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Summary

The evolution of a quantitative trait subject to stabilizing selection and immigration, with the

immigrants deviating from the local optimum, is considered under a number of different models of

the underlying genetic basis of the trait. By comparing exact predictions under the infinitesimal

model obtained using numerical methods with predictions of a simplified approximate model based

on ignoring linkage disequilibrium, the increase in the expressed genetic variance as a result of

linkage disequilibrium generated by migration is shown to be relatively small and negligible,

provided that the genetic variance relative to the squared deviation of immigrants from the local

optimum is sufficiently large or selection and migration is sufficiently weak. Deviation from

normality is shown to be less important by comparing predictions of the infinitesimal model with a

model presupposing normality. For a more realistic symmetric model, involving a finite number of

loci only, no linkage and equal effects and frequencies across loci, additional changes in the genetic

variance arise as a result of changes in underlying allele frequencies. Again, provided that the

genetic variance relative to the squared deviation of the immigrants from the local optimum is

small, the difference between the predictions of infinitesimal and the symmetric model are small

unless the number of loci is very small. However, if the genetic variance relative to the squared

deviation of the immigrants from the local optimum is large, or if selection and migration are

strong, both linkage disequilibrium and changes in the genetic variance as a result of changes in

underlying allele frequencies become important.

1. Introduction

Most species are divided into a number of smaller

subpopulations connected by migration. Migration,

in general, tends to homogenize a population and can

prevent adaptation of subpopulations to local en-

vironmental conditions. This is a relatively well

understood phenomenon when differences in fitness

are caused by genes at a single locus only (e.g.

Haldane, 1930; Slatkin, 1973, 1985; Nagylaki &

Lucier, 1979). Most traits, however, are quantitative,

that is, influenced by genes at many loci (Lande,

1982).Quantitative genetic theory involving both

selection and migration, despite being an important

problem, is more sparse, although some theory

focusing on geographic variation in quantitative traits

between demes (Bulmer, 1980, p. 180) and in clines

* Tel : ­47 73591888. Fax: ­47 73591038. e-mail : jarlet!
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(e.g. Felsenstein, 1977; Slatkin, 1978; Barton, 1999) is

available.

In general, exact predictions about the evolution of

quantitative traits assuming Mendelian inheritance

cannot be made unless a large amount of detailed

information about the genetic basis of the trait is

available (Barton & Turelli, 1989). For a trait

determined by n diallelic loci, there are 2n different

haplotypes, which, assuming random mating, implies

that general analytic treatment of the effect of

evolutionary forces such as selection, migration and

reproduction seldom is possible. For only about 10

loci, the number of haplotypes also becomes so large

that numerical analysis becomes infeasible. Similarly,

while not increasing exponentially if one assumes

additivity, the number of parameters to be estimated

in order to make prediction based on explicit

multilocus models would typically require very large

amounts of data.
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Quantitative genetic evolutionary theory therefore

has to be based on models relying on different degrees

of simplifying assumptions. The infinitesimal model

(Fisher, 1918; Bulmer, 1980) can be seen as a way of

overcoming the difficulties of explicit multilocus

models by assuming that the number of loci effectively

is infinite and the allelic effects at individual loci are

additive and small. This approach reduces all genetic

details to one parameter : the genetic variance at

linkage disequilibrium V
LE

. Further simplifications of

the infinitesimal model, based on assuming normality

or by ignoring the dynamics of the genetic variance,

are sometimes made in order to enable analytic

treatment of models of more specific evolutionary

situations. This is done, for example, in theory for the

evolution of plasticity (Via & Lande, 1985; van

Tienderen, 1997), theory of source-sink dynamics

(Kirkpatrick & Barton, 1997) and in some non-spatial

models (e.g. Lande et al., 1997).An important question

is therefore how well these different approximations

predict the evolutionary dynamics relative to more

realistic models assuming finite number of loci,

deviations from normality and linkage disequilibrium.

Here I consider different approaches to modelling

the evolution of a population subject to local

stabilizing selection with one-way immigration of

individuals deviating from the local phenotypic

optimum. This situation arises, for example, in models

of source-sink dynamics (Holt & Gomulkiewicz,

1997a, b) and in conservation genetics in the context

of reintroduction and intentional or unintentional

supplementation of a wild population with individuals

kept in captivity (Hindar et al., 1991). In general, both

stabilizing selection and migration will generate

linkage disequilibrium and consequently changes in

the genetic variance. Unlike stabilizing Gaussian

selection, however, migration will make the distri-

bution of genotypic values depart from normality (e.g.

Grant & Grant, 1994). More importantly, migration

will also pull the genotypic mean away from the local

optimum, and thereby change the underlying allele

frequencies. The complexities of this situation make it

a good test of the various approaches to modelling

quantitative traits that have been proposed in the

literature.

In the first part of the paper, exact predictions for

the infinitesimal model obtained using numerical

methods are compared with less realistic and simpler

approaches based on ignoring departures from nor-

mality and ignoring linkage disequilibrium altogether.

In the latter case a simple analytic result is available.

In the second part of the paper, exact results for the

infinitesimal model are compared with a more realistic

model involving a finite number of loci only and more

specific details about the underlying genetic basis of

the trait.

The details of the general evolutionary situation are

as follows. In each generation, a proportion m of the

population is replaced by immigrants with mean

breeding value z
"
and variance V

"
. For simplicity, it is

assumed that there is no linkage disequilibrium within

the immigrants. This will be approximately true if the

immigrants originate from a single panmictic popu-

lation, deviating from the optimum as a result of, for

example, artificial selection. Migration is followed

by stabilizing selection with fitness of individuals

with phenotype P¯Z­E equal to W
!
(P )¯ exp

(®s
!
(P®z

!
)#}2) such that the mean fitness of indi-

viduals with breeding value Z is proportional to W(Z)

¯ exp (®s(Z®z
!
)#}2) where 1}s¯1}s

!
­V

E
. Without

any loss of generality, we can let z
!
¯ 0 and z

"
¯1,

which is essentially equivalent to rescaling the model

in terms of z- by the deviation of the immigrants from

the local optimum z
"
®z

!
, remembering the V

LE
and s

are now measured on this new dimensionless scale.

2. The infinitesimal model

The assumption of the infinitesimal model that the

trait is affected by genes at an infinite number of loci

with infinitesimal and additive effects implies that

allele frequency changes will be infinitesimally small

so that there will be no change in the genetic variance

of the genotypic values at linkage disequilibrium, V
LE

.

In addition, except for some patterns of strong linkage

disequilibrium (Dawson, 1997), the distribution of

genotypic values among offspring, conditional on the

genotypic values X and Y of selected parents, will

always be normal with expectation equal to the mid-

parental value (X­Y)}2 and variance equal to one

half the genetic variance at linkage equilibrium V
LE

(Bulmer, 1980; Turelli & Barton, 1994). The full

unconditional offspring distribution after repro-

duction, however, will depend on the distribution of

parental genotypic values in the previous generation,

and does not need to be normal.

(i) Exact Fourier transform method

Based on these general results, the joint effects of

migration, stabilizing selection and recombination on

the distribution genotypic values can be found

numerically using the method of Turelli & Barton

(1994). Let ψ(z) be the initial distribution of the trait.

Migration changes this distribution to

ψ«(z)¯ (1®m)ψ(z)­mψ
"
(z), (1)

where ψ
"
(z) is the (normal) distribution of the trait

among the immigrants. After selection the distribution

of z is

ψ§(z)¯
W(z)ψ«(z)
!W(z)ψ«(z)

. (2)

The life cycle is completed by reproduction, which is

equivalent to taking the mean of two randomly
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Fig. 1. Iterations of the infinitesimal mode for 7 generations (rows 1–7) with z
!
¯ 0, z

"
¯1, s¯1, m¯ 0±2, and

V
LE

¯ 0±005, that is, immigrants deviating 14 genetic standard deviations from the optimum. Each subplot shows the
distribution of genotypic values (z) after migration (left-hand column), selection (middle column) and reproduction
(right-hand column). F1 and F2 crosses and backcrosses with the local and immigrant population can be seen as clear
modes in the distribution in generations 2 and 3. The parameter values are chosen for illustrative purposes. It might be
noted that the distribution for the above parameter values eventually (after about 85 generations by the criteria in the
main text) reached an equilibrium at which z- ¯ 0±974 and Var(z)¯ 0±00506, that is, very little linkage disequilibrium.

selected parents X and Y sampled from (2) and

adding a normal variate with zero mean and variance

V
LE

}2. The resulting distribution, the convolution of

ψ§(z}2) with itself and conditional offspring dis-

tribution, can be found by taking the product of the

corresponding Fourier transforms of ψ§(z}2) and the

appropriate normal density representing the con-

ditional offspring distribution (for details see Turelli

& Barton, 1994). These operations can be iterated

numerically using discrete approximations of the

above continuous distributions (Fig. 1). Equilibrium

values for quantities of interest can be found by

running the iterations until the change in subsequent

values on the grid are sufficiently small, say 10−'.

Using this method with 256 evenly spaced grid

points, the numerical error, for the model iterated

with s¯ 0 and m¯ 0, was at the most of the order of

10−' for the variance and 10−% for the kurtosis. A

Mathematica function (Wolfram, 1996) for carrying

out these calculations is available from the author.

(ii) Approximation based on normality

If we ignore deviations from normality caused by

migration but allow for changes in the variance

generated by migration and selection, the mean and

variance after migration become

za «¯ (1®m)za­mz
"

(3)

and

V«¯ (1®m)V­mV
"
­m(1®m) (z®z

"
)#. (4)

With both the fitness function and the density function

for the distribution of genotypic values being of a

Gaussian form, it follows that the distribution after

selection and reproduction has mean and variance

za §¯
sz

!
­(1}V«)za «
s­1}V«

(5)

and

V§¯
1

2(1}V«­s)
­

1

2
V
LE

. (6)

The two non-linear equations obtained by setting

za §¯ za and V§¯V can be solved numerically using,

for example, the Newton–Raphson method for the

equilibrium mean and variance zW and VW .
The above approach is essentially the one used by

Bulmer (1980, p. 180) in his treatment of geographic

differentiation between two niches connected by

symmetric migration and with different local optima.
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Fig. 2. (a) The mean genotypic value (z) as a function of the migration rate (m) at equilibrium between migration and
stabilizing selection for the infinitesimal model (continuous lines), the approximation ignoring deviations from normality
(dashed lines) and the approximation ignoring linkage disequilibrium altogether (dotted lines). Each subplot corresponds
to different values of V

LE
(shown in the plot) and each subset of curves within each subplot corresponds to different

strengths of selection s. (b) The genetic variance corresponding to each set of curves in (a). Continuous, dashed and
dotted lines as in (a).

(iii) No linkage disequilibrium

The second approximation is based on ignoring

linkage disequilibrium altogether, so that the genetic

variance remains constant and equal to V
LE

and the

distribution of z remains normal. This assumption

will be valid if selection and migration are sufficiently

slow relative to recombination. It then follows that

the mean, after migration is given by

za «¯ (1®m)z­mz
"
, (7)

and after selection

za §¯
sz

!
­(1}V

LE
)za «

s­1}V
LE

, (8)

which implies that the mean breeding value at

equilibrium is

zW ¯
V
LE

sz
!
­mz

"

V
LE

s­m
. (9)

This result for the above discrete-time model coincides
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with the result for the same model formulated with

continuous-time.

(iv) Results

The equilibrium mean za (after selection) based on the

exact numerical solution, the approximation ignoring

linkage disequilibrium (9), and the approximation

based on ignoring deviations from normality

(equations (3) to (6)) are shown in Fig. 2a. Several

points can be noted. First, for weak selection or a

large genetic variance, both approximations closely

match the exact results obtained using Fourier

methods. In general, as the strength of selection is

increased or the genetic variance V
LE

is reduced,

however, the approximations gradually break down.

The approximation incorporating the dynamics in the

genetic variance caused by linkage disequilibrium in

general gives a much better and, in many cases, almost

perfect match to the exact numerical solution based

on Fourier transforms that the approximation

ignoring linkage disequilibrium altogether. For V
LE

¯
0±01 (or equivalently, if the immigrants deviate from

the optimum by 10 genetic standard deviations) it

does break down, however, mainly because the

distribution of z then becomes strongly non-normal.

It can be further noted that the approximation

which ignores linkage disequilibrium does not do too

badly. For V
LE

¯ 0±1 and as long as the strength of

selection s! 2, the predicted deviation from the

optimum differs by at most a factor of about 1±25.

Because migration leads to an increase in positive

linkage disequilibrium and in the genetic variance,

migration will in general indirectly increase the

response to selection. This is illustrated in Fig. 2b,

which shows the equilibrium variance at the point in

the life cycle after migration (but before selection).

The relative increase is at its largest when V
LE

is small

and when the deviation of the mean from the

immigrants, z
"
®za , is large. This explains why ap-

proximation (9), which ignores this indirect effect,

always overestimates the deviation from the equi-

librium (Fig. 2a). For small m, as a result of stabilizing

selection, the variance is smaller than that at linkage

equilibrium; for strong selection the variance

approaches the within-family variance of V
LE

}2 (Fig.

2b, lower left subplot).

As is found in models of clines in quantitative traits

(Barton, 1999), the dependence of the variance on the

deviation of the mean from the optimum creates a

positive feedback mechanism. If the rate of migration

is decreased so that the mean is allowed to adapt more

closely to the optimum, the genetic variance in-

creases, producing an increased response to selection

and a further increase in the genetic variance. For

small V, this creates an abrupt change in the mean za
with decreasing rates of migration m (Fig. 2a, right-

hand plot). It should also be noted that Fig. 2 is based

on numerical iterations with z- initially at the optimum.

This gave the same result as for za initially equal to the

mean among the immigrants for nearly all parameter

values. Only for small genetic variances, strong

selection and high rates of migration did several

equilibria appear to exist ; for example, for V¯
0±01, m¯ 0±85 and s¯10 the iterations converged to

means of za ¯ 0±27 and za ¯ 0±88 for initial values of

za ¯ 0 and z- ¯1, respectively, indicating the existence

of several equilibria produced by the above positive

feedback mechanism.

3. Finite number of loci n

(i) A symmetric model

In this section a more realistic model involving a finite

number of loci is considered with the objective of

evaluating the performance of the infinitesimal model

when the number of loci is small.

Both Barton (1992) and Phillips (1993, 1996) use

models based on the assumptions that individual loci

are diallelic and ‘exchangeable ’, meaning that there is

no linkage, and that the alleles, named ‘­’ and ‘®’, at

different loci all have identical effects on fitness, and

that allele frequencies are the same across all loci.

With these assumptions, deterministic iterations of

the model for large number of loci are feasible because

only the frequencies of haplotypes carrying 0,1,…, n

copies of the ‘­’ allele need to be tracked, instead of

the frequencies of all 2n different haplotypes. In what

follows, I will refer to this as the symmetric model.

The following assumption specifies a model of this

form. The allelic effect of the ‘­’ and ‘®’ alleles

differs by α. The allele frequencies of ‘­’ alleles are

initially p
!
in the local population and remain equal to

p
"
over time in the immigrant population. In order to

facilitate comparison with the infinitesimal model, we

choose p
!

and α such that the genetic variance at

linkage equilibrium is

2nα#p
!
(1®p

!
)¯V

LE
. (10)

In addition, with a reduction by a factor of θ in the

variance at linkage equilibrium among the immigrants,

we must have

p
"
(1®p

"
)

p
!
(1®p

!
)
¯ θ. (11)

Finally, because the mean breeding value differs by

z
"
®z

!
between the locals and the immigrants,

2nα(p
"
®p

!
)¯ z

"
®z

!
(12)

Equations (10), (11) and (12) have one lengthy

analytical solution (which is not given here) satisfying

α" 0, determining α, p
!

and p
"
. As a numerical

example, for V
LE

¯ 0±1#, θ¯ 0±5, z
"
®z

!
¯1 and n¯

10, this solution is p
!
¯ 0±14, p

"
¯ 0±93 and α¯ 0±063.

https://doi.org/10.1017/S0016672300004742 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300004742


J. Tufto 290

1

0·8

0·6

0·4

0·2

1

0·2

s = 0·04

0·2 0·4 0·6 0·8 1

VLE =1

T
ra

it
 m

ea
n,

 z
1

0·8

0·6

0·4

0·2 10

2

s = 0·4
1

0·8

0·6

0·4

0·2

s = 4

20

VLE = 0·1 VLE = 0·01

0·2 0·4 0·6 0·8 1 0·2 0·4 0·6 0·8 1

Migration rate, m

20

0·2 0·4 0·6 0·8 1 0·2 0·4 0·6 0·8 1 0·2 0·4 0·6 0·8 1

4

10

2

0·4

1

0·2

0·04

1

0·8

0·6

0·4

0·2

1

0·8

0·6

0·4

0·2

1

0·8

0·6

0·4

0·2

h
=

1/
2

h
=

1

Fig. 3. (a) The mean genotypic value (z) as a function of the migration rate (m) at equilibrium between migration and
stabilizing selection for the infinitesimal model (continuous lines), symmetric model with 5 loci (dashed line), 2 loci
(dashed dotted line) and 1 locus (dotted line). Parameters are chosen so that the genetic variances at linkage
disequilibrium are the same for the initial local and immigrant population (θ¯1). The plot is otherwise organized as in
Fig. 2a. (b) Same as (a) but with θ¯1}2 instead of θ¯1.

Using these initial allele frequencies, the proportion

of haplotypes carrying 1, 2,…, n ‘­’ alleles at the

balance between migration and selection can be found

by iterating the appropriate recursions (for details, see

the appendix in Barton, 1992). These recursions are

exact and take linkage disequilibrium generated by

selection and migration into account. The difference

between the results based on the symmetric model and

the result based on the infinitesimal model iterated

using Fourier transform should therefore only be a

result of the discrete (non-normal) distribution of

genotypic values and changes in the genetic variance

as a result of changes in the underlying allele

frequencies under the symmetric model.

(ii) Results

The genotypic mean at the balance between migration

and selection for the infinitesimal model compared

with the above symmetric model for 5, 2 and 1 locus

is shown in Fig. 3a with θ¯1 (equal genetic variance

in the initial local and immigrant population), and in

Fig. 3b with θ¯1}2 (reduced variance among the

immigrants). Several patterns can be noted. First, as

the number of loci decreases, the discrepancy between

predictions based on the infinitesimal and the sym-

metric model becomes larger. However, the infinite-

simal model in general gives a remarkably good

approximation to the equilibrium mean down to 2 loci

for V
LE

& 0±1. For θ¯1, the infinitesimal model in

nearly all cases overestimates the deviation from the

optimum. This result is expected because differences

in allele frequencies between the initial local and

immigrant population will result in increased hetero-

zygosity when the populations are mixed, producing a

further increase in the genetic variance in addition to

that caused by linkage disequilibrium. This further

enhances the response to selection and pulls the mean

closer to the optimum.

For θ¯1}2 (Fig. 3b), a similar pattern is apparent,

but with the additional effect of the reduced variance

among the immigrants causing a reduction in the

response to selection and a larger deviation from the

optimum.

For both θ¯1 and θ¯1}2, when the number of

loci is small so that the genetic variance is strongly

coupled with the mean through the assumption of

identical allele frequencies across loci, the equilibrium

mean at m¯ 0 somewhat surprisingly does not

coincide with the phenotypic optimum. However, the

effect of stabilizing selection, at least for populations

in approximate linkage equilibrium, can be under-

stood as a compromise between selection reducing the

deviation of the mean from the phenotype optimum

and selection reducing the genetic variance. The

coupling of the genetic variance (at linkage disequi-

librium) with the mean implies that selection for

reduced genetic variance also leads to a shift in the

mean away from the optimum.

4. Discussion

Using a combination of numerical and analytic

methods a number of different approaches to mod-

elling the balance between local stabilizing selection

and migration based on varying degrees of realism
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have been examined. In general, the discrepancy

between the simplest possible approximation (9) and

the symmetric model, being the most realistic model

considered, is a result mainly of the increased genetic

variance generated by migration and only to a small

extent a result of deviations from normality. As

shown by the numerical results, this error will be

relatively small as long as selection is not too strong,

or the deviation of the immigrants is not too large (in

which case V
LE

would be small). Turelli (1984) reviews

estimates of the strength of stabilizing selection and

concludes that 1}sE 20V
E

where V
E

is the variance of

environmental effects on the phenotype. For typical

heritabilities h#E1}2 (Mousseau & Roff, 1987), this

implies that the product V
LE

sE 0±05 in the model

considered here (regardless of whether V and s are

scaled against z
"
®z

!
). This value of V

LE
s corresponds

to the weakest strengths of selection plotted in Fig. 2a

and b. Thus, if we rely on Turelli’s (1984) figure, for

realistic values of s, and as long as the genetic variance

is not too small relative to the z
"
®z

!
, the error caused

by ignoring linkage disequilibrium should not be large

in most cases. On the other hand, according to

Endler’s (1986) review, stabilizing selection can be

more than an order of magnitude stronger than that

suggested by Turelli (1984), in which case modelling

the dynamics of the variance would become necessary.

It should be noted, however, that this review may

include some publication bias. In addition, sampling

variance is not subtracted from the overall between

species distribution of the strength stabilizing (and

disruptive) selection (Endler, 1986, fig. 7.4).

An additional discrepancy between (9) and the

symmetric model arises as a result of changes in the

underlying allele frequencies, which generate

additional changes in genetic variance and produces

an additional shift in the equilibrium mean. This error

will be small if the number of loci influencing the traits

is sufficiently large. Unless the genetic variance is too

small, V! 0±1 (or, equivalently, if the deviation over

which evolution occurs z
"
®z

!
is too large), the

infinitesimal model provides a good approximation to

the symmetric model even when the number of loci is

n¯ 2. Based on the increased genetic variance that

will be observed in the F2 generation of crosses

between parental lines which have diverged in their

means, the effective number of loci n
E

influencing

quantitative traits have been estimated to be in the

range from 5 up to 20 (Lande, 1981). While the actual

number of loci can be much greater (Zeng, 1992), n
E

is the relevant parameter in the present context,

because the symmetric model, like Lande’s (1981)

procedure, relies on the assumption of no variation in

allelic effects between loci. The above estimates

therefore suggest that changes in underlying allele

frequencies may be relatively unimportant in most

situations. If a reduction in the genetic variance

among the immigrants is observed, say as a result of

artificial selection or small effective population size,

this can be modelled by adjusting the parameters of

the symmetric model as in Fig. 3b.

Thus, much of the simple theory used to predict the

outcome of various evolutionary situations based on

ignoring the dynamics of the variance (see Section 1)

may be reasonably accurate in many circumstances.

The more technical assumption of the symmetric

model that allele frequencies are equal across all loci

may be questionable, however. Such differences can

be generated by, for example, a balance between

mutation and stabilizing selection, producing a ‘U’-

shaped distribution (Bulmer, 1989) or, similarly, by

weak migration and population subdivision (Phillips,

1996; Lythgoe, 1997).

First, if we allow allele frequencies to differ between

loci and take into account disruptive selection at

individual loci as a result of stabilizing selection on the

genotypic values, the dynamics of the variance V
LE

will, in contrast to the situation under the symmetric

model, no longer necessarily be coupled to the

dynamics of the mean. In general, if we for a moment

ignore linkage disequilibrium, the change in allele

frequency at some locus i is given by

∆p
i
¯

p
i
q
i

2 0®sα
i
(za®z

!
)­sα#

i
(p

i
®"

#
)1®m(p

i
®p

i,"
),

(13)

where p
i,"

is the allele frequency at locus i among

immigrants (Wright, 1935; Barton, 1986). Because the

squared allelic effects at individual loci α#
i
CV}n, the

coefficient representing the strength of disruptive

selection before the second term on the right-hand

side of (13) is sα#CVs}n. The focus here has been on

rates of migration of the same order of magnitude as

the product between the strength of election and the

genetic variance mCVs such that the mean z- is

maintained at some intermediate value between z
!
and

z
"

(see (9)). Thus, the strength of disruptive selection

at individual loci will be smaller than the stabilizing

effect of migration by a factor approximately equal to

the number of loci n. (This is not to say that we are in

the realm of the infinitesimal model ; changes in allele

frequencies will still be important and of the order of

1}on for a given genetic variance V
LE

and change in

the mean ∆z- .) Therefore, for a moderate number of

loci, and for the rates of migration considered here, a

single equilibrium variance will be coupled to the

equilibrium mean maintained under different par-

ameter combinations through some functional re-

lationship.

Differences in allele frequencies between loci may

give this functional relationship a complicated form,

however. Under the symmetric model, the relationship

between the variance at linkage equilibrium, V
LE

, and

the mean, z- , is a simple ‘bell-shaped’ second-order
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polynomial function. When allele frequencies differ

between loci, the change in allele frequency at some

locus i will be approximately proportional to its

contribution α#
i
p
i
(1®p

i
) to the total variance (13).

Thus, different loci will respond differently to different

strengths of selection, such that the relationship

between the total variance and the mean z- becomes

more complex. However, in terms of observable

quantities such as the mean and the variance, it seems

unlikely that approximations involving more un-

known parameters than the symmetric model (already

having two parameters more than the infinitesimal

model) will be justified from an estimation and

prediction point of view.

Note that this in general only applies to the genetic

variance at the selection–migration equilibrium. Be-

cause different gene combinations can produce the

same genotypic value (Goldstein & Holsinger, 1992),

different subpopulations can be near fixation for

different alleles at different loci if the rate of migration

between them has been sufficiently low (Phillips,

1996). After a subsequent increase in the rate of

migration there will therefore be a transitional phase

duringwhich the genetic variancemay greatly increase.

In conclusion, simple approximations relying on

the infinitesimal model and ignoring linkage disequi-

librium may in many cases provide sufficiently

accurate predictions of the evolutionary dynamics. In

specific situations, if more precise predictions are

required, linkage disequilibrium can be taken into

account numerically by solving (3) to (6). Provided

that a sufficiently large number of loci of small effect

are affecting the trait, as expected from theory on

mutation–selection balance, predictions based on the

infinitesimal model should be robust and not strongly

dependent on the underlying genetic basis of the trait.
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