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THE APPLICATION OF THE PRINCIPAL IDEAL THEOREM
TO p-GROUPS

KATSUYA MIYAKE

Introduction

Let p be a fixed prime integer, and G a finite p-group. For a subgroup
H of G, we denote the centralizer of H in G by C,(H). The commutator
subgroup of G is denoted by [G, G]. One of the main results of this
paper is

THEOREM 1. Let A be a normal abelian subgroup of G. Suppose that
(1) G/C4(A) is regular, and that (2) {g)-A is regular for each g G. Then
the exponent of G divides the index [G: AN [G, G]].

Because a p-group of class less than p is regular, we have the follow-
ing theorem as a corollary: Let

KG=GCDOKG)>D. ---DKG>D---
and
Z(G) =1C Z(G)c - CZ, (G)C - -
be the lower and the upper central seﬁes of G, respectively.

THEOREM 2. Let A be a maximal one among normal abelian subgroups
of G which are contained in Z,_(G) N C(K,(G)). Then the exponent of G
divides [G: AN [G, G]l.

If A is as in the theorem, then the center Z(G) = Z(G) of G is a sub-
group of A. Therefore, the index of the theorem certainly divides [G: Z(G)
NI[G, G]l. Hence Theorem 2 is a generalization of the result of Alperin and
Tzee-Nan Kuo [1]. Furthermore, it is best possible since the exponent of
G coincides with the index [G: ANI[G, G]] if G is the irregular p-group
of Blackburn exhibited by Huppert [3, Ch. III, 10.15] with A =[G, G]. In
this case, [G: A] = p* and [G: Z(G)] = p?. (See Ch. 11, § 3 for the detail.)
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To prove Theorem 1, we first calculate the transfer V. ,:G— A of
G to A in Chapter I to see

Voo a(x) = xt6:4] for Vxe G

under the conditions (1) and (2) (Theorem 4). We need a uniqueness basis
of cosets of G/(x)-Cx(A) for each xe G. But the proof of the existence
of such a basis will be shown later in Chapter III, just following the way
of P. Hall [2], mainly because it has its own meaning independent of the
rest of this paper.

Once we have the above formula, then we get, on one hand,

Viocanta.o(®) = ate4nie6l for Vye G
because

VGﬁAn[G,G] = VAaAn[G,G]° VG'HA

as is well known, and because A is abelian. On the other hand, we have

VG—'Aﬂ[G,G] = V[G’,G]-'AOIZG,GJO VG*[G,G] .

The Principal Ideal Theorem, therefore, implies Theorem 1 now at once
because it states that the transfer Vi, ;,; of G to its commutator sub-
group [G, G] is trivial. (See Zassenhaus [7, Ch. V, § 4] for a simple proof,
Also see Huppert [3, Ch. IV, 2.12 Bemerkung], the last sentence of which
is ‘In der Gruppentheorie hat der Satz bisher keine Verwendung gefunden’.)

In Chapter II, we give the applications of Terada’s Principal Ideal
Theorem and of the results of the author in [56]. If G is regular, then
the method of [5] can directly be applicable to obtain the following: Let
G be a regular p-group, and A a normal abelian subgroup. Let pu, >
(e, >+ -+ be the type-invariants of G/A. If G/A is cyclic, then put g, = 0.
Put ¢ =y, and let v be an integer such that v > p,.

TaEOREM 3. The notation and the assumptions being as above, the
following (i) ~ (iii) hold:

(1) 2..(G) DG, A]-2,(A);

(i) 0,.(G)c0,(4)NZ(G);

(i) [2,..(0):1G, A]-2,(A)] = [G: A]- [0 NZ(G): T,.(G).

If G/A is cyclic, then [G, A] = [G, G]. Under the conditions of the
theorem, we have 2,.,(G) D [G, G] in general. We close Chapter II posing
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problems, one of which is whether the index [G: A] divides [2,..(G): [G, G]]
in general or not.

I. The transfers of p-groups under the regularity conditions

1. Let p be a fixed prime integer, and G a finite p-group. Let A be
a normal abelian subgroup of G and V,_., be the transfer homomorphism
of G to A. The centralizer of A in G is denoted by C,(A), i.e.

Ci(A) ={geG|ga = ag for YVaec A}.

Then this contains A because A is abelian. Since A is a normal subgroup
of G, so is C,(A). We show

THEOREM 4. Suppose that (1) G/C;(A) is regular, and that (2) {(g)-A
is regular for each ge G. Then we have

Voo a(x) = xte:4 for Vxe G .
2. We need a few lemmas.

LEmMMA 1. Let x be an element of G. Put H = (x)-C4A), f = [H: A]
and t = [G: H]. Let {g, ---,8) bea set of representatives of G/H. Then
we have

t
Vout) = Il 827877

Proof. For g, h and &’ in G, we have
Agh = Agh/ & h = W mod A

because A is a normal subgroup of G. Therefore each orbit of H in A\G
has exactly f cosets. Furthermore, for g and g’ in G, we have Ag’ = Agh
with he H if and only if g’ = gh’ with A’e H because H contains A.
Hence the t¢-f elements g;-h;,, i=1,---,¢ j=1,---,f, form a set of
representatives of A\G (= G/A) whenever {h,, - - -, h,} represents the cosets
of HIA. Put d =[(x)-A: A] and e = [H:(x)-A]. Then f = d-e. Note
that d is the minimal positive integer such that x? belongs to A. Then
we can choose {h,, - - -, h;} of form

{h;-x*1j=1,---,e; k=0,1,.-.,d — 1}

with 4/ € H because A is a normal subgroup of G. Using the set of repre-
sentatives {g, ;- 2|1 < i<t 1< j<e 0<k<d-—1}of A\G, we have
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VG—»A(x) n n 8- h/ h}""g{’

i=1 j=1

(See Zassenhaus [7, Ch. p. 168], or Huppert [3, Ch. IV, 1.7].) But it is obvi-
ous that H = {(x)-Cy(A) lies in Cy({x> N A). Since x?e{(x) N A, we have
h-x*-h;' = for j=1,---,e. Hence we get V ., (x)= [[i.g x"-g;°!
because d.e = f. Q.E.D.

LemMA 2. For g and a in G, we have

(g-a) =g (g " Vag *-g~ " Pag"* .--g'ag-a).

One can easily see this by induction on n.

Lemma 3. Let g be an element of G, and a of A. Suppose that {g, a)
is regular, and that g™ commutes with a for a power m of p. Then we
have

Proof. By the assumption, (g, a) is regular. Therefore [g, a]™ =
by P. Hall [2, Th. 4.22] or by Huppert [3, Ch. III, 10.6 b)] since g™ com-
mutes with a. As is well known, the commutator subgroup of (g, a) is
generated by [g,a] = g 'a"'ga and its conjugates in (g, a). Therefore
the exponent of the commutator group divides m. Then we have (g '-a)™
= g~™.q™ since (g, a) is regular. The lemma now follows from the
preceding one at once.

3. Proof of Theorem 4. Now suppose that G and A satisfy the con-
ditions (1) and (2) of Theorem 4. Let x be an element of G, and put
H = (x)-C4(A) as above. We need the results of Chapter III, which will
be shown independently from Chapters I and II. Since G/C,(A) is regular,
we can find, by Theorem 8 of Chapter III, a sequence of elements, g, - - -, &.,
of G which satisfy the following condition: For each i(1 <i <), let p;
be the minimal positive integer such that g2 belongs to H. Then ¢ =
t s . = [G: H], and the set of ¢ elements,

g;m_g'gm,,, :n,,; Oéml<#l, 0£m2<ﬂ2,"',0£m,<}11,

is a complete set of representatives of G/H.
Put f = [H: A]. Then by Lemma 1, we have

po=1 p—1

Via(x) = H T g g xS grmigi™ g

me=0 mi=0
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Each g belongs to H = {(x)-Cs(A), and commutes with every element
of (x) N A. Since x/ belongs to (x) N A, each {(g;, x’) is regular by the
condition (2) of Theorem 4. Therefore, we can apply Lemma 3 succes-
sively, and finally obtain

V(%) = xfmomeene — gt
Since f-t = [H: A]-[G: H] = [G: A], we have

Via(x) = xte:41
for an arbitrary element x of G. Q.E.D.

We have actually shown, under the condition (1), that V,_,(x) is
equal to xf%4 as far as (g, x’) is regular for each ge G, where [ =
[(x>-C,(A): A]l. Therefore we have the following three corollaries be-
cause a p-group of class less than p is regular:

CoROLLARY 1. Suppose that the condition (1) of the theorem is satisfied
by G and A. If x’ belongs to Z,_(G), then we have

Voo a(x) = 21941

where [ = [(x)-Cy(A): A] and Z,_(G) is the member of the upper central
series Z(G) =1c Z(G) cZ(G) < --- of G.

CoROLLARY 2. Let G be a finite p-group, and A a normal abelian sub-
group of G. Suppose that G/Cy(A) is regular and that A lies in Z,_(GQ).
Then, for every x c G, we have

Vou(x) = 2547

CoroLLARY 3. Let G be a finite p-group, and A a normal abelian
subgroup of G. If A is contained in Z, (G) N C,(K,(Q)), then, for every
x ¢ G, we have

Vi a(x) = x4

Here K (G) is the member of the lower central series K.(G) = G D K,(G) D
K(G) > - - of G.

COROLLARY 4. Let G be a finite p-group, and H a proper normal sub-
group of G. If the exponent of G/[H, H] is equal to p, then the transfer
V,.x is trivial, that is, V,_,(G) = [H, H].
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Proof. Replacing G and H by G/[H, H] and H|[H, H], we may assume
that H is abelian, and that the exponent of G is equal to p. Then G is
regular. Therefore, we have

Viow(x) = 2471 = 1
for each x ¢ G because H is a proper subgroup of G. Q.E.D.
CororLARY 5. Let G and A be as in Theorem 4, satisfying the con-

ditions (1) and (2). Then the exponent of the commutator subgroup [G, (]
of G divides the index [G: A].

Proof. For every xc [G, Gl, we have
w0 = Vi ,(x) =1
because V,., is a homomorphism of G to the abelian group A. The
corollary 1is, therefore, clear.
ExampLE. Let G be the group defined by
G ={(x,a)
X =a” =1, [a, x] = a”.
We have [G, G] = Z(G) = {a?). The exponent of [G,G] is p. If p >3,
then G is regular. Therefore, we can apply Corollary 5 to G and A = (@),
and see that the exponent of [G, G] actually coincides with [G:A] in this
case. If p = 2 we cannot apply the corollary to G and A as it is. But,

since [G, G] = Z(G), we can also conclude that the exponent of [G, G]
divides [G: A] if we use Corollary 1.

II. The exponents of finite p-groups

1. The Principal Ideal Theorem. Let us state the most general
form of the Principal Ideal Theorem (of group theoretic version).

Let G be a finite group, and p be an endomorphism of G. We define
two subgroups of G by p as follows:

Glpl = <p(g)-g7' |2 G)-[G, GI;
G*[p] = {gcGlo(g)-g7 G, Gl} .
THEOREM. XKer(V,_ g, 2 G*lo) .

For the proof, see Terada [6, § 3] and Miyake [4, §4]. If p is the
identity of G (or any inner automorphism), then we have G[p] = [G, G]
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and G*[p] = G. Therefore, the theorem is just the original Principal Ideal
Theorem in this case.

2. We prove the following theorem, from which Theorem 1 of Intro-
duction is induced as a special case:

THEOREM 5. Let G be a finite p-group, p be an endomorphism of G,
and, Glp] and G*[p] be as above. Let A be a normal abelian subgroup of
G which satisfies that (1) G/C4(A) is regular and that (2) {g)-A is regular
for each ge G. (For example, a subgroup A of Z,_ (G) N C,(K,(Q)) satisfies
(1) and (2).) Then the exponent of G*[p] divides the index [G: A N Glo]].

Proof. Put d = [G: A] and e = [A: AN Glp]]. It is sufficient to show
that x?¢ = 1 for Yx € G*[p]. By Theorem 4, we have x¢ = V,_ (x). Since
A is abelian, we also have V,_ 4 (2% = (x®)4:406eN = g, Therefore,
%% = V. snero(Ve-a(%)) = Vi snero(%), by Zassenhaus [7, Ch. V, Th. 3] or
by Huppert [3, Ch. IV, 1.6]. But Vi_,nei(®) = Vipreaner(Vaor(%)).
Therefore, we have x?¢ = 1if x e G*[p] by the theorem of Section 1 above.

Q.E.D.

CoroLLARY 1. Let G, p, Glp] and G*[p] be as in the theorem. Then
the exponent of G*[p] divides [G: Z(G) N Glp]].

For the proof, apply the theorem to A = Z(G).
If p is the identity of G, then G*[p] = G. Therefore, we have the
corollary to Theorem 1 of Alperin and Tzee-Nan Kuo [1] in this case.

CorROLLARY 2. Let G, p, Glp] and G*[p] be as in the theorem. Suppose
that Glp] is abelian (hence G is metabelian), and that {g)-Glp] is regular
for every ge G. Put p*® = [G: G[p]] and

‘Qa(p)(G) == <g € Glgpﬂ(p) = ].> .

Then 2,,/(G) contains G*[p], and the index [2,,,(G): [G, G]] is a multiple
of [G: Glpll.

Proof. Put A = G[p]. Since G/A is abelian, and so, regular, we can
apply Theorem 5. Then we have G*[p] C 2,,,(G) by the definitions. It is,
therefore, sufficient to show [G*[p]: [G, G]] = [G: G[p]]. Put M = G/|[G, G].
Then p induces an endomorphism of M, which we also denote by p for
simplicity. Define ¢: M — M by (x) = p(x)-x~! for xe M. Then this is
a homomorphism because M is abelian. Therefore, we have
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|M| = [G:[G, G]] = |Ker (#)|-|Im ()] .
But |Ker ()| = [G*[p]: [G, G]] and |Im ()| = [G[p]: [G, G]]. Hence we have
[G*{pl: [G, GT] = [G: [G, GII-[Clol: [G, GII*

= [G: Glp]] . Q.E.D.
3. ExawmpLE. Blackburn’s irregular p-group (cf. Huppert [3, Ch. III,
10.15]).
Let G be the p-group defined by
G={%0a,0, -, a,
x* =al, a’=a=-.--=a)_ =1,

a;-Q; = a;-Q; @Gj=1--,p—1),
[az‘,x]:ai+l (izl,-~',p—-2),
[ap—h x] = al_p .

This is an irregular p-group of class p. We have |G| = p?*’,
G,Gl=2Z, (G)=<al,ay -, 0,
and
Z(G) = K,(G) = <ab) .

Therefore Z,_,(G) N C((K (@) = Z,_(G) = [G, G].
Take A = [G, G]. Then the exponent of G is equal to

pr=[G: Al =[G: ANnI[G, G]].

Therefore, this example shows that Theorems 1, 2 and 5 are best possible.
Note that

[G:Z(G)NI[G,Gll =p? > p°

if p > 3.
Let p be the automorphism of G determined by

p(x):x'ala and p(ai):ai (i:]-”p’—l)'
Then

Glol = G*[p] = <an, a5, - -+, a5 1) .

In this case, therefore, the exponent of G*[p] coincides with the index
[G: AN Glpl]l = p* if we take A = [G, GI.
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4. The application of Hilbert’s Theorem 94 and its generalization
The group theoretic proof of Hilbert’s Theorem 94 and its generaliza-
tion shown in [5] are also applicable by means of Theorem 4 of Chapter I.

LEmMA 4. Let G be a finite group, A be a normal abelian subgroup
of G and 9: G— A be a homomorphism. Let ¢ and + be endomorphisms
of A such that ¢o+ = Yrop. Suppose that the following (i) and (ii) are
satisfied:

(i) 27(1) D¢ (1) w(A),

(i) P(G) C p(A) Ny '(D).

Then [07'(1): o7'(1)-4(A)] = [G: A]-[p(A) N¥'(1): D(G)].
Proof. Put q = [07'(D): ¢ '(1)- v (A))/[G: A]-[p(A) N '(1): B(G)]. We

show g = 1. Multiplying both of the numerator and the denominator of
q by |9(G)| = [G: @7'(1)], we have

g GO A]  _ [Ap () A)]
[G: AL /A N D]~ [e(A) Ny (D)
_ [A: 4(A)]
(A N ¥~ (D] Tp™ () W(A): W(A)]
(D)

T e(A) N )] [ Q) - (A : WA
_ @ o(A) N (D)
[07(1) - (A): w(A)]
_ @) p(A): (A
[o7'(1) - w(A): y(A)]

Since we have go+ = {rop, the last quotient is equal to 1 by Herbrand’s
lemma. For the detail, see the latter half of the proof of Lemma 5 of
[5, § 3l

THEOREM 6. Let G be a finite p-group, and A a normal abelian sub-
group of G, which satisfy the conditions (1) and (2) of Theorem 4. Let «
and B be the integers such that p* is the exponent of G/A and p*** = [G: A].
Then the following (i) ~ (iil) hold:

(1) 2..4G)DIG, Al-2,A);

(il) 8..4(G) C U44) N Z(G);

(i) [2..4G): [G, A]-24A)] = [G: A]-[U4(A) N Z(BG): T.. (G)].

Here 2(G) =g G|g" = 1), U(G) = {(g""|ge G) etc.
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Proof. Let n: G— G be the mapping defined by =(g) = g? for ge G-
Put @ = z**# and ¢ = #f|,. By the assumption, we have & = V_,, which
is a homomorphism of G to the abelian group A. Therefore 2,.,(G) =
Ker (@) = &-'(1), and

02,.4G) ={geG|lgr? =1}.

It is obvious that 2,.,G) contains the commutators in [G, 4], and 2,(4).
Hence we have (i). Since 7n*(G) lies in A, by the choice of «, we have
U..s(G) C U,(A). We also have

U p(G) = Vi ui(G) C Z(G)
because A is a normal abelian subgroup of G (cf. [5, § 3, Corollary to
Proposition 3]). Thus we get (ii), too. Let p,p,, -+, be the type-
invariants of the regular p-group G/C;(A), which are arranged in the order,

>y > >, (cf. PoHall [2]). Put pr = exp (C;(A)/A), the exponent
of C,(A)JA. Then we have

wm<a<py+7T
since p“ = exp (G/Cy(A)). Therefore
e+t A, ST+ttt < a4 B
because we have
primtiie < [Gr A] = prtt .
Thus we get
pet+ o e < B
Take a canonical basis g, - -+, g, of the regular group G/C,(A) so that
P = [(8 - Co(A): Cs(A)]
for i =1,2,---,0. If i>2 then g? belongs to C;(A), and (g, A is
regular by the condition (2). Therefore we have
¥[8, AD = - - - = =¥((8., A = {1}
by P. Hall [2, Theorem 4.22] or by Huppert [3, Ch. IlI, 10.6 b)]. For g
and & in G, and for ac A,
[g-h, a] = [g, a]-[l8, al, h]-[h, d
= [g, a]-[h, [g, all"'-[h, o]
= [g, al-[h, [g, a]"-a]
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because A is abelian and normal in G. Therefore
(G, A] = [g,, Al [g., A]---[8., A] .

Since [g;, A] lies in 2,(A) if i > 2, we have

() [G, A]-24(4) = [g,, A]-2,(4) .

Furthermore

g apﬁ] = (g, a]pii =1

for each ac A if i > 2. Hence we get

Uﬂ(A) - Z(<g2’ Tty gw> * CG(A)) .
Now, let + be the endomorphism of A defined by

v(a) = [g,, a] for ac A .
Then (A) = [g,, A] and (1) = C,(g). Therefore, especially,
(%) UA) Ny(1) = T(A) N Z(G) .

It is obvious that o+ = oo where ¢ = zf|,. By (*) and (**) with (i)
and (ii), which have been proved, we can apply Lemma 4 to @ = z**é,
¢ and +, and obtain (iii) at once. The proof is completed.

5. The proof of Theorem 3. When G is regular, we can use
Lemma 4 directly (without using transfers) to get a better result, Theorem
3. Let g, g, - - - be the canonical basis of G/A such that p": = [(g,)-A: A].
The commutator subgroup [G, G] of G is generated by [g,, a] with ac A,
(8, &1 (@ < J), and their conjugates. Since g?* and g% (j > 2) belong to
the abelian group A, they commute with each other and with each a ¢ A.
Therefore, the orders of [g;, a] and [g;, g;] divide p#**. Hence the ex-
ponent of [G, G] is less than or equal to p***. 'Then, by the definition
of regularity, we have

w*(g-h) = ="*(g)-="*(h)

for g and h in G. This shows that z#** is a homomorphism. Since p* = p*
is the exponent of GJA, the image of z*** liesin A. Put @ = z**: G — A4,
¢ = |, and y(a) = [g,, a] for ae€ A. Then a similar argument to the one
in the proof of the preceding section will complete the proof of Theorem 3.
The rest of the proof is, therefore, omitted.
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6. The comments and the problems. As one of the simplest cases
of Theorem 6, we have

THEOREM 7. Let G be a finite metabelian regular p-group, and A be
a normal abelian subgroup of G such that G/A is cyclic. Put p* = [G: Al.
Then we have

[2(G): (G, G]] = [G: A]-[ANZ(G):T(G)] .

Proof. 1In this case, we have [G, A] =[G, G]. If v =0, then 2,(A) =
{1}, and U,(A) = A. Therefore, (iii) of Theorem 3 is just this formula of
the theorem. Q.E.D.

We can not dispense with the condition that G is regular. In fact:
Let G be the group of Example of Section 3, and take A = (a,, a,, - - -, @, ;).
Then [G: A] = p and ¢ = 1. Since £2,(G) coincides with [G, G] = (a?, a,,
-+, @,_, the index p = [G: A] cannot divide [2(®): [G, G]I.

As far as G is regular, the group 2,.,(G) of Theorem 3 is the kernel
of the homomorphism @(= z***) of G to the abelian group A. Therefore,
it contains [G, G]. Then we may ask

ProBLEM 1. Let the notation and the assumptions be as in Theorem 3.
Determine the minimal v (> y,) such that the index [G: A] divides [2,..(G):
[G, G]] in the case where A contains [G, G]. (Therefore G is metabelian.)

If A = GJ[p] for some p € End (G), then we see that the minimal v is
at most a(p) — x4 by Corollary 2 of Theorem 5.

ProBLEM 2. Let G be a metabelian p-group, and A be an abelian
subgroup of G which contains [G, G]. Does the index [G: A] divides
[Ker (V;_0: [G, GII?

When G is regular, this problem is a part of the preceding one by
Theorem 4.

Let G be the irregular p-group of Example of Section 3, and A =
{1, @y - -+, @, ;. We have Ker(V,.,) = A in this case. (Cf. Huppert [3,
Ch. III, 10.15].) Therefore the answer is ‘Yes’.

If A= G[p] for some pe End(G), then the answer is also ‘Yes’ by
Terada’s Principal Ideal Theorem. In the case of A = [G, G], the answer
‘Yes’ is equivalent to the original Principal Ideal Theorem.

III. The relative uniqueness bases of regular p-groups

1. The relative uniqueness basis. Let G be a finite regular p-group
for a fixed prime integer p. Let H be a given subgroup of G. We call
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an ordered set of elements of G,

81,8 5 8-

a uniqueness basis of (the left cosets) G/H if every coset of G/H can be
represented by one and only one element of G of the form

mi, gne, ., ghe
1 2 gr

with
Ogmi</l1; (i:]n"’,f)

where p; is the minimal positive integer such that gi¢ belongs to H.
P. Hall [2] showed the existence of a uniqueness basis for H = {1}, or,
we may say, for a normal subgroup H because a quotient group of a
regular p-group is also regular.

But if H is not normal in G, it is far from obviousness, at least at
a first glance, that there exists a uniqueness basis of G/H. This part of
the paper is devoted to show it, essencially by following the way of
P. Hall [2]. Hence we show that such a basis is obtained if we construct
a canonical basis of G/H, which will be defined in Section 3 below.

2. The L-series. Let o = w(G) be the invariant of G determined
by the relation p® = [G: U,(G)]. An L-series A of G is a decending series
of normal subgroups L, of G,

A:Li=GDL,D>..--2DL, = 0(G)

such that [L,_:L]=pfori=12, ..., 0.
We denote the exponent of G by ¢ = p*, and let 1= A(4) be the
maximal index such that the exponent of L, , is equal to e&. Put

K = 6';4—1([41‘1) = {ge/plg € Lz-x} .

Lemma 5 (P. Hall [2]). K is a cyclic group of order p, and lies in the
center of G.

For the proof, see P. Hall [2, the proof of (e), pp 92-93].

LemMA 6. Let i be an index of the L-series A other than A, and e be
a positive integer. If there is an element g of L,_, — L, such that g° belongs

to K-H, then there exists an element x in L,_, — L, such that x* belongs
to H.
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Proof. Take an element ze L, ; — L,, Then K = {(z“?) because the
exponent of L, is less than or equal to ¢/p by the choice of 2. Suppose
that g°e K-H for some ge L, , — L, We may assume that e = p* for
some non-negative integer v and v < p. Take an integer m and an ele-
ment h of H so that g°=2z"/*.h, Put n=p> ' =¢/p**! and x = g-27™".
Since (2=™")° belongs to the center of G, the commutators of (g, z=™")
have the orders at most ¢ by P. Hall [2, Th. 4.22]. Therefore, we have

xe — ge'z—mne

since G is regular. Then by the choice of n, we have x* = he H. If
v = g — 1, then we may assume that g is of order ¢ = p* because g° =
1e H otherwise. In this case, then, we have i < 4, and L, D L, ,. There-
fore, x = g-z=™" certainly belongs to L,_, — L,. If v <p—1, then z=™"
belongs to ¥(G). Since U(G) lies in L, we have xe L, , — L, in this
case, too. The proof is completed.

3. The relative canonical basis. For each i (1 <i < w), define a
positive integer e, = e/ 4, H) by

e,=min{ele>1,3geL, , — L,(g°c H)}
and put

C,=CJ(4,H)={geL,,— L;|g"cH}.
Determine the positive integer = = (G, H) by the relation,

pr=I[G:0(G)-H].
Then there exists exactly ¢ indices i, 1, -- -, i, such that
1<, <, < --<i,<o
and
L,, H2L,,H (v=1,---,7).
The sequence of ¢ elements of G,

81,80 " 8-

will be called a canonical basis of G/H belonging to the L-series A if
each of the z sets C,, (v =1, -- -, ) contains just one of the r elements g,.

THEOREM 8. Every canonical basis of G/H is a uniqueness basis of G/H.
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Proof. Induction on the order |G|. If |G| = p, then the theorem is
clear. Suppose that |G| >p. Let g, ---, g. be a canonical basis belonging
to an L-series /4, and we use the notation introduced above. Put G = G/K
and H=H-K/K. If ¢e=p*>p, then KCU,(G). If e =p, then 1 =0w
—1, L,_,=K and L,=0,(G) ={1}. Put L,=L,/K for i=0,1,---,
® — 1. Omitting the last term if ¢ = p, we have an L-series 4 of G,

A:L,oL,>---DL,=0(G).

Put g, =g, KeG forj=1,-.-,z.

Case I: Suppose that H > K. Then g, - - -, 5. is a canonical basis of
G/H belonging to 4. Since |G| is less than |G|, it is a uniqueness basis
of G/H by the induction hypothesis. Therefore, the natural correspondence
between G/H and G/H establishes that g, - - -, . is a uniqueness basis of
G/H, in this case.

Case II: Suppose that H» K. Then KN H = {1}. First, we show
that the index 1 appears in the series, i, i, ---,i,. In fact, assume, on
the contrary, that L, ,-H = L,-H. Take ze L, , — L, Then there are
xeL, and he H such that 2z = x-A. Since the order of x°! is less than
e = p*, we have x ? = 1. Therefore h*/? = (x~!.2)"/? = x~¢/?.2¢/? = 2¢/» = 1.
But 2¢? belongs to K N H, which contradicts that K N H is equal to {1}.
Now, let £ be the index such that g, belongs to C; = L;_l — L,. Let py
and g, be the minimal positive integers such that g/’ e H and g% e H,
respectively, forj = 1, ---,z. Then p, = ¢ and g, = ¢/p. If j is other than
k, then we have y, = g, by Lemma 6. Suppose that L,_,-H = L,-H. Then
we have L, - K-H= L, -K-H. 1If ¢ > p, then K lies in &,(G), and so, in
L,. Therefore, we have L, ,-H = L,-H. If ¢ = p, then K= L,_,. There-
fore, we also have L, ,-H =1L, H for i <w —1. Hence L, ,.H=1L, H
is equivalent to L,_,-H = L,-H unless ¢ = p and i = w. Thus we conclude
that g, - - -, @,, omitting the term g, if ¢ = p, is a canonical basis of G/H
which belongs to the L-series 4 of G. Since |G| < |G|, the sequence is
a uniqueness basis of G/H by the induction hypothesis. Then we can see

that g, ---, g. form a uniqueness basis of G/H, in the straight forward
way, knowing that g%¥? is in the center of G. And then the proof is
completed.

We close this chapter pointing out

THEOREM 9. Every canonical basis of G/H is also a uniqueness basis
of H\G.
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Proof. Let g,, ---, g, be a canonical basis belonging to an L-series /.
Then g%, ---, g7' is also a canonical basis by the definition, and so, a
uniqueness basis of G/H. Assigning its inverse to each element of G, we

have the natural correspondence between G/H and H\G, which establishes
the theorem at once.
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