetical.
This work was supported, in part, by the Intelligence Advanced Re-
search Projects Activity (IARPA) via Department of Interior National
Business Center contract number D11PC20059. The views and con-
clusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of IARPA, Dol/NBC, or the U. S.
Government.

*Department of Psychology, Fordham University, Dealy Hall,
411 East Fordham Road, Bronx, NY, 10458, USA. Email: bude-
scu@fordham.edu.

TDepartment of Statistics, University of Idaho.

I'This analysis is applied to future events whose occurrence is un-
known and depends on external sources (e.g., “What is the probability
that the market will move by 4% tomorrow?”), and factual events about
which the judges may be uncertain because of imperfect or incomplete
information (e.g., How confident are you that the population of Chile is
larger than Peru’s?). We do not distinguish between the two.

1.1 Calibration

We define calibration in terms of individual judgments
concerning individual events. Let E;; denote the j-th
event for which the ¢-th judge gives a confidence judg-
ment, C;;. Calibration concerns the relationship between
the judgment C;; and the probability of E;;. There are
two distinct types of calibration, depending on how the
probability of the target event is defined (see Budescu,
Erev, & Wallsten 1997; Budescu, Wallsten, & Au, 1997,
Murphy & Winkler, 1992; Wallsten, 1996). One type
concerns the conditional probability P(E;;|C;; = c).
A judge is calibrated if P(E;;|C;; = ¢) = c for all
c. This means that the probability of the event is ¢
when the judge assigns to it a confidence judgment of
c. There are two ways of defining miscalibration or
over/underconfidence (Harvey, 1997). The most preva-
lent definition pertains to the judge’s ability to distinguish
between true and false events and it is usually applied in
forced choice tasks. According to this view, a judge is
overconfident if P(E;;|C;; = ¢) < cand ¢ > 0.5, or
P(E;;|Ci; = ¢) > cand ¢ < 0.5. A judge is considered
to be underconfident if P(E;;|C;; = ¢) > cand ¢ > 0.5,
or P(E;;|C;j = ¢) < cand ¢ < 0.5 (see Wallsten, Bude-
scu, & Zwick, 1993). A second definition captures the
judge’s confidence in the truth of an event. Thus overcon-
fidence and underconfidence are implied by the inequal-
ities P(Eij\Cij = C) < cand P(Eij|Cij = C) > ¢,
respectively. The (mis)calibration of judgments is of-
ten summarized by a ‘“calibration curve” which plots
P(E;;|C;; = c) as a function of c.

A second type of calibration concerns the marginal
probability P(E;;). A judge is calibrated if P(E;;) =
Cij. If we consider the calibration of judges on aver-
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age, then this could be viewed as a reversal of the condi-
tioning argument in the previous definition, in the sense
that one is calibrated if E(C;;|P(E;;) = p) = p so that
when the probability of the event is p, the expected judg-
ment is also p. This type of calibration can be visualized
by plotting C;; against P(E;;) as a type of “reversed”
calibration curve where the axes are interchanged. This
definition is used often in studies of Bayesian updating
where the events’ probabilities result from a known pro-
cess of random generation (see Erev, Wallsten, & Bude-
scu, 1994). A judge is overconfident when C;; > P(E;;)
and P(E;;) > 0.5, or C;; < P(E;;) when P(E;;) <
0.5. Underconfidence occurs when C;; < P(E;;) when
P(EZ]) > 0.5, or Cij < P(E”) when P(E”) < 0.5.

Ideally, one would like to quantify the quality of the
judgment provided by any specific judge for any given
event. However, traditional calibration analysis is usually
performed at the group level and across multiple events
since the conditional probabilities, P(E;;|C;; = c),
or the marginal probabilities, P(E;;), are typically un-
known. To estimate P(F;;) one computes the proportion
of observations in a subset of observations for which the
event occurs. To estimate P(E;;|C;; = c), one computes
this only for those observations that were assigned a judg-
ment of c. These probability estimates are then used to
assess calibration. For example, calibration curves plot
pe against ¢ where p, is an estimate of P(E;;|C;; = ¢),
which is usually the proportion of observations where the
event occurs when the judgment is c. Calibration can then
be measured, for example, using the calibration index

Zc Ne(Pe — C)2
Zc Ne ,

where n. is the number of observations aggregated to es-
timate p, when the judgment is c. For calibration based
on marginal probabilities researchers use simple global
measures such as p — ¢, [p — ¢ and (p — ¢)? where p is
a relative frequency and ¢ is the average confidence judg-
ment.

The use of relative frequencies is justified by the im-
plicit assumption that the events being aggregated form
an equivalence class so that all events in a given aggre-
gated set have a common (conditional) probability. In
cases where the observations are not replications of the
same process, or not sampled from the same domain, this
assumption may be questionable. For example, it may
be misleading to combine weather forecasts of different
forecasters operating at different locations, as it would
be inappropriate to aggregate financial forecasts made in
various countries. The practice of combining judgements
of many participants regarding general knowledge items
from various domains selected arbitrarily, which has been
used in many psychological experiments, has been criti-
cized on similar grounds (Gigerenzer, Hoffrage & Klein-
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bolting, 1991; Juslin, 1994; Juslin, Winman & Olsson,
2000; Winman, 1997). Next we review some important
conceptual and statistical concerns over group-level anal-
ysis of calibration based on aggregated data.

1.2 Conceptual concerns

The quality of subjective/personal judgments regarding
unique/non-repeatable events relies on a comparison of
these judgments with relative frequencies aggregated
across multiple judges, events and occasions. Paradox-
ically, the standard of calibration for subjective proba-
bilities is based on a frequentist approach to probability.
Given the diametrically opposed views held by these two
schools of thought, this state of affairs should be equally
disturbing to all researchers regardless of their stand on
the question of the “proper” interpretation of probability
(Keren, 1991; Lad, 1984). Another concern is the insen-
sitivity of calibration analysis to individual differences.
Researchers (e.g., Gigerenzer et al., 1991; Juslin, 1994;
Winman, 1997) have argued that some empirical results
are artifacts due to biased selection of events. A simi-
lar argument can be made with respect to the selection of
judges. The degree of miscalibration in any study is de-
termined, in part, by the expertise of the participants in
the domains of interest. Judges who vary in knowledge
or expertise may lead researchers to reach different, pos-
sibly conflicting, conclusions.

1.3 Statistical concerns

The analysis of calibration based on aggregated observa-
tions also has several statistical problems. First, if the
subsets of observations used to produce relative frequen-
cies are not sufficiently large, the estimated probabilities
will be unstable. This undermines the power and pre-
cision of statistical inferences based on these estimates.
To avoid this problem researchers aggregate observations.
But this leads potentially to a second problem, as this may
require one to aggregate data over important character-
istics of the judges, events, and/or circumstances under
which the judgments were elicited. Confounding vari-
ables may distort the apparent relationship between the
probabilities and these variables. This problem is well-
known in statistics and can lead to such phenomenon as
Simpson’s Paradox (Simpson, 1951) or the Ecological
Fallacy (Robinson, 1950). A standard solution to this
problem is to avoid aggregation by conditioning on the
relevant variables using a statistical model.
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2 A model-based approach to esti-
mating probabilities

To simplify notation, let ﬂfjc-) = P(E;;|C;; = ¢) and
mi; = P(E;;), where 7 (still) indexes the judges, j the
events, and ¢ a given confidence level. We propose es-
timating 7r§j.> and m;; with regression models. Since the
outcome (the event) is binary, a natural family of statisti-
cal models is generalized linear mixed models for binary
variables (see Pendergast, Gange, Newton, Lindstrom,
Palta, & Fisher, 1996; Guo & Zhao, 2000). This includes
mixed logistic regression models, and extensions thereof.

These models are of the form:

7T’L(jc) = f(ﬂ7b“0”) and T = g(ﬂabz)a

where 3 is a vector of parameters representing the effects
of explanatory variables that characterize the events or
circumstances of the judgments, b; is a vector of random
judge-specific parameters to allow for individual differ-
ences, and f and g are inverse link functions that map the
parameters into probabilities.” Note that 71'2(;) is a function
of ¢;;, since the probability is conditional on the confi-
dence judgment, whereas m;; is a marginal probability.
Appendix A gives further details on model notation and
specification, and the next section provides specific ex-
amples. We propose a three steps process:

(e)

1. Specify a mixed model for 7;;" and/or ;; to pro-

duce the estimates ,@ and b;.

2. Estimate the event probabilities as 7

ij
f(B,bi,cij) and/or 7t;; = g(B, by).

3. Use the estimated probabilities, ﬁg?) and/or 7;;, to

assess the calibration of the observed judgments, c;;.

Most models can be estimated using standard statisti-
cal packages for generalized linear mixed models. We
used PROC GLIMMIX in SAS/STAT, Version 9.2 (SAS,
2008). Appendix B gives syntax examples of how to im-
plement these models with software. The specification of
a model is an important issue since this approach relies
on having valid estimates of the probabilities. We relied
on the Akaike information criterion (AIC; Akaike, 1974)
to select models, but additional analyses confirmed that
our results were reasonably robust to minor changes in
the model specification.’

2The functions will involve one or more explanatory variables, in
addition to c;;, but these have been suppressed here for simplicity.

3To evaluate the relative fit of our models we relaxed each model
in several ways including introducing higher-order powers of quanti-
tative explanatory variables and interactions among explanatory vari-
ables, including interactions with subjects. By generalizing the models
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Mixed models have already been shown to be useful
in analyses of data from research in judgment and de-
cision making (e.g., Merkle, 2010; Merkle, Smithson,
Verkuilen, 2010; Stockard, O’Brien, & Peters, 2006).
The methodology proposed here can be viewed as an ex-
tension of an approach proposed by Merkle (2010) for
using mixed models to study calibration. Such models
can be used to study systematic trends in data while also
accounting for individual differences. This model-based
approach overcomes the sparseness of the data by ex-
pressing the unknown probabilities as a function of ex-
planatory variables. Instead of relying on relative fre-
quencies from aggregated observations the model pro-
vides estimates for the probability of each event. Thus
the model avoids problems caused by aggregating data.
And by using a parametric model we obtain more precise
estimates of the probabilities than those based on relative
frequencies. In the following section we demonstrate this
approach and contrast it to analyses based on aggregation.

2.1 [Illustrative example

McGraw, Mellers, and Ritov (2004) report two studies in
which subjects gave confidence judgments prior to throw-
ing a basketball at a basket.* In the first study 45 subjects
threw a basketball at a hoop three times from each of 12
locations that varied in terms of the distance to the basket
and side of the court. In the second study 20 subjects
were randomly assigned to a control group, and 22 to
a “debiased” group where they were instructed to avoid
overconfidence. They attempted five shots from each of
seven different distances from the basket along the cen-
ter of the court. McGraw et al. were concerned with the
relationship between judgments of pleasure of the out-
comes to confidence and calibration, but we will focus
only on calibration. The limitations of using relative fre-
quencies to estimate the unknown probabilities becomes
clear when we consider that probabilities may vary over
distance, side of the court, group, and subject. Each sub-
ject made only a few shots from each spot, which is a
too small a number of observations to accurately estimate
probabilities using relative frequencies. But aggregating
across variables, such as distance, can change the results.

far enough in this way we could evaluate the goodness-of-fit fit of our

models by (nearly) saturating the models to evaluate goodness-of-fit, al-

though we relied on using AIC rather than goodness-of-fit tests to avoid

overfitting. Finally we used graphical methods by plotting the aggre-

gated estimated probabilities against relative frequencies to determine

if the model-based estimates agreed with the model-free estimates.
4The authors thank Peter McGraw for providing the data.
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Figure 1: Estimated calibration curves from (a) model-based probability estimates and (b) relative frequencies for
the first basketball study. Smooth curves in (a) are mean calibration curves, averaged over subjects. Open points are
mean estimated conditional probabilities for each distance and confidence value. Closed points are mean estimated
probabilities for each confidence value, averaged over distance.

@

estimated probability

confidence

2.1.1 Analysis based on conditional probabilities

(e)

First we consider the conditional probabilities, 7;;". For
the first study we used the model
logit(m{) = [y + BiDISTANCE,; +
Bologit(c;;) + bio, (D

where logit(z) = In[z/(1 — z)], DISTANCE;; is the dis-
tance (in inches) to the basket, and c¢;; is the confidence
judgment. It is convenient to transform the probabilities
and judgments to log-odds since the model is linear on
the log-odds scale, and furthermore when 3y = 31 = 0,
Bo = 1, and by = O then logit(ﬂgf)) = logit(c;;) and

thus W@

i;j = Cij» implying perfect calibration.> Thus
the parameters capture miscalibration due to different
sources. The discrepancy between the confidence judg-
ment and the conditional probability are represented by
Bo and s, the effect of distance by (1, and b;y is a
subject-specific effect. For the second study we specified
a similar model but added an effect for the experimental

manipulation so that

logit(n\?') = By + BiDEBIAS; + 3,DISTANCE,; +

ﬂglogit(cij) + bio )

SWe set cij = 0.0l or ¢;; = 0.99if ¢;; was 0 or 1, respectively.
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(b)

relative frequency

confidence

where DEBIAS; is a binary variable that indicates if the
i-th subject was in the debiased group.

Figure 1a plots the estimated calibration curves based
on the model in Equation (1). The smooth curves are
the mean calibration curves. The open points are mean
values of 71'1(;) grouped by distance and confidence judg-
ment. The model confirmed a significant effect for dis-
tance (Bl = —0.007, z = —5.61, p < 0.001) which can
be seen clearly in the figure: as distance increases, the
judges tend to be more overconfident. Figure 2a shows
the estimated calibration curves for each distance and
group for the second study based on Equation (2). The
plot is constructed like Figure 1 but the data are condi-
tioned also on group. Again distance had a significant ef-
fect (32 = —0.01, z = —9.24, p < 0.001). However nei-
ther the manipulation (Bl = 0.12, z = 0.61, p = 0.54)
nor the effect of the confidence judgment (Bg = —0.07,
z = —1.24, p = 0.21) were significant. The lack of
apparent effect for the confidence judgment might seem
surprising, since it implies flat calibration curves. How-
ever it is reasonable that after accounting for distance and
the subject, that the judgments themselves would not pre-
dict the outcome. In both Figures 1 and 2 the solid points
are the mean values of the estimates of wz(;), grouped by
confidence judgment and aggregated over distance. This
average curve is notably steeper than the estimated cal-
ibration curves for each distance. Again the pattern of
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Figure 2: Estimated calibration curves from (a) model-based probability estimates and (b) relative frequencies for
the second basketball study. Smooth curves in (a) are mean calibration curves, averaged over subjects. Open points
are mean estimated conditional probabilities for each distance, group, and confidence value. Closed points are mean
estimated probabilities for each group and confidence value, averaged over distance.
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over- or underconfidence is highly dependent on whether
or not one controls for distance.

Figure 1b and 2b are similar to Figures la and 2a, re-
spectively, but based on relative frequencies. The open
points are relative frequencies from aggregating observa-
tions for each distance and confidence judgment. The rel-
ative frequencies aggregated within distances are highly
unstable. The closed points are relative frequencies based
on aggregating observations across distances.® These are
more stable, but averaging over distance ignores the ef-
fect of distance on confidence. The model-based ap-
proach provides more stable estimates of the probabilities
without ignoring or obscuring the effects of variables.

5They correspond to Figures 3 and 6, respectively, in McGraw et al.
(2004).
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One significant benefit of using a mixed model is that it
can also account for individual differences in calibration
as well as systematic effects due to explanatory variables
such as distance and treatment group. In Equations (1)
and (2) these individual differences are modeled through
the subject-specific effect represented by b;o. The ef-
fect of this parameter can be seen graphically by plotting
the estimated calibration curve for each subject, for each
given distance, as shown in Figure 3. As can be seen in
the plot, there is considerable variation across subjects in
the calibration curves. The variance of b,y was estimated
at approximately 0.25, with a standard error of 0.09. It
is useful to note here that one could also permit variabil-
ity across subjects in the slope of the calibration curve,
on the log-odds scale, by adding the term 3;11ogit(c;;) to
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Figure 3: Estimated subject-specific calibration curves for the first basketball study. The light grey curves represent
the estimated curves for each of the 45 subjects, at each distance. The black curves are the mean calibration curve at

each distance.
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(1) or (2), although this did not improve the fit of either
model here.

The lack of a significant effect for the experimental
manipulation might appear to contradict the analysis by
McGraw et al., but their analysis ignores the effect of dis-
tance, whereas our analysis controls for it. But the ma-
nipulation may also have influenced the judgments.” To
assess the effect of the manipulation on calibration, we
examined its effect on the joint distribution of the judg-
ments and the estimated probabilities—specifically the
distribution of the discrepancy between them. We com-

puted (frl(jc) — ¢;j)% and used it as the response variable in
a mixed effects linear model. The main effect for group
was significant (F(1 1416) = 9.07, p = 0.003), showing
better calibration indices for the debiased group. The ef-
fect for distance was also significant (F(g,1416) = 5.17,
p < 0.001), but the interaction between group and dis-
tance was not (Fg 1416y = 0.82, p = 0.55). Figure
4 shows the means and distributions of the logs of the
discrepancy measure as a function of distance by group.
A similar analysis based on the relative frequencies did
not show a significant effect for group (F(1 615y = 2.42,
p = 0.12), most likely due to the greater variability of the
indices computed from relative frequencies based on few
observations.

7 A reviewer noted that another limitation of aggregating data is that
the aggregation may also be over judgments, which would preclude
analyses sensitive to variables influencing the distribution of judgments.
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2.1.2 Analysis based on marginal probabilities

Next we estimated the marginal probabilities, 7;;. For the
first study we specified the model

Bo + bio + (B1 + bi1)DISTANCE,; +
B,LEFT;; + 3sRIGHT;;. (3)

logit(mj ) =

We include the effects of side of the basket with indica-
tor variables, and an additional judge-specific effect for
distance, b;;. These effects were not used in the model
for the conditional probabilities because they did not im-
prove the fit of the models. To estimate the marginal
probabilities in the second study we used the model

o + B DEBIAS; +
B2DISTANCE;; + byg. (4)

logit(i;) =

These models provide for an interesting new analysis by
“reversing” the traditional calibration curve to examine
the conditional distribution of the confidence judgments
given the (estimated) probabilities. This is possible only
because the models provide estimates of the probability
for each observation. This is not possible, or at least can-
not be done as finely, by aggregating observations for rel-
ative frequencies. Figures 5 and 6 depict the mean con-
fidence judgments and their confidence intervals, condi-
tional on the estimated probabilities, for the first and sec-
ond study.

We grouped the confidence judgments by the corre-
sponding marginal probability estimate, rounded to the
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Figure 4: Mean and distribution of calibration indices (log scale) from model-based probability estimates for each

group and distance for the second basketball study.
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Figure 5: Mean confidence judgments for each side, distance, and estimated marginal probability for the first basketball
study. The marginal probabilities have been rounded to the nearest tenth. The error bars represent 95% confidence

intervals.

confidence

estimated probability

nearest tenth. The plots appear to indicate some tendency
to overestimate the probabilities, particularly at shorter
distances, when shots were attempted at the center of the
court in the first study, and more so in the control group
than in the debiased group in the second study.

To further examine apparent trends in the miscalibra-
tion of the judgments based on the marginal probabili-
ties, we analyzed the discrepancy measure c;; — ;. Fig-
ures 7a and 8a show the means and distributions of the
miscalibration measures by distance and location for the
two studies. These plots also show the trends we ob-
served in Figures 5 and 6. Statistical analyses confirmed
the trends. In the first study there was a significant in-

https://doi.org/10.1017/51930297500004277 Published online by Cambridge University Press

teraction between side and distance (F(g,1564) = 6.17,
p < 0.001). The tendency to overestimate the probabil-
ity decreased with distance when shooting from the side,
but the trend is curvilinear when shooting from the cen-
ter. For the second study we found significant main ef-
fects for both distance (Fig,1416) = 4.01, p = 0.005)
and group (F(1,1416) = 8.97, p = 0.003), but not their
interaction (g 1416) = 1.88, p = 0.08). When control-
ling for distance, the analysis reveals a significant effect
for the debiasing manipulation. It significantly improved
calibration overall.

To compare these analyses with a model-free approach
based on the raw data, we analyzed the discrepancy
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Figure 6: Mean confidence judgments for each group, distance, and estimated marginal probability for the second
basketball study. The marginal probabilities have been rounded to the nearest tenth. The error bars represent 95%

confidence intervals.
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Figure 7: Mean and distribution of calibration measures from (a) the model-based probability estimates and (b) the
raw data, for each side and distance, for the first basketball study.

(@)
50 150 250
) Y I I I | l L 11
left center right
1.0 -
0.5 =
c
Ke]
8 i L
__§ 0.0
©
o
_05 — | -
-1.0 -
rr1r1r1r1r1r1rrr 1117 1 1T 1T 17T
50 150 250 50 150 250

distance (in)

measure ¢;; — I(E;;), where I(E;;) indicates whether
event F;; (a basket) occurred. We used ¢;; — I(E;;)
rather than aggregating observations to estimate 7;; since
E[Cij — I(EZ)] = E(Cz‘j) — Tij. Figures 7b and 8b
show the means and distributions for this measure for
the first and second study, respectively. Note the greater
variability of this measure. This instability hinders sta-
tistical analyses. We failed to detect a significant inter-
action (Fg 1564y = 1.23, p = 0.29), main effect for
distance (F(3 1565y = 1.85, p = 0.14), or main effect
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for side (F(2,1564y = 1.06, p = 0.35). For the sec-
ond study we confirmed significant main effects for the
manipulation (F1,1416y = 8.97, p = 0.003), distance

(F(6,1416) = 4.01, p = 0.001), but not the interaction
(F(6,1416) = 1.88, p = 0.081). While both analyses
estimated the same mean difference of the calibration

measure between the control and debiased groups (0.11),
the standard error was approximately 30% larger than
in the analysis using the model-based probability esti-
mates. While it is possible to analyze calibration based on
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Figure 8: Mean and distribution of calibration measures from (a) the model-based probability estimates and (b) the
raw data, for each group and distance, for the second basketball study.
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the marginal probabilities without aggregation, a model-
based approach can provide more stable estimates and
thus more precise inferences.

3 Discussion

We have argued and demonstrated with examples that the
standard calibration analysis has significant limitations.
Conceptually it is inconsistent because it makes relative
frequencies the standard of evaluation of the judges’ sub-
jective probabilities. Statistically it is problematic be-
cause it can lead to biased estimates when aggregation is
over important variables, and imprecise estimates when
aggregation is over too few observations.

We proposed and demonstrated the use of mixed mod-
els for binary data to estimate the probabilities of spe-
cific events for the purpose of analyzing the calibration
of specific judges. With a good model, one can estimate
the probabilities of individual events accurately, without
resorting to indiscriminate data aggregation. Instead of
comparing the judgments to a set of relative frequencies
our approach uses probabilities derived from a model that
captures empirical regularities, and incorporates relevant
individual differences. Thus the standard of comparison
for any given event is personal, as it is explicitly tailored
to each judge. This fact addresses, at least in part, the
conceptual concern about using a frequentist analysis to
estimate the quality of subjective judgments. We demon-
strated that the model-based approach provides superior
results in that it can address issues of confounding ex-
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planatory variables while providing more precise proba-
bility estimates which translate into higher precision and
power in statistical inferences, and allows new informa-
tive analyses (e.g., “reverse calibration” curves) and at
different levels (individual events and judges), which are
not possible in the traditional approach.
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Appendix A: Model Parameteriza-
tion

We introduced a model-based approach to estimating the
conditional and marginal probabilities by using the gen-
eral models 775]6-) = f(B,bi,ci;) and m;; = g(B,b;),
respectively. In this appendix we discuss in more detail
how these models might be specified. A common param-
eterization is the generalized linear mixed model

h(ﬂ'Z(JC)) :xgjﬁ+z§jbi or h(’/Tij) :X;jﬂ+Z2jbi,

where h is a link function, such as the log-odds or “logit”
as we used, x;; and z;; are vectors of observed design
variables and covariates corresponding to the fixed and
random effects, respectively, 3 is a vector of unknown pa-
rameters, and b; is a random vector of unknown subject-
specific parameters. In the first model the probability 771(;)
is conditional on the confidence judgment, so x;; and

possibly z;; will contain c;;, or some function of thereof.
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We showed that it is convenient to use the logit link func-
tion so that this function is h(c;;) and thus the parameters
B and b; capture miscalibration. The random subject-
specific parameters are assumed to have a specified dis-
tribution, such as a multivariate normal distribution such
that all b; are independently and identically distributed as
N(0, X)), which is what we assumed in our analyses.

An alternative parameterization is to write the model
as a multilevel or hierarchical generalized linear model
as described in, for example, Goldstein (2010) and Rau-
denbush and Bryk (2001), respectively. Here we can
write the 2-level multilevel model in two stages where
the level-1 within-subjects model is

h(ﬂ'l(jc)) = V;j(si or h(ﬂ'ij) = V;j(si,

and the level-2 between-subjects model is §; = I'w; +u;,
where v;; and w; are vectors of observed design vari-
ables or covariates that vary within subjects or between
subjects, respectively.® For estimating wz(;) the vector
v,; would contain h(c;;). This model can be written in
the mixed model parameterization given earlier by sub-
stituting the level-2 model for ¢; into the level-1 model,
although note that in some cases some of the elements
of &; will be fixed so that u; has a degenerate distribu-
tion in which case b; is a sub-vector of u;. To give a
concrete example of both parameterizations, Equation (2)
can be written as a generalized linear mixed model with
X;j = (1,DEBIASZ‘,DISTANCEU, logit(cij)), ﬁ/ =
(ﬁmﬁl,ﬁg,ﬁg), Zi; = 1, and bz = biO in the general—
ized linear mixed model parameterization, and as v/ ;=
(1, DISTANCE,}, logit(c;;)), w; = (1, DEBIAS;),

Yoo 7Yoi
F = Y10 0 )
Yoo O

and u; = (u40,0,0)" using the multilevel model parame-
terization. Note that the multilevel model is then

7' = 700 + 701DEBIAS, + 1oDISTANCE;; +
’}/QolOgit(Cij) + U0

which is equivalent to Equation (2) except for the change
in notation. The choice of parameterization is largely a
matter of preference and the software used.

There is a fairly large literature on inference based on
generalized linear mixed or multilevel models. Our ap-
proach was to estimate 3 and ¥ using maximum likeli-
hood, approximating the integral in the likelihood using

8We should note that in the multilevel modeling literature it is tradi-
tional to reverse the indices so that i refers to the level-1 unit (trial) and
j refers to the level-2 unit (subject), but we have kept the use of indices
here consistent with our earlier notation.
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adaptive quadrature. Estimates of b; can be obtained us-
ing an empirical Bayes approach. The estimates of frl(jc)
and 7;; are then obtained by replacing 3 and b; by their
estimates in the model. Another potentially useful ap-
proach would be to specify a Bayesian probability model

by specifying a prior distribution for 8 and ¥ to make
inferences concerning the posterior distribution of WZ(;)
m;; using simulation-based methods.

The methodological approach described in this paper
is quite general. One could potentially specify a useful
model beyond the families of generalized linear mixed
or multilevel models described here. For example, one
might find it useful to consider models that are not linear
on the scale of h(wl(;)) or h(m;;), or alternative distri-
butions for the the subject-specific parameters such as a
mixture distribution. All that is necessary is to have a vi-
able statistical model that provides good estimates of the

conditional or marginal probabilities.

or
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Appendix B: Software Implementation

This appendix gives the syntax for PROC GLIMMIX in SAS/STAT, Version 9.2 (SAS, 2008) for estimating the con-

ditional and marginal probabilities (i.e., 775;) and ;;, respectively) for the two studies in McGraw et al. (2004). These
models can also be implemented using the glmer () function in the Ime4 package (Bates, Maechler, & Bolker, 2011)
for R (R Development Core Team, 2011). We have included the corresponding syntax for glmer () for each model
as well. The data are assumed to be in “long-form” where each observation/row in the data file corresponds to a one
trial for a given subject. The response variable result is a binary indicator variable for a successful basket. The
explanatory variables distance, logitc, and debias correspond to DISTANCE;,, logit(c;;), and DEBIAS,;,
respectively, in Equations 1-4. The variable side indicates the side of the basket (left, center, or right) and generates
the indicator variables LEFT;;, CENTER;;, and RIGHT;; as shown in Equation (3). Subjects are identified by id.
(e)

The output variables probc and probm are 7r;;" and 7;;, respectively.

Model 1: Estimating 7TZ(]C ) for Study 1

PROC GLIMMIX Syntax
proc glimmix method = gquad(gmin = 21);
model result = distance logitc /

solution chisqg
link = logit

dist = binomial;
random int / subject = id solution;
output out = studyl pred(ilink) = probc;

glmer () Syntax

modell <- glmer (result ~ distance + logitc
+ (1 | id), data = studyl, family = binomial)
probc <- fitted(modell)

Model 2: Estimating ’/Ti(;) for Study 2
PROC GLIMMIX Syntax

proc glimmix method = quad(gmin = 21);
class debias;
model result = debias distance logitc /
solution chisg
link = logit
dist = binomial;
random int / subject = id solution;
output out = study2 pred(ilink) = probc;

glmer () Syntax

model2 <- glmer (result ~ debias + distance + logitc
+ (1 | id), data = study2, family = binomial)
probc <- fitted(model2)

Model 3: Estimating 7;; for Study 1
PROC GLIMMIX Syntax

proc glimmix method = quad(gmin = 21);
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class side;
model result = distance side /
solution chisqg
link = logit
dist = binomial;
random int distance / subject = id type = chol solution;
output out = studyl pred(ilink) = probm;

glmer () Syntax

model3 <- glmer (result ~ distance + side
+ (distance | id), data = studyl, family = binomial)
probm <- fitted(model3)

Model 4: Estimating 7;; for Study 2

PROC GLIMMIX Syntax

proc glimmix method = quad(gmin = 21);
class debias;

model result = debias distance /

solution chisqg

link = logit

dist = binomial;
random int / subject = id solution;
output out = study2 pred(ilink) = probm;

glmer () Syntax

modeld4 <- glmer (result ~ debias + distance

+ (1 | id), data = study2, family = binomial)
probm <- fitted(modeld)
For making inferences concerning the posterior distribution of WE;-:) or m;;, or functions thereof, we would suggest
using OpenBUGS (Thomas, O’Hara, Ligges, & Sturtz, 2006). For an example we give below one possible way to
specify the probability model corresponding to Equation (1).

model {
for (i in 1:45) {
for (j in 1:12) {

logit (pli, j]1) = betal0 + betal x distanceli, j]
+ beta2 * logitc([i,j] + bO[i]
yli,3] ~ dbern(pli, J])
}
b0[i] ~ dnorm(0, tau)

betal0 ~ dnorm (0, 0.001)
betal ~ dnorm (0, 0.001)
beta2 ~ dnorm (0, 0.001)

tau ~ dgamma (0.001, 0.001)
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