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We present a study of the linear properties of the ion-temperature gradient (ITG) modes
with collisions modelled for the first time by the linearized gyrokinetic (GK) Coulomb
collision operator (Frei et al., J. Plasma Phys., vol. 87, issue 5, 2021, 905870501) in
the local limit. The study is based on a Hermite–Laguerre polynomial expansion of the
perturbed ion distribution function applied to the linearized GK Boltzmann equation,
yielding a hierarchy of coupled equations for the expansion coefficients, referred to as
gyromoments. We explore the collisionless and high-collisional limits of the gyromoment
hierarchy analytically. Parameter scans revealing the dependence of the ITG growth rate
on the collisionality modelled using the GK Coulomb operator are reported, showing
strong damping at small scales as the collisionality increases and, therefore, the need
for a steeper gradient for the ITG onset at high collisionality to overcome the finite
Larmor radius (FLR) collisional stabilization. The predictions on the ITG growth rate
by the GK Coulomb operator are compared with other collision operator models,
such as the Sugama, the Dougherty, as well as the momentum-conserving pitch-angle
scattering and the Hirshman–Sigmar–Clarke collision operators derived for the first time
in terms of gyromoments. The importance of FLR terms in the collision operators
is pointed out by the appearance of a short wavelength ITG branch when collisional
FLR terms are neglected, this branch being completely suppressed by FLR collisional
effects. Energy diffusion is shown to be important at high collisionality and at small
scale lengths. Among the GK collision operators considered in this work, the GK
Sugama collision operator yields, in general, the smallest deviation compared with the
GK Coulomb collision operator, while the largest deviations are found with the GK
Dougherty operator. Convergence studies of the gyromoment method are reported and
show that the drifts associated with the gradient and curvature of the magnetic field
increase the required number of gyromoments at low collisionality. Nevertheless, the
low number of gyromoments necessary for convergence at high collisionality constitutes
an attractive numerical and analytical feature of the gyromoment approach to study the
plasma dynamics in the boundary of fusion devices.
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1. Introduction

Belonging to the class of instabilities that develop on the ion gyroscale, the
ion-temperature gradient (ITG) modes, driven unstable by the parallel plasma compression
(slab ITG (sITG)) or by the presence of magnetic drifts (toroidal ITG), are widely
recognized as the main candidate to explain the experimental observations of anomalous
ion heat turbulent transport in the tokamak core (Garbet et al. 2004). Because of its
important role and since the plasma collision frequency is considerably smaller than the
typical ITG mode frequency in the core region such that collisions can be neglected,
the gyrokinetic (GK) collisionless theory of the ITG modes is well documented in the
literature (see, e.g. Hahm & Tang 1989; Romanelli 1989; Romanelli & Briguglio 1990;
Chen, Briguglio & Romanelli 1991). On the other hand and because of the temperature
drop, the effects of collisions on the ITG modes are expected to be important in the
tokamak boundary, the region that encompasses the edge and the scrape-off layer (SOL).
In fact, and more generally, collisions are known to modify the linear and nonlinear
properties of microinstabilities. For instance, collisions contribute to smearing out small
scale structures in velocity space (Watanabe & Sugama 2004; Ajay, Brunner & Ball 2021),
to affect their linear properties (Manas et al. 2015; Belli & Candy 2017), to suppress
short-wavelength structures (Barnes et al. 2009) and can, ultimately, affect their saturation
mechanism via the damping of the zonal flow (Pan, Ernst & Crandall 2020; Frei et al.
2021). Since the boundary region sets the heat exhaust and the thermal load on the vessel
walls and determines the overall confinement capabilities of the device, it is of primary
importance to assess the role of the ITG modes in this key region that is characterized by a
wide range of plasma collisionality. For instance, the collisionality dependence of the ITG
mode is important in the prediction of, e.g. the transition from resistive ballooning to ITG
driven turbulence regime in the boundary region (Zeiler et al. 1998; Dorf & Dorr 2022).

In the past, the effects of finite collisionality on the ITG linear properties have
been introduced in kinetic models using simplified collision operators such as, e.g. an
energy-conserving Krook and a pitch-angle operator model (Romanelli & Briguglio 1990;
Romanelli, Chen & Briguglio 1991; Pusztai et al. 2009). More generally, the effect of
collisions on microinstabilities (including the trapped electron and ITG modes) have been
documented in previous studies using GK codes (Catto & Ernst 2009; Belli & Candy
2017; Pan & Ernst 2019; Crandall et al. 2020; Pan et al. 2020) showing discrepancies
produced by the choice of collision operator models when compared with the linearized
Fokker–Planck collision operator (Rosenbluth, MacDonald & Judd 1957; Hazeltine &
Meiss 2003), that we refer to as the Coulomb collision operator in the present study.
However, studies based on the GK Coulomb collision operator remain very limited (Pan
et al. 2020), due to the very recent availability of such an operator (Frei et al. 2021).
Additionally, we lack a comparison between this operator and simplified collision operator
models for the ITG case.

The limited number of collisional GK investigations stems from the frequent use of
drift-reduced Braginskii fluid models (Zeiler, Drake & Rogers 1997) for the simulation
of the boundary region (Dudson et al. 2009; Halpern et al. 2016; Tamain et al. 2016;
Paruta et al. 2018; Zhu, Francisquez & Rogers 2018; Stegmeir et al. 2019; Giacomin,
Stenger & Ricci 2020). These fluid models are based on the assumptions that k‖λmfp � 1,
i.e. that the particle mean free path λmpf is much shorter than the typical parallel length
scales, described by the parallel wavenumber k‖, and that k⊥ρi � 1, i.e. that the modes
develop a perpendicular wavenumber k⊥ associated with a scale length much larger than
the ion gyroradius ρi. Therefore, while the drift-reduced Braginskii models retain finite
ITG effects (Hallatschek & Zeiler 2000; Mosetto et al. 2015), their applicability to the
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study of ITG modes is questionable since, for instance, these modes develop on a k⊥ρi ∼ 1
scale. In addition, while the k‖λmfp � 1 assumption is well established at the separatrix
and in the SOL (with temperature T � 50 eV and particle density n ∼ 1018 m−3 yielding
typically k‖λmfp � 10−2 in, e.g. JET, ITER and smaller tokamaks such as TCV (Frassinetti
et al. 2019)), the mean free path is larger inside the separatrix, where the temperature
increases. Hence, for typical H-mode pedestal values (T ∼ 102–103 eV and n ∼ 1020 m−3

(Leyland et al. 2014; Schneider et al. 2021)), an estimate of k‖λmfp ∼ 1 can be obtained.
Thus, one expects a level of collisionality sufficient to justify the use of the drift-reduced
Braginskii fluid models only in the SOL and, possibly, in the outermost region of the edge
in typical tokamak conditions.

Gyrofluid models have been developed by considering a finite number of velocity
space moments of the GK equation to extend the validity of Braginskii-like fluid models
(Hammett, Dorland & Perkins 1992; Dorland & Hammett 1993; Beer & Hammett 1996;
Snyder & Hammett 2001). Collisionless kinetic effects are introduced in these models
by designing ad hoc closures for the high-order moments that mimic the linear kinetic
response in the absence of collisions. While usually neglected, collisional effects are
introduced in, for example, the gyrofluid model proposed by Snyder & Hammett (2001)
by considering a particle, momentum and energy-conserving BGK-like operator for ion
collisions and a pitch-angle scattering operator for the collisions of the electrons. However,
BGK-like operators and the absence of energy diffusion in the pitch-angle scattering
operator can potentially lead to significant deviations compared with the Coulomb
collision operator.

In this work, we aim to present a study of the linear properties of the ITG mode within
a GK framework able to capture accurately the collisionless kinetic physics and, at the
same time, the collisional effects described through the GK Coulomb collision operator
for the first time. This is done by leveraging previous work that led to a formulation of
the GK model for the boundary region based on a Hermite–Laguerre expansion of the
gyrocentre distribution function (Frei, Jorge & Ricci 2020), and the development of a GK
Coulomb collision operator derived using the same technique expansion, as presented in
Jorge, Frei & Ricci (2019a). The present study represents the first physical application
of this model, which has the potential of providing an efficient description of plasma
turbulence in the boundary region. In fact, the Hermite–Laguerre expansion technique
shows its ability to treat the ITG mode, numerically and analytically, for a wide range of
plasma collisionality and with sophisticated collision operators (Jorge, Ricci & Loureiro
2018; Jorge et al. 2019b). More precisely, the ITG model we use in this work is based on
the linearized (also known as δf ) and local limits of the gyromoment formulation of the
GK model coupled with a linearized GK Coulomb collision operator, recently derived and
numerically implemented in Frei et al. (2021). The Hermite–Laguerre expansion allows us
to express the self-consistent GK model in terms of moments of the gyrocentre distribution
function that we refer to as gyromoments.

By using the gyromoment approach, we first retrieve the collisionless and the
high-collisional limits of the ITG mode. In particular, the ability of the gyromoment
method to be reduced to simpler fluid models at high collisionality is analytically
demonstrated and numerically tested. Then, using the linearized GK Coulomb collision
operator, wide parameter scans of the ITG growth rate are performed. It is demonstrated
that a steeper temperature gradient is required for the ITG onset at high collisionality
(although higher than typical SOL experimental values) to overcome the finite Lramor
radius (FLR) collisional stabilization effects. We also compare, for the first time,
the GK Coulomb collision operator with the drift-kinetic (DK) Coulomb collision
operator, a GK/DK momentum-conserving pitch-angle scattering operator (Helander &
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Sigmar 2002), the zeroth-order DK Hirshman–Sigmar–Clarke (HSC) collision operator
(Hirshman & Sigmar 1976a) and the DK/GK Dougherty collision operator (Dougherty
1964), in addition to the DK/GK Sugama collision operator implemented in Frei et al.
(2021). Among the considered collision operator models, the GK Sugama operator yields
the smallest deviation with respect to the GK Coulomb collision, while the largest
deviations are found when the GK Dougherty collision operator is considered. We show
the importance of energy diffusion and FLR terms in the collisional damping of ITG
at small scales. Also, the importance of retaining FLR terms in the collision operator
models is demonstrated by revealing that a short wavelength ITG (SWITG) mode at high
collisionality and steep ITGs can be destabilized when the DK limit of the collision
operators is used. We remark that the assessment of the potential deviations between
collision operator models is of primary importance, since simplified and DK collision
operators are often used in turbulent GK codes (Bernard et al. 2019; Francisquez et al.
2021; Ulbl, Michels & Jenko 2021). Finally, we investigate the convergence properties
of the gyromoment approach as a function of relevant physical parameters in different
collisionality regimes, analysing the Hermite–Laguerre spectrum of the ITG distribution
function and showing that magnetic drifts broaden the gyromoment spectrum significantly
in the absence of collisions. The capability of reducing the number of gyromoments with
increasing collisionality is illustrated by the present study, a key feature of the present
approach to simulate the boundary region.

The structure of the paper is the following. In § 2 we introduce the gyromoment
hierarchy equation. Then, in § 3, we derive the collisionless limit of the ITG
dispersion relation by using the gyromoment hierarchy equation, and § 4 focuses on the
high-collisional limits. In § 5, we evaluate the ITG growth rate over a wide range of
parameters with collisions modelled by the GK Coulomb collision operator. Section 6
reports on the comparison of collision operator models with the GK Coulomb collision
operator. Finally, we analyse the Hermite–Laguerre spectrum and report convergence
studies in §§ 7 and 8, respectively. The conclusions follow in § 9. The Hermite–Laguerre
expansions of the collision operators used in this work are reported in appendices A–C,
while analytical results are detailed in Appendix D.

2. Gyrokinetic model

Focusing on a shearless configuration and adopting a local GK approach where
quantities do not vary along the magnetic field lines (Kadomtsev & Shafranov 2012),
we consider the linearized electrostatic GK Boltzmann equation expressed in gyrocentre
phase-space coordinates (R, μ, v‖, θ) and assume that the electrons are adiabatic. Here,
R = r − ρ is the ion gyrocentre position (with r being the particle position and
ρ(R, μ, θ) = b × v/Ω the ion gyroradius, with Ω = qB/m the ion gyrofrequency, q = Ze
the ion charge with Z = 1 and b = B/B), μ = mv2/[2B(R)] is the magnetic moment,
v‖ = b · v is the component of the velocity parallel to the magnetic field and θ is the
gyroangle. Since only the evolution of the ion distribution is considered, we drop the
ion species label for simplicity. We denote the equilibrium gradient scale lengths of
ion density N, ion temperature T and magnetic field strength B, by LN = |∇⊥ ln N|−1,
LT = |∇⊥ ln T|−1 and LB = |∇⊥ ln B|−1, respectively. We assume that the gyroaveraged
ion gyrocentre distribution function, F = F(R, μ, v‖), is a perturbed Maxwellian, that
is F = FM + g, where g is the perturbed part (g/FM � 1) and FM a local Maxwellian
distribution function defined by FM = N(R)e−s2

‖−x/(π3/2vT(R)3) with s‖ = v‖/vT(R), x =
μB(R)/T(R) and vT(R)2 = 2T(R)/m the ion thermal velocity. The linearized electrostatic
GK Boltzmann equation describing the time evolution of a single Fourier harmonic
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g(k, t) = ∫
dRg(R, t)e−iR·k is then given by

∂

∂t
g + (

iωB + ik‖v‖
)

g − iωT
∗ J0(b

√
x)

eφ
Te

FM + iω∇BJ0(b
√

x)
qφ

T
FM

+ q
T

ik‖v‖J0(b
√

x)φFM = C, (2.1)

where e is the electron charge and τ = T/Te. In (2.1), we express the wavevector as
k = k‖b + k⊥, and introduce the velocity-dependent resonant frequencies ω∇B = v2

T(b ×
∇B/B) · k/(2Ω)(x + 2s2

‖) and ωT
∗ = ω∗[1 + η(x + s2

‖ − 3/2)], with the ion diamagnetic
frequency ω∗ = Te(b × ∇ ln N) · k/(eB) > 0. We also define the normalized temperature
gradient η = LN/LT , a measure of the relative strength between the density and
temperature gradients. The FLR effects are taken into account through the zeroth-order
Bessel function, J0, with argument k⊥v⊥/Ω = b

√
x being b = k⊥vT/Ω . Collisional effects

are introduced in (2.1) through the GK linearized ion collision operator defined by

C = 〈C〉R = 1
2π

∫ 2π

0
dθC, (2.2)

where C is the linearized ion collision operator acting on the ion perturbed particle
distribution function, and 〈. . .〉R = ∫ 2π

0 dθ . . . /(2π) denotes the gyroaverage operator
evaluated at constant R. As the effects of collisions between ions and electrons develop
over a time scale that is longer by a factor O(

√
mi/me) than the ones due to ion–ion

collisions, we neglect the former, i.e. we assume C = Cii in (2.2). The linearized GK
Boltzmann equation is closed by the GK quasineutrality condition that determines the
Fourier component of the electrostatic potential φ(k, t) = ∫

drφ(r, t)eik·r, that is

[
e2

Te
+ q2

T
(1 − Γ0(a))

]
φ = q

〈δn〉
N

, (2.3)

where 〈δn〉 = 2π
∫

dv‖ dμB/mJ0(b)g is the perturbed gyroaveraged ion gyrocentre
density, a = b2/2 and Γ0(a) = I0(a)e−a, with I0(a) the modified Bessel function. The first
term on the left-hand side of (2.3) is the adiabatic electron response assumed to be given
by ne 
 eφ/Te, while the second term constitutes the ion polarization term. We remark
that the contribution from the flux-surface-average of φ in the electron adiabatic response
is neglected in (2.3) due to the linear and local limit adopted in the present study (Dorland
& Hammett 1993).

We now normalize (2.1) and (2.3). The physical quantities t, v‖, k⊥, k‖, φ and q, are
normalized, respectively, to LN/cs, cs, 1/ρs, 1/LN , Te/e and e, with cs = √

Te/m the
ion sound speed and ρs = cs/Ω the ion sound Larmor radius. The ion–ion collision
frequency, ν = 4Nq4 ln Λ/[3

√
π

√
mT3/2] that enters in the ion–ion collision operator C,

is normalized to cs/(NLN) and the gyrocentre density to N. The same dimensionless units
are used in the rest of the present paper. The normalized GK Boltzmann equation, (2.1),
then becomes

∂

∂t
g + i(ω∇B + k‖

√
2τ s‖)g − iωT

∗ J0(b
√

x)φFM + q
τ

iω∇BJ0(b
√

x)φFM

+
√

2√
τ

ik‖s‖J0(b
√

x)φFM = C, (2.4)
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where ω∇B = τωB(x + 2s2
‖)/q (with ωB = k⊥RB, τ = Ti/Te and RB = LN/LB the

normalized magnetic gradient), ωT
∗ = ω∗[1 + η(x + s2

‖ − 3/2)] (with ω∗ = k⊥ the
normalized ion diamagnetic frequency). The argument of the Bessel function, b

√
x, is

normalized to b = k⊥
√

2τ . The self-consistent electrostatic potential, φ, is obtained by
the normalized linearized GK quasineutrality,[

1 + q2

τ
(1 − Γ0(a))

]
φ = q 〈δn〉 . (2.5)

Equations (2.4) and (2.5) constitute a closed system that evolves self-consistently g and φ,
in the presence of the temperature and magnetic equilibrium gradients, once the collision
operator is specified (see § 2.2).

2.1. gyromoment hierarchy equation
To approach the solution of the GK model, given by (2.4) and (2.5), we use a
Hermite–Laguerre moment expansion of the ion distribution function. This allows us
to reduce the dimensionality of the linearized GK equation, (2.1), by projecting it onto
velocity-space Hermite–Laguerre basis polynomials. More precisely, we decompose the
perturbed gyrocentre distribution function as (Jorge, Ricci & Loureiro 2017; Mandell,
Dorland & Landreman 2018; Jorge et al. 2019a; Frei et al. 2020)

g =
∞∑

p=0

∞∑
j=0

Npj Hp(s‖)Lj(x)√
2pp!

FM, (2.6)

where we define the Hermite–Laguerre velocity moments of g, as follows:

Npj = 1
N

∫
dμ dv‖ dθ

B
m

g
Hp(s‖)Lj(x)√

2pp!
, (2.7)

with N = ∫
dμ dv‖ dθBFM/m. The Hermite–Laguerre coefficients Npj in (2.6) are referred

to as the gyromoments. In (2.6), we introduce the Hermite and Laguerre polynomials, Hp
and Lj, via their Rodrigues’ formulae (Gradshteyn & Ryzhik 2014), that is

Hp( y) = (−1)pey2 dp

dyp (e−y2
) (2.8)

and

Lj( y) = ey

j!
d j

dy j (e
−yy j) (2.9)

and their orthogonality relations, that is∫ ∞

−∞
dyHp( y)Hp′( y)e−y2 = 2pp!

√
πδp′

p (2.10)

and ∫ ∞

0
dyLj( y)Lj′( y)e−y = δ

j′
j , (2.11)

respectively. We now project (2.4) and (2.5) onto the Hermite–Laguerre polynomial
basis. For this purpose, we note that the Bessel function Jm appearing in both (2.4)
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and (2.5) and in the GK collision operators (Frei et al. 2021) can be conveniently
projected by expanding the Bessel functions, Jm, onto associated Laguerre polynomials,
Lm

n (x) = (−1)m dmLn+m(x)/dxm,

Jm(b
√

x) =
(

b
√

x
2

)m ∞∑
n=0

n!Kn

(n + m)!
Lm

n (x), (2.12)

where we introduce the nth-order kernel function

Kn = 1
n!

(
b
2

)2n

e−b2/4, (2.13)

with argument b = √
2τk⊥ (Frei et al. 2020). The projections of (2.4) and (2.5) onto the

Hermite–Laguerre basis yields the linearized gyromoment hierarchy equation that states
the time evolution of the gyromoments, Npj, that is

∂

∂t
Npj + ik‖

√
τ

∑
p′

H‖p
p′ Np′j + i

τ

q
ωB

∑
p′j′

(H‖pj
Bp′j′ + H⊥pj

Bp′j′)N
p′j′

= (F pj − F ‖pj
B )φ + Cpj, (2.14)

where we introduce the phase-mixing operators, associated with the parallel and
perpendicular drifts,

H‖p
p′ =

√
p + 1δ

p+1
p′ + √

pδ
p−1
p′ , (2.15a)

H‖pj
Bp′j′ = δ

j
j′(

√
( p + 1)( p + 2)δ

p+2
p′ +

√
2p + 1δ

p
p′ +

√
p( p − 1)δ

p−2
p′ ), (2.15b)

H⊥pj
Bp′j′ = δ

p
p′((2j + 1)δ

j
j′ − jδj−1

j′ − (j + 1)δ
j+1
j′ ), (2.15c)

and the operators that provide the instability drive and are proportional to the equilibrium
gradients

F pj = iω∗

[
Kjδ

0
p + η

(
Kj

δ2
p√
2

+ δ0
p

(
2jKj − jKj−1 − (j + 1)Kj+1

))]
, (2.16a)

F ‖pj
B = δ1

p√
τ

ik‖Kj + iωBδ
0
p

[
2(j + 1)Kj − jKj−1 − (j + 1)Kj+1

] + iωBKj

√
2δ2

p . (2.16b)

In (2.14), the Hermite–Laguerre projection of the collision operator, C, is defined by

Cpj =
∫

dθ dμ dv‖
B
m

Hp(s‖)Lj(x)√
2pp!

C. (2.17)

In this work, different collision operator models for C are considered and detailed in § 2.2.
The linearized gyromoment hierarchy equation is coupled with the self-consistent GK
quasineutrality condition that, projected onto the Hermite–Laguerre basis, is given by[

1 + q2

τ

(
1 −

∞∑
n=0

K2
n

)]
φ = q

∞∑
n=0

KnN0n. (2.18)

Equations (2.14) and (2.18) constitute an infinite set of linear coupled fluid equations
for the gyromoments Npj, and depend only on the Fourier mode wavevector k and time
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t. In order to solve numerically (2.14) together with (2.18), we apply a simple closure
by truncation, i.e. we solve (2.14) and (2.18) up to ( p, j) ≤ (P, J) and set Npj = 0 for
all ( p, j) > (P, J) given 0 < P, J < ∞. When applying the closure by truncation to the
gyromoment hierarchy equation, the infinite sums appearing in the GK quasineutrality,
(2.18), are consistently truncated up to J, that is

[
1 + q2

τ

(
1 −

J∑
n=0

K2
n

)]
φ = q

J∑
n=0

KnN0n. (2.19)

Finally, we remark that a high-collisional closure of the gyromoment hierarchy is derived
in § 4.1.

A gyromoment hierarchy equation, similar to the one given in (2.14), is obtained
by Mandell et al. (2018). In their formulation, the probabilist’s Hermite polynomials,
defined by Ĥp( y) = 2−p/2Hp(y/

√
2) and satisfying the orthogonality relation given in

(2.10) but weighted by e−y2/2, are used, while collisional effects are modelled by the GK
Dougherty collision operator model because of the simplicity of its expression on the
Hermite–Laguerre basis (see Appendix C). Since the collisional effects are the main focus
of the present study, we consider here more realistic collision operator models.

2.2. Gyrokinetic linearized collision operator models
While numerous collision operator models are available in the literature (see, e.g.
Hirshman & Sigmar 1976a; Abel et al. 2008; Sugama, Watanabe & Nunami 2009; Li &
Ernst 2011; Madsen 2013b; Sugama et al. 2019), the main focus of this work is a linearized
GK Coulomb collision operator, and we leverage its formulation derived and implemented
in Frei et al. (2021). This advanced linearized GK collision operator is obtained from
the nonlinear full-F GK Coulomb operator derived in Jorge et al. (2019a). To highlight
the importance of FLR terms in the Coulomb collision operator, the DK limit of the GK
Coulomb collision operator is also considered. In addition, collision operators found in
the literature and widely used in numerical codes are also considered for comparison.
In particular, we consider the GK and DK Sugama collision operators (Sugama et al.
2009), the GK and DK momentum-conserving pitch-angle scattering operators (Helander
& Sigmar 2002), the zeroth-order DK HSC collision operator (Hirshman & Sigmar 1976a)
and the GK and DK Dougherty collision operators (Dougherty 1964). The gyromoment
expansion of the linearized GK/DK Coulomb and the GK/DK Sugama collision operators
were reported in Frei et al. (2021) where the linearized DK Coulomb and GK/DK Sugama
operators are successfully benchmarked against the GK continuum code GENE (Jenko
et al. 2000). The Hermite–Laguerre expansion of the pitch-angle, HSC and Dougherty
collision operators are reported in appendices A–C, respectively.

Before turning to the investigation of the impact of collisions on the ITG mode, here
we recall some important conservation properties of linearized like-species collision
operators. These properties are useful to derive the high-collisional limit of the
gyromoment hierarchy (see § 4.1) and to verify the numerical implementation of the
collision operators. A model of a linearized collision operator for ion–ion collisions, C,
is obtained by linearizing a nonlinear collision operator, that we denote by CNL. Since
collisions act at the particle position r (rather than at the gyrocentre position R), the
nonlinear collision operator is most often derived as acting on the full particle distribution
function and is expressed in the particle phase space (r, v). While the functional form of
CNL depends on the choice of collision model, the linearized collision operator, C, can
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always be expressed as

C = CT + CF, (2.20)

where we introduce the test component of the linearized collision operator, CT =
CNL( f , fM), and the field component, CF = CNL( fM, f ), with fM = fM(r, v) the particle
Maxwellian distribution function and f = f (r, v) a small perturbation. Conservation
properties of the collision operator constrain the test and field components. In fact, while
particle conservation is satisfied by both components, such that

∫
dvCT =

∫
dvCF = 0, (2.21)

the momentum and energy conservations require that

∫
dvvCT = −

∫
dvvCF, (2.22)∫

dvv2CT = −
∫

dvv2CF, (2.23)

respectively. From the conservation properties of the linearized collision operator C,
(2.21)–(2.23), constraints on the coefficients Cpj can be derived in the zero gyroradius
limit, when the gyrocentre and particle position correspond. In fact, using (2.17) combined
with (2.21)–(2.23) yields the relations

C00 = 0, C10 = 0, C20 =
√

2C01, (2.24a–c)

which express the conservation of gyrocentres, momentum and energy. The constraints in
(2.24a–c) are satisfied by all linearized collision operator models considered in the present
work in the long wavelength limit and are fulfilled numerically to machine precision.

3. Collisionless limit

In this section, we derive the collisionless limit of the gyromoment hierarchy equation
given in (2.14), showing that the ITG collisionless results (see, e.g. Hahm & Tang 1989;
Romanelli 1989; Romanelli & Briguglio 1990; Chen et al. 1991) can be retrieved as
an asymptotic limit of the gyromoment hierarchy. We first derive the collisionless ITG
dispersion relation in § 3.1 by solving directly the GK equation, (2.4). Then, we obtain
closed semianalytical expressions of the collisionless linear gyromoment response in
§ 3.2. The expressions of the gyromoments we obtain are valid at arbitrary order in the
normalized magnetic frequency, ω∇B/ω, and are written in terms of linear combinations
of definite integrals of velocity-independent hypergeometric functions, which reduce to
linear combinations of derivatives of plasma dispersion functions in the slab limit. Finally,
in § 3.3 and thanks to the expressions of the gyromoments developed in § 3.2, we show
the equivalence between the gyromoment and GK dispersion relations by considering
the infinite gyromoment limit, focusing on the slab branch. Ultimately, the results of the
present section (in particular the expressions of the collisionless gyromoment response)
allow us to investigate the collisionless gyromoments spectrum and to progress in the
analysis of the convergence properties of the gyromoment approach, discussed in §§ 7
and 8.
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3.1. Collisionless GK dispersion relation
We first derive the ITG dispersion relation by solving directly the GK equation, (2.4).
Fourier transforming (2.1) in time with C = 0, such that ∂t → −iω, and introducing ω =
ωr + iγ , with ωr and γ the real mode frequency and the growth rate, respectively, the
normalized perturbed ion gyrocentre distribution function, g/φ, can be expressed as

g
φ

=
3∑

l=1

ĝl (3.1)

with

ĝ1 = −q
τ

J0(b
√

x)FM, (3.2a)

ĝ2 = q
τ

ω

ω − ω∇B − z‖s‖
J0(b

√
x)FM, (3.2b)

ĝ3 = − ω∗
T

ω − ω∇B − z‖s‖
J0(b

√
x)FM, (3.2c)

where we introduce z‖ = √
2τk‖. The l = 1 contribution to the sum in (3.1) is the adiabatic

response, while the l = 2 and l = 3 terms are associated with the Landau damping and
equilibrium gradient drive. We remark the presence of the velocity-dependent magnetic
frequency ωB in the resonant denominator of the l = 2 and l = 3 contributions.

The collisionless GK dispersion relation is deduced from the linearized GK
quasineutrality condition given in (2.5),

1 + q2

τ
(1 − Γ0(a)) − qn̂ = 0, (3.3)

where n̂ = ∑3
l=1 n̂l is the density perturbation with n̂l = ∫

dvJ0ĝl and ĝl given in (3.2).
By considering an unstable mode, i.e. γ > 0, the velocity integrals appearing in n̂l can be
performed explicitly by writing the resonant term, 1/(ω − ω∇B − z‖s‖), in integral form
(Beer & Hammett 1996)

1
ω − ω∇B − z‖s‖

= −i
∫ ∞

0
dσ exp(iσ(ω − ω∇B − z‖s‖)). (3.4)

We remark that (3.4) allows us to evaluate the velocity integrals, appearing in n̂l, exactly
and to retain the effects of magnetic drifts in N̂pj

l at arbitrary order in ωB/ω. Using (3.4),
one derives

n̂1 = −q
τ
Γ0(a), (3.5a)

n̂2 = − iq
τ

ω

∫ ∞

0
dσeiσωI⊥(σ )I‖(σ ), (3.5b)

n̂3 = ik⊥

∫ ∞

0
dσeiσω

[
I‖(σ )I⊥(σ )

+η

(
I‖2(σ )I⊥(σ ) + I‖(σ )I⊥1(σ ) − 3

2
I‖(σ )I⊥(σ )

)]
, (3.5d)
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where we introduce

I⊥(σ ) = 1
1 + iασ

I0

(
a

1 + iασ

)
exp(−a/(1 + iασ)), (3.6a)

I‖(σ ) = 1√
1 + 2iασ

exp(−z2
‖σ

2/[4(1 + 2iασ)]), (3.6b)

I⊥1(σ ) = exp(−a/(1 + iασ))

2(1 + iασ)3

×
[
(2(1 + iασ) − 2a)I0

(
a

(1 + iασ)

)
+ 2aI1

(
a

(1 + iασ)

)]
,

I‖2(σ ) = (2(1 + 2iσα) − σ 2z2
‖)

4(1 + 2iσα)5/2
exp(−z2

‖σ
2/(4(1 + 2iσα))), (3.6c)

with α = qωB/τ . Equation (3.3), with the definitions in (3.5) and the velocity integrals in
(3.6) constitute the collisionless GK dispersion relation for the unstable modes γ > 0. We
note that the exponential factors eiσω, appearing in (3.5), ensure the convergence of the
integrals at σ → ∞ for γ > 0. On the other hand, the inclusion of stable modes (γ < 0)
in (3.3) can be obtained by expressing the velocity integrals in n̂ using generalized plasma
dispersion functions (Gültekin & Gürcan 2019) and efficient numerical algorithms can be
used to solve the dispersion relation in the entire complex plane (Xie et al. 2017; Gültekin
& Gürcan 2018). However, here we focus on the upper half of the complex plane since one
of the advantages of the transformation (3.4) is that it yields one-dimensional integrals
that can be easily evaluated numerically.

We finally note that the collisionless GK dispersion relation can be simplified in the
sITG case. Neglecting ωB in (3.2), the velocity integrals appearing in n̂ and given in (3.5),
can be expressed in terms of the plasma dispersion function. Then, the GK dispersion
relation, (3.3), becomes

1 + 1
τ

+ 1
τ
ξZ(ξ)Γ0(a) − k⊥

k‖

1√
2τ

[Γ0(a)Z(ξ)

+η

(
Γ0(a)ξ (1 + ξZ(ξ)) − Γ0(a)

2
Z(ξ) + aZ(ξ) (Γ1(a) − Γ0(a))

)]
= 0, (3.7)

where ξ = ω
√

2τ/k‖ is the normalized mode phase velocity, Z(ξ)=∫ ∞
−∞ ds‖e−s2

‖/(s‖−ξ)

/
√

π is the plasma dispersion function and Γ1(a) = I1(a)e−a.

3.2. Collisionless linear gyromoment response
We now obtain the collisionless expressions of the gyromoments by projecting (3.1) onto
the Hermite–Laguerre basis. This yields

Npj

φ
=

3∑
l=1

N̂pj
l , (3.8)

where we introduce

N̂pj
l = 2π

∫
dv‖ dμ

B
m

Hp(s‖)Lj(x)ĝl√
2pp!

, (3.9)

with ĝl defined in (3.2). Performing the velocity integral in (3.9) using (3.4) for
an unstable mode with γ > 0 and identities involving hypergeometric functions and
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Hermite–Laguerre polynomials (described in Appendix D), we obtain

N̂pj
1 = −q

τ
Kjδ

0
p, (3.10a)

N̂pj
2 = − iqω

τ

∞∑
n=0

Kn√
2pp!

Ipj
n , (3.10b)

N̂pj
3 = ik⊥√

2pp!

∞∑
n=0

Kn

{
Ipj

n + η

[
(2j + 1)Ipj

n − jIpj−1
n − (j + 1)Ipj+1

n

+Ip+2j
n

4
+

(
p + 1

2

)
Ipj

n + p( p − 1)Ip−2j
n − 3

2
Ipj

n

]}
, (3.10c)

where Ipj
n is given in (D8) as a finite sum of terms that involve velocity-independent

definite integrals of hypergeometric functions with complex argument. The expressions in
(3.10) are semianalytical because they still contain a real definite integrals that need to be
computed numerically. We remark that generalized plasma dispersion relations can also be
used to express the collisionless gyromoments N̂pj

l , given in (3.10), extending the formulae
in Appendix D to the lower half of the complex plane of ω. We use the collisionless
expressions of the gyromoments in § 7 to investigate their magnitude in the presence of
kinetic effects, such as Landau damping and magnetic gradient drift resonance.

In the case of the sITG branch, the velocity integrals containing the resonant term,
1/(ω − z‖s‖) (being ωB = 0), can be performed without using (3.4). In fact, in this case,
the collisionless expression of the gyromoments becomes

Npj

φ
= −q

τ
Kjδ

0
p + 1√

2τ

k⊥
k‖

1√
2pp!

(Kj(−1)pZ( p)(ξ)

+η

[
Kj

(
(−1)p+2

4
Z( p+2)(ξ) + ( p + 2j)(−1)pZ( p)(ξ) + p( p − 1)(−1)p−2Z( p−2)(ξ)

)

− [
jKj−1 + (j + 1)Kj+1

]
(−1)pZ( p)(ξ)

)] − q
τ

ξKj√
2pp!

(−1)pZ( p)(ξ), (3.11)

where Z( p)(ξ) = dpZ(ξ)/dξ p is the pth-order derivative of the plasma dispersion
relation, which can be defined in terms of the Hermite polynomials, Hp, by Z( p)(ξ) =
(−1)p

∫ ∞
−∞ ds‖Hp(s‖)e−s2

‖/(s‖ − ξ)/
√

π.
As an aside, we also note that (3.8) can be related to the kinetic response of the

monomial velocity-space moments, Mj,k = v
j+2k
T

∫
dvgs j

‖xk/2k, used in Beer & Hammett
(1996) to derive general closure expressions for toroidal gyrofluid equations, in the k⊥ = 0
limit, such as

Npj =
�p/2�∑
p1=0

j∑
j1=0

(−1)p1 2p−2p1

p1!( p − 2p1)!
(−1)j1 j!

(j − j1)!(j1!)2

2j1

v
2j1+p−2p1
T

Mp−2p1,j1√
2pp!

. (3.12)

Equation (3.12) provides a direct link between the gyromoment hierarchy equation
described here and the moment equations derived in Beer & Hammett (1996) and
associated closure expressions.
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3.3. gyromoment dispersion relation and infinite gyromoment limit
The ITG dispersion relation expressed in terms of the gyromoments Npj (with the closure
up to ( p, j) ≤ (P, J)) is obtained from the truncated GK quasineutrality condition (2.19),
yielding

1 + q2

τ

⎛
⎝1 −

J∑
j=0

K2
j

⎞
⎠ −

J∑
j=0

Kj

3∑
l=1

N̂0j
l = 0, (3.13)

where N̂0j
l is given by (3.10) with p = 0.

Focusing on the sITG branch, we now demonstrate that, in the P → ∞ and J → ∞
limits, the ITG gyromoment dispersion relation, (3.13), is equivalent to the GK dispersion
relation given in (3.7). In order to solve the gyromoment dispersion relation (3.13), we use
the expressions for the collisionless gyromoments, Npj/φ given in (3.11) in the sITG case.
Setting p = 0 in (3.11) and plugging the resulting expression for Np0/φ into (3.13) yields

1 + 1
τ

+ 1
τ
ξZ(ξ)Γ̂0(a) − k⊥

k‖

1√
2τ

[
Γ̂0(a, J)Z(ξ) + η

(
Γ̂0(a, J)ξ (1 + ξZ(ξ))

− Γ̂0(a, J)

2
Z(ξ) + Z(ξ)Π̂1(a, J)

)]
= 0, (3.14)

where we introduce the quantities

Γ̂0(a, J) =
J∑

j=0

K2
j , (3.15a)

Π̂1(a, J) =
J∑

j=0

Kj
(
2jKj − jKj−1 − (j + 1)Kj+1

)
, (3.15b)

which are associated with FLR effects. We remark that the sITG dispersion relation, given
in (3.14) obtained using (3.11) and (3.13), agrees with the one found in Mandell et al.
(2018). By comparing (3.14) with (3.7), one observes that they are equivalent in the infinite
moment limits provided that Γ̂0(a,∞) = Γ0 and Π̂1(a,∞) = a(Γ1 − Γ0). This can be
verified explicitly by considering the J → ∞ limit in (3.15) and using the definition of the
kernel function Kj in (2.13). In fact, we derive

Γ̂0(a,∞) =
∞∑

j=0

1
(j!)2

(
b
2

)4j

e−b2/2

= e−aI0 (a) = Γ0(a) (3.16)

and

Π̂1(a,∞) = 2e−b2/2
∞∑

j=0

[
1

j!(j + 1)!

(
b
2

)4(j+1)

− 1
(j!)2

(
b
2

)4j+2
]

= ae−a (I1(a) − I0(a)) = a (Γ1(a) − Γ0(a)) . (3.17)
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(a) (b)

FIGURE 1. Plots of Γ̂0(a, J) (a) and Π̂1(a, J) (b) as a function of a = b2/2 for increasing values
of J. The solid black lines represent their asymptotic limits, Γ0 and −a(Γ1 − Γ0), respectively.

(a) (b)

FIGURE 2. Collisionless sITG growth rate, γ (a), and frequency, ωr (b), as a function of the
perpendicular wavenumber k⊥ for different values of J. The coloured lines are the solution of
the gyromoment hierarchy dispersion relation, given in (3.14), while the black lines are solutions
of (3.7), i.e. the J = ∞ solution. Here, η = 3 and k‖ = 0.1.

Figure 1 displays the quantities, Γ̂0(a, J) and Π̂1(a, J) defined in (3.15), for different
values of J, as well as their J → ∞ limits. It can be observed that Γ̂0(a, J) and Π̂1(a, J)
converge to Γ0 and a(Γ1 − Γ0) when J → ∞. We notice that convergence is faster for
low values of a = b2/2, i.e. at long wavelength. This is in agreement with the fact that
the truncation of the sums in (3.16) and (3.17) to include only j ≤ J terms yields an error
O(b4J) (Mandell et al. 2018).

The impact on the ITG mode due to approximating Γ̂0(a,∞) and Π̂1(a,∞) with
Γ̂0(a, J) and Π̂1(a, J) can be illustrated by solving the ITG dispersion relation, (3.14), for
the mode complex frequency ω = ωr + iγ , as a function of J, and comparing its prediction
with the one from the GK dispersion relation, given in (3.7). Figure 2 shows the ITG
growth rate γ and the corresponding real frequency ωr solution of the gyromoment sITG
dispersion relation given in (3.14), plotted as a function of the perpendicular wavenumber
k⊥ for increasing values of J. For comparison, the collisionless GK solution, obtained from
(3.7), is shown. Both γ and ωr, obtained by the dispersion relation expressed in terms
of gyromoments, (3.14), approach the one predicted by (3.7) as J → ∞. Convergence
is achieved with small J at long wavelengths (e.g. the growth rate peak at k⊥ 
 0.6 is
well reproduced with J ∼ 5). On the other hand, for small perpendicular wavelengths
and as a rule of thumb, J � k2

⊥ must be retained in order to retrieve accurately the GK
collisionless prediction (e.g. the k⊥ 
 5 case is well reproduced with J � 25). We remark
that, if J is not sufficiently large, the truncation of the quantities, used in (3.15), can yield
significant deviations in the growth rate γ and frequency ωr. The presence of collisions is
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expected to affect the convergence estimate reducing J even for short wavelength modes,
as numerically demonstrated in § 8.

4. High-collisional limit

We now investigate the high-collisional limit of the gyromoment hierarchy, (2.14),
focusing on two reduced models that retain only a finite number of gyromoments.
In the high-collisionality limit, high-order gyromoments are damped by the presence
of collisions and the ITG mode can be accurately described by considering only the
evolution of the lowest-order gyromoments. Indeed, the perturbed gyrocentre distribution
function is expected not to significantly deviate from a perturbed Maxwellian at high
collisionalities. We consider, first, a reduced model based on six gyromoments (6GM),
obtained by using a closure by truncation of the gyromoment hierarchy. Second, we
consider a reduced model based on four gyromoments (4GM), rigorously derived
as an asymptotic limit of the 6GM using the Chapman–Enskog closure to express
the highest-order gyromoments as a function of the lower-order ones in the limit of
ε ∼ k‖λmfp � 1. While the Chapman–Enskog procedure allows us to reduce the number
of gyromoments, closures for the FLR terms associated with the Kn kernel functions and
inherent to gyrofluid models (Brizard 1992; Dorland & Hammett 1993; Beer & Hammett
1996; Waltz et al. 1997; Madsen 2013a; Held, Wiesenberger & Kendl 2020), are still an
open issue in the literature. The closure issue appears explicitly in the Fourier exponential
form of the kernel function defined in (2.13). Appendix E is dedicated to exploring possible
FLR closures by using a Padé approximation technique applied to the 4GM model. To
make analytical progress, we focus here on long wavelength modes. Consistently, we
model collisions using the DK Coulomb operator (Frei et al. 2021). This has the advantage
of avoiding infinite sums with FLR terms that need to be truncated depending on the value
of the perpendicular wavenumber, k⊥.

The present section is structured as follows. In § 4.1, we derive the 6GM and 4GM
reduced models. The predictions are compared with the ones of the full gyromoment
hierarchy and are also verified against the GK code GENE. In § 4.2, we explore the
high-collisional limit by deriving a general algebraic collisional dispersion relation from
which we discuss the limits of the slab and toroidal branches of the ITG mode.

4.1. 6GM and 4GM reduced models
We start by deriving the 6GM model. We introduce the lowest-order normalized fluid
gyromoments, i.e. the gyrocentre density N = N00, the parallel velocity V = N10/

√
2, the

parallel and perpendicular temperatures, T‖ = √
2N20 + N and T⊥ = N − N01 and, finally,

the parallel and perpendicular heat fluxes, associated with the deviations of g from the
Maxwellian distribution function, Q‖ = N30 and Q⊥ = N11. The evolution equations of
these gyromoments are obtained by setting ( p, j) = (0, 0), (1, 0), (2, 0), (0, 1), (3, 0) and
(1, 1) in (2.14), respectively, and by neglecting all higher-order gyromoments. This yields

∂

∂t
N + ik‖

√
2τV + iτωB

(
T‖−T⊥

) + iΓ1φ = 0 (4.1a)

√
2

∂

∂t
V + ik‖√

τ
K0φ + ik‖

√
τT‖+iτωB

(
4
√

2V − Q⊥+
√

6Q‖
)

= 0, (4.1b)

∂

∂t
T‖+ik‖

√
6τQ‖+iτωB

(
5T‖−4N + T⊥

)
+ i(Γ2 − Γ1)φ = −να

(
T‖−T⊥

)
, (4.1c)
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∂

∂t
T⊥+ik‖

√
τ(

√
2V + Q⊥) − iτωB

(
3N − T‖−3T⊥

)
− i(Γ3 − Γ1)φ = ν

α

2

(
T‖−T⊥

)
, (4.1d)

∂

∂t
Q‖+ik‖

√
3τ

2
(T‖−N) + iτωB

(
2
√

3V + 8Q‖
)

= −ν

(
8
5

√
2
π

Q‖+ 8

5
√

3π
Q⊥

)
, (4.1e)

∂

∂t
Q⊥+ ik‖√

τ
K1φ + ik‖

√
τ(N − T⊥)

− iτωB

(√
2V − 6Q⊥

)
= −ν

(
28
15

√
2
π

Q⊥+ 8

5
√

3π
Q‖

)
, (4.1f )

where we introduce the numerical coefficients α = 16/15
√

2/π. We remark that the
collisional terms in (4.1) are obtained by using the lowest-order gyromoments of the
DK Coulomb collision operator (Frei et al. 2021) and the energy constraints expressed
in (2.24a–c). The quantities appearing in the evolution equations, (4.1), are defined by

Γ1 = K0 (2ωB − ω∗) + K1 (ω∗η − ωB) , (4.2a)

Γ2 = (2ωB − ω∗η)K0, (4.2b)

Γ3 = K0 (ω∗η − ωB) + K1 (4ωB − ω∗(1 + 2η)) + 2K2 (ηω∗ − ωB) . (4.2c)

Additionally, the electrostatic potential, φ, is determined by the self-consistent
quasineutrality condition obtained from (2.18), i.e.⎡

⎣1 + q2

τ

⎛
⎝1 −

1∑
j=0

K2
j

⎞
⎠

⎤
⎦ φ = q(K0 + K1)N − K1T⊥, (4.3)

where the infinite sum appearing in the polarization term in (2.18) is truncated to j = 1
consistently with the fact that the FLR terms are represented up to K1 in the right-hand side
of the same equation. The system in (4.1) with (4.3) constitutes a closed set of fluid-like
equations that we refer to as the 6GM model.

To derive the 4GM model, further reducing the number of gyromoments appearing in
the 6GM model, we apply the Chapman–Enskog asymptotic closure scheme (Chapman
& Cowling 1941; Jorge et al. 2017) to the 6GM model. We introduce the dimensionless
small parameter ε ∼ λmfpk‖ ∼ √

τk‖/ν � 1, which quantifies the importance of the
non-Maxwellian part of g. Thus, we expect that the Chapman–Enskog closure and the
reduced models derived in this section to be valid when typically ν � √

τk‖. The small
parameter ε allows us to express the heat fluxes Q‖ and Q⊥ as a function of the lowest-order
gyromoments, by applying the ordering Q‖ ∼ Q⊥ ∼ εN (with T‖ ∼ T⊥ ∼ V ∼ N) and
∂t ∼ γ ∼ εν. We neglect the terms proportional to ωB, which are smaller than the terms
proportional to k‖T‖ and k‖T⊥ since ωB/k‖ � 1 in the boundary region. With these
assumptions, (4.1c) and (4.1d) can be solved at the leading order in ε, yielding

Q‖ = ik‖
χ

‖
⊥
τ
K1φ + ik‖χ

‖
⊥(N − T⊥) − ik‖χ

‖
‖ (T‖−N), (4.4a)

Q⊥=−ik‖
χ⊥

⊥
τ
K1φ − ik‖χ⊥

⊥ (N − T⊥) + ik‖χ⊥
‖ (T‖−N), (4.4b)
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where we introduce the thermal conductivities,

χ
‖
⊥ = 5

16

√
π

3

√
τ

ν
, χ

‖
‖ = 35

32

√
2π

3

√
τ

ν
, χ⊥

⊥ = 5
√

2π

16

√
τ

ν
, χ⊥

‖ = 5
√

π

16

√
τ

ν
.

(4.5a–d)

We remark that χ
‖
‖ > χ

‖
⊥ and that χ⊥

⊥ > χ⊥
‖ . Equation (4.1), with the closure relations

expressed in (4.4), yields the 4GM for the lowest-order gyromoments fluid quantities N,
V , T‖ and T⊥ and provides the rigorous ν � √

τk‖ asymptotic limit of the gyromoment
hierarchy. We remark that an analytical procedure to close the gyromoment hierarchy
similar to the one considered here for the ITG mode, can be applied in the more general
cases that include variation of equilibrium quantities along the magnetic field line and
electron dynamics.

To study the limits of validity of the 6GM and 4GM models, we compare in figure 3
the estimate of the ITG growth rate γ and real frequency ωr with the results of the
gyromoment hierarchy using the DK Coulomb collision operator (Frei et al. 2021) and
the GK collisionless dispersion relation given in (3.3). To compute γ and ωr from the
gyromoment hierarchy equation (see (2.14)) and from the 6GM and 4GM models (see
(4.1) and (4.4)), an initial-value calculation as well as a direct eigenvalue solver are
used, and their results are compared for consistency. The same numerical methods are
used to evaluate all the results reported in the present paper. For verification purposes,
the results of GENE simulations using the same operator (Jenko et al. 2000) are also
shown. Here, we consider (P, J) = (18, 6) with a closure by truncation (convergence
studies are reported in § 8) and k⊥ = 0.5, which corresponds approximately to the fastest
growing ITG mode. The results are shown as a function of the collisionality ν, for
two different normalized temperature gradients, η = 3 and η = 5. First, an excellent
agreement is observed between the gyromoment approach and the GENE simulations
at arbitrary collisionality ν, using the same DK Coulomb collision operator, confirming
the preliminary study reported in Frei et al. (2021). Second, both GENE and the
gyromoment ITG growth rates and real frequencies agree well with the collisionless limit
(i.e. ν � 1) and with the high-collisional predictions (i.e. ν � √

τk‖ ∼ 0.1), obtained
from the 6GM and 4GM models. Overall, the 6GM provides a better approximation to
the low-collisionality solution than the 4GM, while they both agree in the high-collisional
limits. It is remarkable that the 6GM retrieves surprisingly well the ITG growth rate γ

when η = 5, but fails to predict correctly the mode frequency ωr. Finally, we remark
that the 4GM yields an unphysical ωr < 0, when the collisionality is below ν � 10−2

with η = 3. This is mainly due to the fact that, in the low-collisionality limit, the 1/ν

dependence of the thermal conductivities given in (4.5a–d) produces arbitrarily large heat
fluxes. The good agreement observed in figure 3 illustrates the multi-fidelity nature of the
gyromoment approach that allows the derivation of reduced models able to address both
the collisionless and high-collisional limits of the GK equation, an attractive feature in the
assessment of the plasma dynamics in the boundary region.

4.2. High-collisional dispersion relation
We now derive an algebraic dispersion relation using the 4GM equations and discuss the
limits of the slab and toroidal branch of the ITG mode. As collisional effects enter through
the parallel and perpendicular thermal conductivities such that χ

‖
⊥ ∼ χ

‖
‖ ∼ χ⊥

‖ ∼ χ⊥
⊥ ∼

1/ν (see (4.5a–d)), we assume that the heat fluxes become negligible when ν � k‖, i.e.
Q‖ 
 0 and Q⊥ 
 0 (see (4.4)). Hence, a dispersion relation can be derived from the 4GM

https://doi.org/10.1017/S0022377822000344 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000344


18 B.J. Frei, A.C.D. Hoffmann and P. Ricci

(a) (b)

FIGURE 3. The sITG growth rate γ (a) and real frequency ωr (b) as a function of collisionality
ν obtained using the gyromoment approach with the DK Coulomb collision operator (solid
blue line), GENE with the same operator (red markers), the collisionless GK dispersion relation
(dotted black) and the 4GM and 6GM high-collisional limits (red dashed–dotted and red dotted
lines, respectively). The solution of the dispersion relation given by (4.6), derived in the case
of Q‖,⊥ = 0, is also plotted for comparison by the solid thin black lines. Here, we consider
k‖ = 0.1, k⊥ = 0.5 and τ = 1.

equations, (4.1), yielding

aω4 + bω3 + cω2 + dω + e = 0, (4.6)

where

a = Γφ, (4.7a)

b = 3
2

iανΓφ − Γ1K0 − Γ3K1 − 16ΓφτωB, (4.7b)

c = iαν

2

(K1 (Γ2 − 2Γ3) − 32τΓφωBΓ1K0
)

− 3k2
‖τΓφ − k2

‖K2
0 + τωB (K0 (14Γ1 − Γ2 + Γ3) + K1 (Γ1 + 12Γ3)) , (4.7c)

d = iαν

[
k2

‖

(
K0K1 − 5

2
τΓφ − 3

2
K2

0

)

+τωB (Γ1 (13K0 + 2K1) − (Γ2 − 2Γ3)(K0 + 3K1))

]

+ τk2
‖
[
ωB

(
18τΓφ + K0 (8K0 + K1)

) + (2Γ1 − Γ2)K0 + 3Γ3K1
]
, (4.7d)

e = iαν

[
5k2

‖τωB
(
τΓφ + K2

0

) + k2
‖τ

(
Γ1 − Γ2

2
+ Γ3

)
(K0 + K1]

)

+ k2
‖τ

2ωB (K1 (Γ2 − 6Γ3 − 2Γ1) − 2K0 (4Γ1 − 2Γ2 + Γ3)) , (4.7e)

being terms proportional to ω2
B neglected (ωB � 1) and having defined Γφ = 1 + q2

(1 − K2
0 − K2

1)/τ . In (4.6), collisional effects are represented through the terms
proportional to iαν. The solution of (4.6) is plotted in figure 3 and approaches the 6GM
and 4GM models when ν � k‖, such that Q‖ = Q⊥ 
 0.

We now consider the slab and toroidal limits of (4.6) separately in detail. An estimate of
the sITG peak can be derived from (4.6) as a function of k‖, ν and η. Besides neglecting
the terms proportional to ωB and FLR effects (i.e. imposing K0 
 1, K1 
 0, K2 
 0,
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(a) (b)

FIGURE 4. Estimates of the normalized sITG peak, γ̂∗, obtained from (4.8), for increasing
values of ν̂∗ = 0.015 (from (a) to (b)), as a function of k̂‖∗ and the temperature ratio τ . The
local maxima of the growth rate is indicated by the dashed black lines. The growth rates γ̂∗ are
normalized to their maximal values.

such that Γφ 
 1), we assume that the sITG mode is far from the marginal stability limit
η ∼ ν � 1. Then, the dispersion relation in (4.6) reduces to

ω̂4
∗ + 3

2
iαν̂∗ω̂3

∗ − k̂2
‖∗ (1 + 3τ) ω̂2

∗ + k̂2
‖∗

[
τ − 3

2
iαν̂∗

(
1 + 5

2
τ

)]
ω̂∗ + 3

2
iαk̂‖∗ν̂∗τ = 0,

(4.8)

where we introduce ω̂∗ = ω/(ηω∗), ν̂∗ = ν/(ηω∗) and k̂‖∗ = k̂‖/(ηω∗). Given the
normalization of (4.8), the maximum growth rate is expected to be proportional to
γ 
 g(τ, ν̂∗)ηω∗ and occurs at k‖ 
 f (τ, ν̂∗)ηω∗. In figure 4, we show the maximum ITG
growth rate, γ̂∗ = γ /(ηω∗) (i.e. the imaginary part of ω̂∗) obtained by solving (4.8) as a
function of k̂‖∗ and ν̂∗. The effect of increasing ν̂∗ is primarily to shift the growth rate peak
to larger values of k̂∗

‖ for all values of τ . Additionally, while g(τ, ν) increases with τ for
all ν, it is found that f (τ, ν̂∗) is an increasing function of τ at large values of ν̂∗.

We remark that the collisionality dependence of the functions f and g is not present in
previous fluid ITG models based on the drift-reduced fluid equations (Mosetto et al. 2015).
This dependence arises here because the 4GM model (and more generally the gyromoment
hierarchy equation in (2.14)) allows for a different evolution of the perpendicular and
parallel temperature fluctuations assuming, in general, T‖ �= T⊥. On the other hand, the
drift-reduced Braginskii fluid model in, e.g. Zeiler et al. (1997), assumes that T‖ = T⊥.
In fact, the ν dependence in (4.8) enters in the dispersion relation, given in (4.8),
through terms proportional to να(T‖ − T⊥) which arise from the gyromoment C20 and
C01 components of the DK Coulomb collision operator.

To investigate the effect of anistotropic temperature fluctuations, we derive the evolution
equation of the temperature, T = (T‖ + 2T⊥)/3 − N. Using (4.1c) and (4.1d) and the
continuity equation, (4.1a), this can be expressed as

∂

∂t
T − ik‖

√
2τ

3
V + i

3
(Γ2 − 2Γ3 − 2Γ1) φ = 0. (4.9)
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From (4.9) with (4.1a) and (4.1b), and considering the limits used to derive (4.8), we obtain
the estimate of the maximum sITG growth rate,

ω̂3
∗ − k̂2

‖∗

(
1 + 2

3
τ

)
ω̂∗ + k̂2

‖∗τ = 0. (4.10)

From (4.10), one finds that the peak of the sITG growth rate is proportional to γ 

g(τ )ηω∗ and occurs at k‖ 
 f (τ )ηω∗. It is found that g(τ ) is an increasing function of
τ , while f (τ ) decreases with τ . We remark that (4.10) agrees with Mosetto et al. (2015)
by replacing the numerical factor 2/3 by 5/3, a difference due to the additional degree of
freedom assumed in the 4GM model.

We now turn to the toroidal ITG mode, driven unstable by the magnetic drifts and by
the presence of a finite temperature gradient. We derive a simple dispersion relation for
the toroidal ITG from (4.6) indicative of its properties. Since, in contrast to the sITG,
the toroidal ITG subsists at k‖ = 0, we set k‖ = 0 thus removing the coupling with sound
waves, and we adopt the long perpendicular wavelength limit, keeping terms up to O(k2

⊥),
such that K0 
 1 − τk2

⊥/2, K1 
 τk2
⊥/2, and K2 
 0. Since ωB � ω∗ in the boundary

region, we obtain
ω3 + btω

2 + ctω + dt = 0, (4.11)

where

bt = 3
2

iαν + ω∗ − 2ωB (1 + 8τ) + k2
⊥

[
2ωB

(
1 + 3

2
τ

)
− ω∗ (1 + τ + ητ)

]
, (4.12a)

ct = 3
2

iαν

[
ω∗ − 2ωB − 32

3
τωB + k2

⊥

(
2ωB

(
1 + 19

12
τ

)
− ω∗(1 + τ + τη)

)]

+ ωBω∗

[
2τ(η − 7) + k2

⊥

(
10ητ

(
τ − 1

5

)
+ τ (13τ + 14)

)]
, (4.12b)

dt = iανωBω∗τ
[
(3η − 13) + k2

⊥ (3η (2τ − 1) + 11τ + 13)
]
. (4.12c)

An estimate of the value of k⊥ that yields the largest growing mode can be derived from
(4.11) by neglecting terms proportional to ν, for simplicity. Then, the dispersion relation
in (4.11) becomes a second-order equation for ω presenting the largest solution ω when
the coefficient bt is minimized. Hence, by minimizing bt and considering ωB � ω∗, the
growth rate is maximized when k2

⊥ 
 1/[1 + τ(1 + η)]. Figure 5 shows the toroidal ITG
growth rate obtained by solving (4.11), as a function of the perpendicular wavenumber k⊥
and temperature ratio τ . We observe that the decrease of the perpendicular wavenumber of
the fastest growing mode with τ is present also at finite collisionality, ν. We also remark
that collisions tend to destabilize long wavelength modes.

5. ITG mode with GK coulomb collision operator

We now perform parameter scans to explore the dependence of the ITG linear growth
rate on the perpendicular and parallel wavenumbers, on the level of collisionality and on
the temperature and magnetic gradient strengths. Collisional effects are modelled with the
GK Coulomb collision operator (Frei et al. 2021). As a reference value, we consider k‖ ∼
0.1. This is justified by the strong ballooning character of the ITG mode in the boundary
region where k‖ is of the order of LN/q0R0 (with q0 the safety factor and R0 the major radius
of the tokamak devices) and typical H-mode edge values of q0 ∼ 4 and LN/R0 � 1/50. In
addition, we note that 1 � τ � 4 in the boundary. Therefore, we consider a temperature
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(a) (b)

FIGURE 5. Toroidal ITG growth rate as a function of the perpendicular wavenumber, k⊥ and
the temperature ratio τ obtained from (4.11), for a low (a) and a high (b) value of collisionality.
The local maxima of the growth rate are indicated by the dashed black lines. The growth rates
are normalized to the maximum value. Here, η = 7 and RB = 0.1.

ratio of τ = 1 for simplicity, and note that the effect of increasing τ can be inferred from
figures 4 and 5 for the slab and toroidal cases, respectively. We remark, that given the value
of k‖ and τ used in this section, the high-collisional regime is reached when ν � √

τk‖ =
0.1 in agreement with § 4.1. For the present numerical calculations, we fix (P, J) = (18, 6).
As we show in § 8, this choice ensures good convergence of the numerical results in the
range of parameters explored in this section.

Figure 6 displays the ITG growth rate in the (k‖, k⊥) parameter space when η = 3
for increasing collisionality ν (from figure 6a to 6c and from figure 6d to 6f ) and
magnetic gradient RB (slab in figure 6a–c and toroidal in figure 6a–c). For comparison
purposes, we show the stability boundaries obtained numerically from the gyromoment
hierarchy (dotted white) and from the 6GM and 4GM reduced models (red dotted
and dashed–dotted). First, we observe that, as collisionality increases, FLR collisional
stabilization effects become important and eventually suppress the ITG modes when
k⊥ � 1 and ν � 0.5. In fact, we notice that, at intermediate and high collisionalities, the
gyromoment hierarchy stability boundary follows closely the ones predicted by the 6GM
and 4GM models for long parallel (k‖ � 0.15) and perpendicular (k⊥ � 0.2) wavelengths
where the FLR collisional effects are negligible and kinetic effects are small. However,
while the ITG mode is completely suppressed for k⊥ � 0.5 when ν > 0.5 according to the
full gyromoment calculation, the 6GM and 4GM stability boundaries extend to k⊥ � 1.
This highlights the importance of FLR terms in the Coulomb collision operator model.
In fact, despite the lack of collisionless FLR terms in the 6GM and 4GM models, these
models agree with the gyromoment hierarchy at high collisionality when collisional effects
are modelled by the DK Coulomb even when k⊥ ∼ 2 (see, e.g. figure 12). We remark
that the complete stabilization of the ITG mode by FLR collisional damping requires a
level of collisionality (i.e. ν � 0.5) that is even higher than the typical SOL experimental
values, i.e. T � 10 eV, N ∼ 1019 m−3 and LN ∼ 5 cm yields a simple estimate of ν � 0.3.
Second, at a given collisionality, the toroidal ITG mode extends to shorter perpendicular
wavelength with respect to the slab case. At the same time, the peak of the growth rate
of the toroidal ITG (which occurs near k⊥ ∼ 0.5) is shifted at longer wavelengths in
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 6. The ITG linear growth rate, γ , in the (k⊥, k‖) parameter space, for increasing
collisionality ν (from (a) to (c) and from ( d) to ( f )) and magnetic gradient strength RB (from
(a–c) to (d–f )) at a temperature gradient strength of η = 3. The stability boundary of the
gyromoment hierarchy (dotted white line) and 6GM and 4GM (dotted and dot–dashed lines,
respectively) are shown for comparison. Here, we fix (P, J) = (18, 6).

the parallel direction compared with the slab branch, consistently with the fact that the
toroidal mode subsists in the k‖ = 0 limit. In all cases, the stabilization of the growth rate
at large k‖ is caused by Landau damping. Third, the peak growth rate of the toroidal ITG
is approximately twice as large as the slab one at all collisionalities.

We now assess the effects of collisions on the critical value of the temperature gradient
above which the ITG develops. For this purpose, we compute the ITG growth rate,
maximized over k‖ and k⊥, as a function of ν and η. This allows us to evaluate the stability
boundary shown in figure 7(a) for the slab and in figure 7(b) for the toroidal ITG modes
and compared them with the predictions of the 6GM and 4GM models. The slab and
toroidal ITG modes are destabilized by increasing η at all collisionality and are damped
(and/or suppressed) by FLR collisional effects. We remark that the gyromoment stability
boundary agrees with the collisionless one as obtained from (3.3). The sITG stability
boundary is highly sensitive to the level of collisionality, in particular for ν � 0.1. In fact,
the critical temperature gradient for the sITG mode onset is increased from η ∼ 1, when
ν � 1, to η ∼ 3, when ν � 1, in order to overcome the strong FLR collisional stabilization
effects. A similar observation can be made when using other GK collision operators, but
not shown (see § 6). However, we remark that the increase of η for the mode onset due
to FLR collisional damping is expected to be much weaker in experiments because of
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(a) (b)

FIGURE 7. The ITG growth rate maximized over k‖ and k⊥, denoted by maxk‖,k⊥(γ ), as a
function of the collisionality ν and normalized temperature gradient η for the slab (a) and
toroidal (b) ITG modes. The stability boundaries (which separates the unstable and stable modes)
predicted by the gyromoment approach using the GK Coulomb collision operator and the 6GM
and 4GM models are plotted by the white dotted, red dotted and red dotted–dashed lines,
respectively. The values of the growth rates in the low collisionality limit are in agreement with
(3.3).

lower values of ν. On the other hand, the toroidal ITG mode stability boundary is not
significantly affected by collisions and remains near the collisionless threshold. The reason
of this difference can be inferred from figure 6 which shows a peak of the growth rate near
k⊥ 
 0.3 when ν = 5 in the toroidal case (figure 6d–f ), while the mode is completely
suppressed in the slab case (figure 6a–c). Finally, we notice that the 6GM and 4GM
stability boundaries converge to a constant value near η 
 0.5 in the high-collisional limit.
At low collisionality, ν � 0.1, the ITG mode is completely suppressed according to the
4GM model because of kinetic effects associated with the parallel streaming.

6. Comparisons between collision operator models

In this section, we investigate the differences between the collision operator models
introduced in § 2.2. In particular, we compare them as a function of collisionality and
perpendicular wavenumber and measure their relative deviation with respect to the GK
Coulomb collision operator in § 6.1. We consider different collisionality regimes and
temperature gradient strengths. We demonstrate that energy diffusion and FLR effects
are important in the collisional damping of ITG modes, and find that the deviations, when
compared with the GK Coulomb collision operator, decrease with temperature gradient
strength at all collisionalities. One of the main results of this comparison is that the
smallest relative deviation (�15 %) is produced by the GK Sugama operator, while the
largest (�50 %) is obtained from the GK Dougherty operator. The importance of FLR
effects is highlighted in § 6.2 by investigating a SWITG typically peaking near k⊥ ∼ 1.5
that can be destabilized if collisional FLR terms are neglected. The present results are
particularly important since DK collision operators are often used in the continuum GK
codes to simulate the plasma boundary. In this section, we truncate the gyromoment
hierarchy, (2.14), at (P, J) = (18, 6) for all cases. We have checked that convergence is
achieved in all cases, in agreement with the convergence studies performed in § 8.
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6.1. Comparisons between the GK coulomb and collision operators models
We focus on the differences between the GK Coulomb collision operator, the GK/DK
Sugama collision operator (Sugama et al. 2009), the GK/DK momentum-conserving
pitch-angle scattering (pitch) operator (Helander & Sigmar 2002), the zeroth-order DK
HSC collision operator (Hirshman & Sigmar 1976a) and the GK/DK Dougherty collision
operator (Dougherty 1964). The gyromoment expansion of the Sugama collision operator
is detailed in Frei et al. (2021), while the gyromoment expansions of the other collision
operators are reported in appendices A–C.

Figure 8 shows the slab (figure 8a–c) and the toroidal (figure 8d–f ) ITG linear growth
rate at a relative temperature gradient strength of η = 3 from low (figure 8a,d) to high
(figure 8c, f ) collisionality as a function of the perpendicular wavenumber k⊥ using
the GK collision operators. The collisionless and high-collisional limits are plotted for
comparison. It is remarkable that the ITG growth rate is sensitive to both the collision
operator models and to the presence of FLR related terms. In fact, the GK Dougherty
collision operator produces the results that mostly differ with respect to the other GK
operator models, yielding the strongest ITG damping. The effect of energy diffusion can be
observed by comparing the GK pitch-angle and GK Sugama collision operators. While the
former systematically overestimates the ITG growth rate (compared with the GK Coulomb
operator) due to the absence of energy diffusion, the latter damps stronger the ITG mode
with growth rates smaller (but closer) than the GK Coulomb. Finally, we remark that the
GK Coulomb operator predictions approach the ones of the 6GM and 4GM models in the
limit of long perpendicular wavelengths for all collisionalities, since the FLR collisional
damping becomes negligible when k⊥ � 1.

By neglecting the FLR terms, the DK collision operators lead to a larger ITG growth
rate than the GK operators as shown in figure 9. Contrary to the latter, the DK collision
operators can eventually destabilize a SWITG peaking near k⊥ 
 1.5. The presence of
this SWITG can be inferred from figure 9 from the increase of the ITG growth rate
occurring for k⊥ � 1 when ν � 0.1 (see § 6.2). This behaviour is particularly pronounced
in the pitch angle and HSC collision operators at short wavelengths, and it is related
to the absence of energy diffusion in these operators (Ricci, Rogers & Dorland 2006;
Barnes et al. 2009), which is retained in the Coulomb, Sugama and Dougherty collision
operators. We also notice that the absence of energy diffusion in the pitch angle and HSC
collision operators affects the high-collisional limit. While the deviations between the DK
Coulomb, Sugama and Dougherty collision operators are reduced as the collisionality
increases and, ultimately, becomes negligible when ν � 1, converging to the 6GM and
4GM solutions, a difference subsists in the pitch-angle and HSC collision operators.
Finally, among the DK collision operators considered, the DK Sugama approaches better
the DK Coulomb collision operator.

The deviations of the collision operator models with respect to the GK Coulomb
operator can be quantified by computing their signed relative difference of the growth
rate, σC = (γC − γ )/γC where γC is the growth rate using the GK Coulomb and γ is the
growth rate obtained using the other collision operator models considered in figures 8
and 9. The results are shown in figure 10 where we plot σC as a function of collisionality,
ν, and of temperature gradient strength, η, for the toroidal branch (RB = 0.1). The GK
Sugama collision operator provides the results that best approach the GK Coulomb
collision operator. Among the other GK operators considered, the largest deviation is
produced by the GK Dougherty where the relative difference is larger than 30 % when
ν � 0.5. Surprisingly, while the GK pitch-angle operator systematically overestimates the
ITG growth rate (as observed from σC < 0), it yields an error smaller than (or of the
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 8. Comparisons between GK (solid lines) collision operator models in the case of the
slab (a–c) and toroidal (d–f ) ITG growth rate as a function of the perpendicular wavenumber
k⊥, from the low (a,d) to high (c, f ) collisionality regime. The collisionless (dashed black) and
6GM and 4GM (red dotted and dashed–dotted lines, respectively) growth rates are plotted for
comparisons. Here, η = 3, k‖ = 0.1.

(a) (b) (c)

(d ) (e) ( f )

FIGURE 9. Same as figure 8 using the DK collision operator models.
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 10. Signed relative difference, σC (defined in the main text), of the growth rate obtained
using the collision operator models, used in figures 8 and 9, with respect to the GK Coulomb
operator as a function of collisionality ν and temperature gradient strength η. The colourbars are
saturated at a maximal relative deviation of σC = ±0.4. Here, k‖ = 0.1, k⊥ = 0.5 with RB = 0.1
are considered, corresponding approximately to the peak ITG growth rate.

order of) 30 % in almost all the parameter space considered. In particular, the relative
signed difference of the GK pitch-angle collision operator is similar in absolute value
to the one of the GK Sugama at high η and all collisionalities, but with opposite sign.
We remark also that the negative sign of σC for the DK collision operators is the result
of ignoring the FLR collisional damping. For all the considered operators, the relative
deviation with GK Coulomb operator decreases at steeper temperature gradients while it
increases with collisionality.

The gyromoment approach allows for the investigation of the ITG eigenvalue spectrum
at finite collisionality. An example is shown in figure 11 for the toroidal case when
ν = 0.1 using the DK (figure 11a) and GK (figure 11b) pitch angle, Dougherty, Sugama
and Coulomb collision operators near to the peak growth rate occurring at k⊥ = 0.6.
First, focusing on the spectrum of the DK collision operators, we note that, while
the DK Sugama reproduces qualitatively well the eigenvalues of the DK Coulomb,
the DK Dougherty collision operator displays an eigenvalue spectrum with strongly
damped subdominant modes characterized by γ < 0. Similar differences between the DK
Dougherty and the DK Coulomb collision operators in the eigenvalue spectrum is reported
in the study of electron plasma waves at arbitrary collisionality by Jorge et al. (2019b). In
addition, despite the absence of energy diffusion, the DK pitch-angle operator features
similar eigenvalues than the DK Coulomb. Focusing now on the spectrum of the GK
collision operators, we remark that a large difference exists between the GK Dougherty
operator and the other GK collision models. It is noticeable that the GK Coulomb collision
operator produces subdominant modes that are less damped than the ones predicted by
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(a) (b)

FIGURE 11. Toroidal ITG eigenvalue spectrum when ν = 0.1 and k⊥ = 0.6 using the DK (a)
and GK (b) collision operator models. Here, RB = 0.1 and η = 3.

the GK Sugama and pitch-angle operators but, nevertheless, yields a similar eigenvalue
spectrum. We remark that the eigenvalues have all a positive real frequency, ωr > 0,
corresponding to the ion diamagnetic direction.

6.2. Destabilization of the SWITG mode
An initial analysis of the effects of FLR terms in the collision operators can be carried out
by observing, first, the discrepancies between the GK Coulomb and the 6GM and 4GM
stability boundaries in the ν = 1 case (see figure 6) and, second, from the comparison
between GK and DK collision operators (see figures 8 and 9). A clear deviation between
GK and DK Coulomb operators occurs at sufficiently steep temperature gradients, η � 3,
and intermediate collisionality, i.e. when ν � 0.1. For a more detailed analysis, we plot
in figure 12 the ITG growth rate evaluated with the DK Coulomb in the slab case for two
different values of temperature gradient strength.

The comparison between figures 6 and 12 reveals that a short wavelength branch of the
ITG, referred to as the SWITG mode and typically peaking at k⊥ ∼ 2, is present when
ν � 0.5 if the DK Coulomb operator is used. We remark that the SWITG is also captured
by the 6GM and 4GM models. This mode has been identified in the collisionless limit
as a continuous extension of the main branch of the ITG mode in the k⊥ > 1 region.
In fact, the collisionless ITG growth rate reveals a typical ‘double-humped’ behaviour
when plotted as a function of k⊥ (Smolyakov, Yagi & Kishimoto 2002; Gao et al. 2003,
2005). Additionally, figure 12 shows the presence of a stability region that increases with
collisionality, isolating the conventional ITG and the SWITG modes. We note that, in
the toroidal case, the SWITG is stabilized (or even suppressed) by increasing magnetic
gradients, a similar feature observed also in the collisionless limit (Gao et al. 2005).

The SWITG mode is also predicted by all the other DK collision operators considered
in this work, but it is suppressed by FLR collision damping in the GK collision operators.
This questions the applicably of DK collision operator models to correctly predict the
turbulent transport level in ITG driven turbulence in the boundary region, since the
SWITG can produce an additional (yet spurious) contribution in addition to the main ITG
mode peaking at larger k⊥ (Gao et al. 2005). However, further investigations are required
to go beyond the local approximation used in the present work.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 12. Slab SWITG growth rate (unstable when the DK Coulomb model is used) when
η = 3 (a–c) and η = 5 (d–f ). The stability boundaries of the gyromoment hierarchy (dotted white
line), 6GM and 4GM (red dotted and dot–dashed lines, respectively) are plotted for comparison.
The main ITG branch is identified near k⊥ 
 0.5 and the SWITG near k⊥ 
 2, appearing as the
collisionality increases when ν � 0.5. The colourbar is saturated at the maximum of γ when
ν = 0.05.

7. Gyromoment spectrum

We now study the ITG gyromoment spectrum. In particular, we numerically evaluate
the collisionless gyromoment spectrum using the semianalytical expressions obtained in
§ 3.2. This reveals that magnetic drift resonance effects broaden the gyromoment spectrum
compared with the slab case. The effect of collisions is also considered by deriving
asymptotic expressions of the spectrum in the limit of a large number of gyromoments.
We first focus on the slab limit and, then, consider the purely toroidal (k‖ = 0) case. The
results presented in this section are used to analyse the convergence properties in § 8.

Considering the sITG mode, we focus on the parameters k‖ = 0.1, η = 5 and k⊥ = 0.5
(i.e. near the growth rate peak). We first note that the solution of the GK dispersion
relation, given in (3.3), yields the solution ω = 0.1754 + 0.1504i. Given ω, the normalized
collisionless gyromoments spectrum, Npj/φ, can be evaluated using (3.11) (or equivalently
(3.3) with RB = 0). This is shown in figure 13 as a function of ( p, j) on a logarithmic
scale. As observed, the collisionless gyromoment spectrum decreases rapidly with j, while
the decrease of the magnitude of the gyromoments is slower along the p direction, as
highlighted in figure 13(b) that shows Np0/φ and N0j/φ. The finite amplitude of the
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(a) (b)

FIGURE 13. Modulus of the collisionless gyromoments spectrum Npj/φ (normalized to the
maximum value) in the case of sITG, as a function of p and j plotted on a logarithmic scale
and artificially saturated at 10−4. The modulus of the spectrum Np0/φ and N0j/φ are shown in
panel (b) (solid blue and red lines, respectively). Here, k‖ = 0.1, η = 5 and k⊥ = 0.5.

gyromoments Npj/φ at j �= 0 (and small p) is due to the presence of FLR effects, yielding
terms proportional to Kj in the collisionless gyromoment response (see (3.11)) and, to
a smaller extent, to the presence of temperature gradients, yielding terms proportional
to ηKj±1 in (3.11). As a consequence, the gyromoment amplitude rapidly decreases with
j because of the behaviour of the FLR kernel Kj for large j, such that Kj ∼ (b/2)2j/j!.
We remark that the decrease of modulus of N̂pj with j is slower at large b and follows, in
general, 1/j!. On the other hand, the gyromoments with p �= 0 arise because of the parallel
resonance terms proportional to the pth derivative of the plasma dispersion functions,
Z( p)(ξ)/

√
2pp!, as illustrated by figure 13. The extend of the spectrum in figure 13

demonstrates that the sITG mode requires a larger number of Hermite than Laguerre
gyromoments, i.e. P > J, to be resolved.

We now consider the collisionless gyromoment spectrum in the presence of magnetic
gradients. As in the slab case, we focus on k⊥ = 0.5 and η = 5, but we choose RB = 0.5
and k‖ = 0. We remark that setting k‖ = 0 allows us to investigate the kinetic effects
associated with the iω∇B term in (2.4) independently of Landau damping. The solution of
the GK dispersion relation (3.3), for the complex mode frequency, yields ω = 0.7972 +
0.4364i. The expressions given in (3.10) are used to evaluate the gyromoment spectrum.
More precisely, the quantities Ipj

n are evaluated numerically using (D10) and the infinite
sums in (3.10) are truncated when machine precision is reached. Similarly to figure 13,
we plot the toroidal collisionless gyromoment spectrum, Npj/φ, on a logarithmic scale
in figure 14. Compared with the slab case, the gyromoment spectrum is significantly
broader. This is attributed to the velocity-dependence of the magnetic drift resonant
coefficients, proportional to 1/[ω − ω∇B], that drives high-order gyromoments. In fact,
while the dependence on j of the gyromoments stems mostly from terms proportional to
Kj in the slab case, the definite integrals of Gauss hypergeometric functions, appearing in
Ipj

n (see (D10)), extend the gyromoment spectrum, producing a considerably slower decay
than 1/j!. We also notice that, since k‖ = 0, the gyromoment spectrum vanishes for odd
values of p, where Ipj

n = 0 (see (D10)). Finite k‖ yields non-vanishing odd gyromoments
in p due to the term proportional to (1 + (−1)p−2p1+1) in (D8).

Despite the fact that the gyromoment spectrum is significantly broader with respect
to the slab limit when the magnetic drifts are important (large RB), we numerically
demonstrate the convergence of the gyromoment representation of the perturbed
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(a) (b)

FIGURE 14. Modulus of the collisionless gyromoments spectrum Npj/φ (normalized to the
maximum value) in the case of purely toroidal (k‖ = 0) ITG with RB = 0.5, as a function of p and
j plotted on a logarithmic scale and artificially saturated at 10−4. The moduli of the spectrum of
Np0/φ and N0j/φ are shown in panel (b) (solid blue and red lines, respectively). Here, k⊥ = 0.5,
η = 5.

(a) (b)

FIGURE 15. Error norm e(P, J), (7.2), on a logarithmic scale for the slab (a) and toroidal (b)
ITG cases. The same parameters as in figures 13 and 14 are used, respectively. The colourbars
are saturated artificially at log10 e(P, J) = −4.

distribution function, g/φ. Given the complex frequency ω, a truncated distribution
function gPJ can be defined from the Hermite–Laguerre expansion in (2.6) according to

gPJ =
P∑

p=0

J∑
j=0

N̂pj

φ

Hp(s‖)Lj(x)√
2pp!

FM. (7.1)

From gPJ and g/φ obtained from (3.1), the error norm e(P, J) can introduced by

e(P, J) =
∫ ∞

−∞
ds‖

∫ ∞

0
x
∣∣∣∣gPJ − g

φ

∣∣∣∣
2

, (7.2)

and can be computed as a function of (P, J). The results are shown in figure 15 for the slab
and toroidal cases. Convergence is observed in both cases. However, while the magnitude
of e(P, J) becomes negligibly small when (P, J) � (20, 10) (corresponding to e(20, 10) �
10−3) in the slab case, a larger number of gyromoments is necessary to achieve a similar
error, i.e. (P, J) � (50, 20).
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We now turn to the collisional effects, which provide a natural cutoff of the gyromoment
hierarchy. We aim to derive an ad hoc proxy of the scaling of (P, J) at which the
gyromoment hierarchy can be truncated as a function of the collisionality. In particular, we
consider an equation for the generalized gyromoment amplitude Gpj = √

p(gpj)2/2 (where
gpj = (−1) jip+jsgn(k‖)pNpj is introduced to remove the oscillatory behaviour of Npj) using
the gyromoment hierarchy equation, (2.14) in the limit p, j � 1 (Zocco & Schekochihin
2011; Loureiro, Schekochihin & Zocco 2013; Jorge et al. 2018). In this limit, the amplitude
gpj can be considered as a continuous complex function of p and j. This allows us to
approximate gp±1j 
 gpj ± ∂pgpj (and gpj±1 
 gpj ± ∂jgpj). Assuming that an unstable mode
is considered, ∂tGpj = 2γ Gpj, we derive the equation for Gpj, up to first order in 1/p and
1/j, i.e.

|k‖|
√

τ∂sGpj + τ

q
ωB(2j + 1)∂jGpj + 2τ

q
ωB (1 + i (2j + 1)) Gpj = 2ν( fp,j + bαhp,j − γ )Gpj,

(7.3)

with s = √
p. In deriving (7.3), collisional effects are modelled using the ansatz Cpi 


ν[fp,j + bαhp,j]Npj, where the functions fp,j = f ( p, j) and hp,j = h( p, j), and the constant
α depends on the choice of the collision operator. We remark that the coupling along
the Hermite direction associated with the curvature drifts vanishes at the leading order
in 1/p in (7.3). We solve (7.3) for the slab and toroidal k‖ = 0 ITG cases using the GK
Dougherty and GK Coulomb collision operators. While the functions fp,j and hp,j are
evaluated numerically for the GK Coulomb collision operator, the sparse gyromoment
expansion of the GK Dougherty collision operator, given in Appendix C, allows us to
solve (7.3) analytically.

Using the gyromoment expansion of the GK Dougherty collision operator, we solve first
(7.3) in the case of the sITG mode. With fp,j = −p − 2j, hp,j = −1/2 and α = 2 (see (C3)),
the solution of (7.3) is

∣∣Npj
∣∣ ∼ 1

p1/4
exp

{
−

(
p
pγ

)1/2

−
(

p
pj⊥

)1/2

−
(

p
pDν

)3/2
}

, (7.4)

where we introduce pγ = τ/γ 2
‖ (with γ‖ = γ /k‖), pj⊥ = τ/[ν‖(2j + b2/2)]2 (ν‖ = ν/k‖)

and pDν = (9τ/ν2
‖)

1/3. The quantities pγ , pj⊥ and pDν introduce different decay scale
lengths in the gyromoment spectrum. They are associated with the growth of mode
(pγ ), with the j dependence of Cpj (pj⊥) and with the p dependence of Cpj (pDν). The
1/ν‖ dependence of pDν indicates that the exponential decay of (7.4) is slower at high
k‖ and faster at high ν. At high k‖, higher-order p gyromoments are excited due to
parallel resonance effects. At high ν, the Chapman–Enskog closure procedure ensures
that ν‖ ∼ √

τ/ε � 1, yielding pDν ∼ ν
−2/3
‖ ∼ ε2/3/τ 1/3 such that that the ITG dynamics

can be described by the lowest-order gyromoments at high collisionality when ε � 1 (see
§ 4.1). Moreover, when ν � γ (such that pDν precedes pγ ) and in the DK limit (such that
the b2 term in pj⊥ is neglected), the collisional damping provides a truncation at P � pDν .
We remark that FLR terms in the collision operator have a small effect on the scaling
of (7.4) at finite collisionality. In fact, near the ITG peak growth rate (i.e. k⊥ ∼ 0.5), one
typically has j � b2/4. Finally, we remark that the j dependence in (7.3) becomes important
when the second exponent becomes comparable in magnitude to the last one. Despite that
pj⊥/pDν ∼ ε4/3/j2 � 1 at large collisionality and at large j, the different exponents 1/2 and
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3/2 in (7.4) imply that this happens when

p3/2
Dν

p( pj⊥)1/2
∼ 1, (7.5)

which is satisfied when j ∼ p/10. This shows that the decay of the gyromoments becomes
faster with j because of the increase of the second exponent in magnitude.

We now derive the solution of (7.3) for the toroidal k‖ = 0 ITG case, still considering
the GK Dougherty collision operator. It yields

∣∣Npj
∣∣ ∼ 1

p1/4
exp

{
−νBj − 1

2
ln (1 + 2j)

[
γB + 1 + νB

(
p − 1 + b2/2

)]}
, (7.6)

where we introduce γB = qγ /(τωB) and νB = qν/(τωB). The νB dependence highlights
the broadening of the gyromoment spectrum associated with the presence of magnetic
gradient drifts (see figure 14), an effect reduced at high collisionality. Similar to the slab
case, FLR terms do not affect the scaling of (7.4), since the linear term dominates over the
second term at large j values, and p − 1 � b2/2 ∼ k2

⊥ for ITG modes.
Because the Coulomb collision operator has a non-trivial block matrix structure when

projected onto the Hermite–Laguerre basis (Frei et al. 2021), an approximate expression
of Cpj needs to be determined numerically. Based on the results derived from the GK
Dougherty collision operator, we assume that Cpj 
 νfp,jNpj, thus neglecting the FLR
effects in the spectrum scaling. Fitting numerically the values of Cpj using the GK
Coulomb collision operator yields fp,j 
 −Aj − B

√
p (A 
 0.3 and B 
 0.8). Similar

values (within a 10 % accuracy) are typically found in the case of the DK Coulomb and
show that FLR terms have a small effect on the ITG spectrum scaling when k⊥ ∼ 1. We
remark that the

√
p dependence of fp,j is consistent with previous DK moment hierarchy

using the DK Coulomb collision operator (Jorge et al. 2018). Given fp,j, we again solve
(7.3) for the case of the slab and toroidal k‖ = 0 ITG modes yielding, respectively,

∣∣Npj
∣∣ ∼ 1

p1/4
exp

{
−

(
p
pγ

)1/2

−
(

p
pj

)1/2

− p
pν

}
, (7.7)

with pj = τ/ν‖Aj2 and pν = 2
√

τ/(Bν‖) and

∣∣Npj
∣∣ ∼ 1

p1/4
exp

{
−A

2
νBj − 1

2
ln (1 + 2j)

[
γB + 1 + νB

(
B
√

p − A/2
)]}

. (7.8)

The main differences between the results of the GK Coulomb collision operator, given in
(7.7) and (7.8) and the results of the GK Dougherty operator, in (7.4) and (7.6), are that
the scaling in p predicted by the GK Coulomb collision operator is weaker in the slab case
(compared with a 3/2 exponent in (7.4)), and that the numerical factor in the linear term
in j in the toroidal case, A/2 
 0.15, is smaller.

We compare the scaling of the gyromoment spectra obtained using the GK Dougherty
and GK Coulomb collision operators in figure 16 for the slab and toroidal ITG modes
for different values of ν‖ (at k‖ = 0.1) and νB (at RB = 0.1). The differences between the
p exponent and the numerical factors between GK Dougherty and GK Coulomb, do not
significantly impact the gyromoment spectra that feature the same qualitative behaviour.
The differences between the GK Dougherty and GK Coulomb observed when ν‖ = 1 and
νB = 2 stem from the difference in the exponents and numerical factors in the spectrum.
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(a) (b)

FIGURE 16. Normalized slab (a) and toroidal (b) gyromoment spectra as a function of p and j,
respectively, obtained using the GK Coulomb collision operator from (7.7) and (7.8) (solid lines)
and using the GK Dougherty collision operator from (7.4) and (7.6) (dashed lines). The slab and
toroidal growth rates are estimated at γ 
 0.1 and γ 
 0.2 (see figure 8), respectively, near the
ITG peaks (k⊥ 
 0.5).

Finally, we remark that the asymptotic dependence of the expansion coefficients, i.e. Npj,
on their indices p and j (see, e.g. (7.7) and (7.8)) shows that the gyromoment method
features a spectral convergence rate that increases with collisionality (Boyd 2001).

8. Convergence studies

Following the analysis of the gyromoment spectrum presented in § 7, we perform
convergence studies of the ITG growth rate as a function of collisionality in § 8.1,
perpendicular wavenumber in § 8.2 and magnetic gradient in § 8.3 for various numbers
of gyromoments. Collisions are modelled using the GK and DK Coulomb collision
operators (Frei et al. 2021), since similar convergence properties are observed with the
other collision operator models considered in this work. We show that the convergence of
the gyromoment approach improves with collisionality.

8.1. Collisionality convergence
We first consider the convergence of the ITG linear growth mode as a function of the
collisionality, ν, using the GK and DK Coulomb collision operators. The collisionless and
high-collisional limits are obtained by solving the collisionless GK dispersion relation,
(3.3), and the 6GM and 4GM models (see § 4.1). The results are shown in figure 17(a) for
the slab and figure 17(b) for the toroidal ITG modes. Different numbers of gyromoments,
(P, J), are used. The collisionless GK solution is retrieved for (P, J) 
 (18, 6) with
both the GK (dashed) and DK (solid) Coulomb collision operators. In the slab case,
convergence is achieved with P � 8, when ν 
 0.1, and with P � 18, when ν � 10−3.
This is in qualitative agreement with the estimate of P that can be obtained from (7.7).
In fact, solving the gyromoment hierarchy up to P � pν yields pν ∼ 3 for ν = 0.1 and
pν ∼ 20 for ν = 10−3. Also consistent with the observations made in § 7 is the fact that
only a few numbers of the Laguerre gyromoments are necessary to resolve the sITG, as
illustrated by the overlap between the (10, 4) and (10, 6) lines in figure 17. This is because
the sITG mode is mainly driven by the parallel dynamics, resolved by the Hermite part of
the gyromoment spectrum (see figure 13), and the relatively small value of k⊥ considered
in this case (see figure 18). This remains also true for the toroidal ITG case considered
in figure 17 because of the relatively small value of RB used. In fact, larger values of RB
deteriorates the convergence as discussed below. While the GK Coulomb yields a strong
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(a) (b)

FIGURE 17. Convergence of the ITG linear growth rate, γ , as a function of the collisionality
ν for different values of (P, J), using the GK (dashed lines) and DK (solid lines) Coulomb
operators, in the case of slab (a) and toroidal ((b) with RB = 0.1) ITG branches. The collisionless
limit (dotted black lines) and the high-collisional limits, 6GM and 4GM models (red dotted and
dash–dot lines, respectively) are shown for comparison. Similar plots are obtained for the other
GK and DK operator models. The parameters are k⊥ = 0.5, k‖ = 0.1, η = 3.

(a) (b) (c)

FIGURE 18. Slab ITG growth rate γ as a function of k⊥ for different values of J, in the low (a),
intermediate (b) and high (c) collisionality regimes, with the GK (dashed lines) and DK (solid
lines) Coulomb collision operators. Similar plots are obtained for the other GK and DK operator
models.

FLR collisional damping as ν increases, the gyromoment hierarchy with DK Coulomb
agrees with the 6GM and 4GM when ν � 1. Nevertheless, we notice that, because of
finite magnetic drifts (see § 3), agreements with the 6GM and the 4GM models occur at
higher collisionality in the toroidal case. In fact, in the slab case, the high-collisional limits
are retrieved when ν � 1, while for the toroidal case (RB = 0.1) when ν � 102.

8.2. Perpendicular wavenumber convergence
We now investigate the convergence associated with the FLR effects due to
the gyroaverage of the electrostatic potential, i.e. with the number of Laguerre
gyromoments. The coupling between the Laguerre gyromoments driven by magnetic
gradients are neglected by focusing on the sITG. We scan the growth rate γ as a function
of the perpendicular wavenumber, k⊥, for different values of J and collisionality ν. The
number of the Hermite gyromoment is fixed at P = 18. The results are shown in figure 18.
We observe that convergence occurs at lower J at high collisionalities. Nevertheless, the
value of J necessary for convergence increases with k⊥ at all collisionalities. This is in
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(a) (b)

FIGURE 19. Ratio between the ITG growth rate γ obtained using the gyromoment hierarchy
and the collisionless solution γGK as a function of P with J = 10 (a) and as a function of J with
P = 32 (b) for two different values of RB. Here, k⊥ = 0.5, k‖ = 0.1 and ν = 0.001.

agreement with the unfavourable scaling of the FLR kernel with b, i.e. Kj ∼ (b/2)2j/j!
(see § 7). We also notice that the ITG mode is strongly damped by the GK Coulomb
collision operator that departs rapidly from the DK Coulomb as k⊥ and ν increases, in
agreement when comparing figure 8 with figure 9. The same qualitative observations hold
in the toroidal case.

8.3. Magnetic gradient convergence
Finally, we consider the convergence of the gyromoment hierarchy as a function of the
normalized magnetic gradient, RB. As discussed in § 7, the presence of finite magnetic
drifts broadens significantly the collisionless gyromoment spectrum. However, even at low
collisionality, the gyromoment approach converges correctly to the collisionless solution
γGK obtained from (3.3). This is shown in figure 19 where the ratio of the ITG growth rate
obtained using the gyromoment hierarchy to γGK is plotted as a function of P and J. It is
remarkable that, consistently with § 7, a larger number of gyromoments is needed as RB
increases.

Collisions can compete against the strong kinetic drive of the magnetic drifts by
damping higher-order gyromoments (see figure 16). To investigate the convergence of
the gyromoment approach at finite RB in the presence of collisions, we focus on the
toroidal ITG with k‖ = 0 and, hence, neglecting the coupling between the Hermite
gyromoments associated with the parallel streaming. We scan the toroidal ITG linear
growth rate γ as a function of RB and increase the collisionality. The results are
reported in figure 20. We observe that, at all collisionalities, the convergence of the
gyromoment approach deteriorates as RB increases. Nevertheless and consistently with
§ 7, the number of gyromoment to achieve convergence is reduced as the collisionality
increases, demonstrating the competition between the kinetic effects driven by the
magnetic gradient drifts and the collisional effects. We also remark that the 4GM limit
is retrieved at higher collisionality when RB increases.

9. Conclusion

In this paper, the properties of the ITG mode are studied using the GK Coulomb
collision operator for the first time. The investigation is based on a Hermite–Laguerre
moment expansion of the perturbed gyrocentre distribution function, which we refer
to as the gyromoment approach. By projecting the GK Boltzmann equation onto the
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(a) (b) (c)

FIGURE 20. Toroidal (k‖ = 0) ITG growth rate γ as a function of the normalized magnetic
gradient, RB, for different (P, J) and increasing collisionality (from (a) to (c)). Here, the GK
(dashed lines) and DK (solid lines) Coulomb collision operators are shown, with the collisionless
(black dotted) and high-collisional 4GM limit (red dotted–dashed lines).

Hermite–Laguerre basis, a gyromoment hierarchy equation is deduced, which retains the
effects of like-species collisions between ions thanks to the numerical implementation of
the GK Coulomb collision operator described in Frei et al. (2021). Using the gyromoment
hierarchy equation, the collisionless and high-collisional limits are derived analytically.
In the collisionless limit, we find that the magnetic drift resonance effects significantly
broaden the gyromoment spectrum compared with the slab case. In the high-collisional
limit, the gyromoment hierarchy is reduced to a fluid model retaining only a finite
number of gyromoments where the Chapman–Enskog asymptotic closure scheme is used.
Using these analytical results, we show that the gyromoment hierarchy can retrieve
the collisionless limit, where kinetic features are essential, and, at the same time, the
high-collisional limit using a reduced number of gyromoments.

Numerical experiments are performed to study the ITG linear growth rate using the
GK Coulomb collision operator and investigate the importance of the FLR collisional
terms. We compare the GK Coulomb collision operator with other collision operator
models such as the Sugama (Sugama et al. 2009), the momentum-conserving pitch-angle
scattering operator (Helander & Sigmar 2002), the zeroth-order DK HSC collision
operator (Hirshman & Sigmar 1976a) and the Dougherty collision operator (Dougherty
1964). The gyromoment expansions of the pitch angle and HSC collision operators are
also derived for the first time here. We find that the ITG mode is strongly damped
(or even suppressed) as the collisionality increases and that a steeper temperature gradient
for the mode onset is necessary to overcome the FLR collisional stabilization when using
the GK Coulomb collision operator. We reveal the importance of FLR terms in the
Coulomb collision operator by demonstrating that neglecting these FLR terms destabilizes
a short wavelength branch of the ITG mode, peaking near k⊥ρs ∼ 1.5. These observations
are also found when using the other collision operator models considered in this work. In
addition to these findings, the main outcome of the systematic comparison between the
collision operators considered in this work is that the GK Sugama slightly underestimates
the ITG growth rate compared to the GK Coulomb operator and that the GK pitch-angle
scattering operator systematically yields a larger ITG linear growth because of the absence
of energy diffusion in the latter. The largest deviations with respect to the GK Coulomb
collision operator are observed when the GK Dougherty operator is used. In general, we
observe that energy diffusion in the collision operators is important at high collisionality
and in the damping of ITG at small scales. Finally, the numerical efficiency of the
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gyromoment approach is highlighted by performing convergence studies and show that
the number of the gyromoment can be reduced as the collisionality increases. In particular,
the ability of the presented method to naturally reduce its dimensionality (i.e. the number
of gyromoments) without compromising the accuracy of kinetic effects and the details
of advanced collision operators makes it an ideal framework to develop high-fidelity
simulations of the boundary region, a possible advantage over present continuum GK
codes.

Complementary to previous works (see, e.g. Jorge et al. 2017, 2018; Frei et al. 2020,
2021), the present study of the ITG mode at arbitrary collisionality shows the ability of
the gyromoment approach to capture the relevant physics in the kinetic and collisional
regimes, with a fidelity cost that depends on the collisionality. The present study can
be extended to more realistic conditions, including variation along the parallel direction,
electron dynamics, electromagnetic effects and nonlinear physics. In particular, nonlinear
simulations using the gyromoment approach are required to further investigate and to
extrapolate the effects of collision operator models, FLR terms and convergence reported
in the present work to, for example, ITG driven turbulence. For instance, the role of
FLR collisional damping by the GK collision operators of the ITG (see, e.g. figure 11)
is a mechanism that is expected to affect the level of the saturated turbulent fluxes.
Additionally, the choice of the collision operator models (e.g. Coulomb, Dougherty and
pitch-angle operators) used in the simulations can play an important role in the nonlinear
saturated state, especially in the high-collisional regime where their analytical details can
no longer be ignored. Nonlinear simulations are being carried out and will be subject to
a future publication. Finally, the δf formulation adopted in this work might not be valid
for the study of the turbulent dynamics in the boundary region, where the large amplitude
fluctuations require a full-F gyromoment hierarchy equation, a subject of future work.

Acknowledgements

The authors acknowledge helpful discussions with S. Brunner, P. Donnel and
M. Held. The simulations presented herein were carried out on the CINECA Marconi
supercomputer under the TSVVT421 project.

Editor A. Schekochihin thanks the referees for their advice in evaluating this article.

Funding

This work has been carried out within the framework of the EUROfusion Consortium,
funded by the European Union via the Euratom Research and Training Programme (grant
agreement no. 101052200 – EUROfusion). Views and opinions expressed are, however,
those of the author(s) only and do not necessarily reflect those of the European Union or
the European Commission. Neither the European Union nor the European Commission
can be held responsible for them. This work was supported in part by the Swiss National
Science Foundation.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Pitch-angle scattering collision operator

The linearized pitch-angle scattering operator model is the sum of the pitch-angle
scattering operator for the test component coupled and an ad hoc field component such that
the momentum conservation is satisfied. This operator neglects energy diffusion, contrary
to the Sugama and Coulomb collision operators, but conserves particle, momentum
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and energy. The test component of the GK pitch-angle scattering operator is given by
(Helander & Sigmar 2002)

CT = νD(v)

{
−L2h − b2

2v2
T
(2v2

‖ + v2
⊥)h

}
, (A1)

and the field component is defined by

CF = 2FMνD(v)
(
v⊥J1ŪD

⊥[h] + v‖J0ŪD
‖ [h]

)
, (A2)

where we introduce

ŪD
⊥[h] = 3

∫
dvv⊥J1ν

D(v)h∫
dvv2νD(v)FM

, ŪD
‖ [h] = 3

∫
dvv‖J0ν

D(v)h∫
dvv2νD(v)FM

(A 3a,b)

with h = g + qJ0φFM/τ the non-adiabatic part of the perturbed gyrocentre distribution
function g. In (A1), L2 is the spherical angular operator defined by v2∇2

vf = ∂v(v
2∂vf ) −

L2f and νD(v) = ν[erf(s) − (erf(s) − s erf′(s))/2s2]/s3 (with s = v/vT) is the pitch-angle
scattering (or deflection) velocity-dependent frequency.

Following Frei et al. (2021), we now project (A1) and (A2) onto the Hermite–Laguerre
basis in terms of the non-adiabatic moments, npj, defined by

npj = 1
N

∫
dμ dv‖ dθ

B
m

h
Hp(s‖)Lj(x)√

2pp!
, (A4)

and expressed in terms of the gyromoments, Npj, by npj = Npj + qKjφδ0
p/τ . The

gyromoment expansion of the test and field components, (A1) and (A2), are given by

CTlk = CDlk + R̄Dlk (A5)

and
CFlk = R̄Dlk

‖ + R̄Dlk
⊥ , (A6)

respectively. In (A5) and (A6), we introduce

CDlk = −
∞∑

j=0

l+2k∑
p=0

k+�l/2�∑
h=0

p+2j∑
g=0

j+�l/2�∑
t=0

h∑
d=0

2p( p!)2√2gg!
(2p)!

(
T−1

)ph

lk

σ
j

p
√

2ll!

p( p + 1)

(2p + 1)
Tgt

pj L
p
hdν̄

Dpjd
∗ ngt,

(A7)
with

ν̄Dpjd
∗ = 4√

π

j∑
j1=0

Lp
jj1 ν̄

Dp+d+j1+1 (A8)

and

R̄Dlk = − b2

√
π

∑
p,j

l+2k∑
g=0

k+�l/2�∑
h=0

p+2j∑
r=0

j+�p/2�∑
s=0

s∑
s1=0

h∑
h1=0

(
T−1

)gh

lk√
2ll!

(
T−1

)rs

pj√
2pp!

Lr
ss1

Lg
hh1

α
grs1h1
⊥ npj, (A9a)

R̄lk
⊥ = Ū⊥[h]

4√
π

∞∑
n=0

n+k+1∑
s=0

s+�l/2�∑
h=0

h∑
h1=0

L0
hh1

d1
nksbKn

(n + 1)

(
T−1

)gh

ls√
2ll!

ν̄Dh1+1, (A9b)
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R̄lk
‖ = Ū‖[h]

8
3
√

π

∞∑
n=0

n+k∑
s=0

l+2s∑
g=0

s+�l/2�∑
h=0

h∑
h1=0

d0
nksKn

L1
hh1

(
T−1

)gh

ls√
2ll!

ν̄Dh1+2[l > 0 ∪ s > 0], (A9c)

where [·] denotes the Iverson bracket. In (A9), we define

α
grs1h1
⊥ = 2δr

g

(2g + 1)
ν̄Dg+2+s1+h1 + dr

gν̄
D(g+r)/2+2+s1+h1, (A10)

with the numerical coefficient

dr
g =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(r + 1)(r + 2)

(2r + 1)(2r + 3)(2r + 5)
, for g = r + 2

2(2r2 + 2r − 1)

(2r − 1)(2r + 1)(2r + 3)
, for g = r

2r(r − 1)

(2r − 3)(2r − 1)(2r + 1)
, for g = r − 2

(A11)

and

Ū‖[h] = 1
ν̄D2

∑
p,j

∞∑
n=0

j+n∑
s=0

p+2s∑
g=0

s+�p/2�∑
h=0

h∑
h1=0

d0
njsKn

L1
hh1

(
T−1

)gh

ps√
2pp!

ν̄Dh1+2npj[p > 0 ∪ s > 1],

(A12a)

Ū⊥[h] = 3
2ν̄D2

∑
p,j

∞∑
n=0

n+j+1∑
s=0

s+�p/2�∑
h=0

h∑
h1=0

L0
hh1

bKn

(n + 1)

d1
njs

(
T−1

)0h

ps√
2pp!

ν̄Dh1+1npj. (A12b)

In (A9) and (A12), we introduce the speed integrated deflection frequency by ν̄Dk =∫
dse−s2

s2kνD(v). Using the definitions of νD(v), we derive

ν̄Dk = 1
2
ν(2Ek−2 − Ek−3 + ek−2), (A13)

where the definitions of Ek and ek can be found in Frei et al. (2021). We remark that the
definitions of the numerical coefficients (T−1)gh

ps and Tgt
pj , appearing in, e.g. (A7) and (A12),

are reported in Jorge et al. (2017).
The DK limit of the pitch-angle scattering operator is obtained from (A5) and (A6) by

taking the zero gyroradius limit, b → 0. Noticing that npj 
 Npj, we derive the DK test
and the field components given by

CTlk = CDlk, (A14)

CFlk = U‖[g]
8

3
√

π

l+2k∑
g=0

k+�l/2�∑
h=0

h∑
h1=0

L1
hh1

(
T−1

)gh

lk√
2ll!

ν̄Dh1+2[l > 0 ∪ k > 0], (A15)

respectively, where CDlk is given in (A7) and with

UD
‖ [g] = 1

ν̄D2

∑
p,j

p+2j∑
g=0

j+�p/2�∑
h=0

h∑
h1=0

Npj
L1

hh1

(
T−1

)gh

pj√
2pp!

ν̄Dh1+2[p > 0 ∪ k > j]. (A16)
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Appendix B. HSC collision operator

We consider the gyromoment expansion of the HSC collision operator (Hirshman,
Sigmar & Clarke 1976), also referred to as the zeroth-order Hirshman–Sigmar collision
operator (Hirshman & Sigmar 1976b). The HSC collision operator model has been widely
used for neoclassical transport calculations (Hirshman et al. 1976; Belli & Candy 2008).
This operator is only considered in the DK limit. Additionally, it conserves particle,
momentum and energy. While the test component of the HSC operator is the pitch-angle
scattering operator, i.e.

CT = −νD(v)L2g, (B1)

the field component of the HSC operator is defined by

CF = v‖

[
νS(v)

2r[g]
v2

T
+ 2u[g]

v2

(
νD(v) − νS(v)

)]
FM, (B2)

where

r[g] = 3
∫

dvv‖νS(v)g∫
dvs2νS(v)FM

, (B3)

u[g] = 3
4π

∫
dΩv‖

g
FM

, (B4)

with
∫

dΩ = ∫ 2π

0 dθ
∫ 1

−1 dξ the integral over the velocity-space solid angle, and νS(v) =
2ν(erf(s) − s erf′(s))/s3.

We project the HSC collision operator, given in (B2), onto the Hermite–Laguerre basis.
As the Hermite–Laguerre projection of −νD(v)L2g is given by (A7), we focus on the
projection of (B2). Performing the Hermite–Laguerre projection yields

CFlk = RSlk
1 + RDlk, (B5)

where we introduce

RSlk
1 =

l+2k∑
g=0

k+�l/2�∑
h=0

h∑
h1=0

L1
hh1

(
T−1

)gh

lk√
2ll!

8
3
√

π

r[g]
vT

ν̄Sh1+2[l > 0 ∪ k > 0], (B6a)

RSDlk = 8
3
√

π

∑
p,j

p+2j∑
g=0

j+�p/2�∑
h=0

l+2k∑
s=0

k+�l/2�∑
t=0

h∑
h1=0

t∑
t1=0

(
T−1

)st

lk√
2ll!

(
T−1

)gh

pj√
2pp!

× L1
tt1 L

1
hh1

(
ν̄D2+t1+h1 − ν̄S2+t1+h1

)
Npj[p > 0 ∪ j > 0][l > 0 ∪ k > 0] (B6b)

and

r[g]
vT

= 1
ν̄S2

∑
p,j

p+2j∑
s=0

j+�p/2�∑
t=0

t∑
t1=0

(
T−1)st

pj L1
tt1

Npj

√
2pp!

ν̄St1+2[p > 0 ∪ j > 0]. (B7)

In, (B6a) and (B7), we introduce the speed integrated frequency by ν̄Sk = ∫
dse−s2

s2kνS(v).
Using the definitions of νS(v), we derive

ν̄Sk = 2ν(Ek−2 − ek−1). (B8)

https://doi.org/10.1017/S0022377822000344 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000344


Collisional theory of ion-temperature gradient mode 41

Appendix C. Dougherty collision operator

The linearized GK Dougherty collision operator is given by the test and field
components (Dougherty 1964)

CT = ν

[
T
m

∂2

∂v2
‖

h + 2
T
B

∂

∂μ

(
μ

∂

∂μ
h
)

− 1
2

b2h + 3h + v‖
∂

∂v‖
h + 2μ

∂

∂μ
h

]
(C1)

and

CF = ν

[
2J0T[h]

(
x + s2

‖ − 3
2

)
+ 2u‖[h]s‖J0(b) + J1(b)2u⊥[h]

√
x
]

FM, (C2)

respectively. Here, the particle fluid quantities are defined by T[h] = (T‖[h] +
2T⊥[h])/3 − n[h] where T‖[h] = ∫

d3vmv2
‖J0h/T , T⊥[h] = ∫

d3vJ0μBh/T , n[h] =∫
d3vJ0h/N, and u‖[h] = ∫

d3vJ0s‖h, u⊥[h] = ∫
d3v

√
xJ1h.

Projecting the GK Dougherty collision operator, (C1) and (C2), onto the
Hermite–Laguerre basis yields,

CTlk = −ν

(
2k + l + b2

2

)
nlk (C3)

and

CFlk = ν(T[h][2δ0
l (2kKk − (k + 1)Kk+1 − kKk−1) + Kk

√
2δ2

l ]

+ u‖[h]Kkδ
1
l + u⊥[h]b(Kk − Kk−1)δ

0
l ), (C4)

where the particle fluid quantities are expressed as

n[h] =
∞∑

j=0

Kjn0j, (C5a)

T‖[h] =
∞∑

j=0

Kj[
√

2n2j + n0j], (C5b)

T⊥[h] =
∞∑

j=0

n0j[(2j + 1)Kj − (j + 1)Kj+1 − jKj−1], (C5c)

u‖[h] =
∞∑

j=0

Kjn1j, (C5d)

u⊥[h] = b
∞∑

j=0

1
2

[Kj − Kj−1]n0j. (C5e)

We remark that the GK Dougherty collision operator, given in (C1) and (C2), is used in the
previous Hermite–Laguerre GK formulation (Mandell et al. 2018), because of its sparse
representation on this basis. In fact, CTlk = −ν(2k + l + b2/2)nlk and CFlk = 0 for l > 2.
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The DK Dougherty collision operator is obtained in the zero gyroradius limit of (C3)
and (C4), and is given by

C lk = ν

[
−(2k + l)Nlk − (

√
2N20 − 2N01)

(
2
3
δ0

l δ
1
k −

√
2

3
δ2

l δ
0
k

)
+ N10δ1

l δ
0
k

]
. (C6)

We remark that the DK Dougherty operator, given in (C6), is equivalent to the one used
in Jorge et al. (2018).

Appendix D. Collisionless gyromoment expressions

This appendix reports on the derivations of the collisionless gyromoment expressions,
defined in (3.8). We start from (3.1) that we multiply by the Hermite–Laguerre basis
yielding

Npj

φ
=

3∑
l=1

N̂pj
l , (D1)

where we introduce the velocity integrals,

N̂pj
1 = −q

τ

∫ ∞

0
dx

∫ ∞

−∞

ds‖√
π

Hp(s‖)Lj(x)√
2pp!

J0(b
√

x)e−s2
‖−x, (D2a)

N̂pj
2 = q

τ

∫ ∞

0
dx

∫ ∞

−∞

ds‖√
π

ωJ0(b
√

x) exp(−x − s2
‖)

ω − ω∇B − √
2τk‖s‖

Hp(s‖)Lj(x)√
2pp!

, (D2b)

N̂pj
3 = −

∫ ∞

0
dx

∫ ∞

−∞

ds‖√
π

ω∗
T

J0(b
√

x)e−x−s2
‖

ω − ω∇B − √
2τk‖s‖

Hp(s‖)Lj(x)√
2pp!

. (D2c)

We now perform analytically the velocity integrals that contain the resonant term
proportional to 1/(ω − ω∇B − √

2τk‖s‖) using the transformation given (3.4) valid for
unstable modes. The adiabatic part of the collisionless gyromoment response, N̂pj

1 , is
deduced from the orthogonality relations, (2.10) and (2.12), such that

N̂pj
1 = −q

τ
Kjδ

0
p . (D3)

Expanding the Bessel function in terms of Laguerre polynomials using (2.12), the term
N̂pj

2 , defined in (D2b), can be written as

N̂pj
2 = −i

q
τ

∞∑
n=0

Kn

∫ ∞

0
dσωeiσω

∫ ∞

−∞

ds‖√
π

exp(−(1 + i2σα)s2
‖ − iσ z‖s‖)

Hp(s‖)√
2pp!

×
∫ ∞

0
dxLn(x)Lj(x) exp(−(1 + iσα)x), (D4)

where α = τωB/q. The x-integration can be performed analytically using the identity
(Gradshteyn & Ryzhik 2014)∫ ∞

0
dxe−βxLn(x)Lm(x) = (m + n)!

m!n!
(β − 1)n+m

βm+n+1
Fm

n

[
β(β − 2)

(β − 1)2

]
, (D5)

valid for Reβ > 0 and where F a
b [z] = F[−a, −b;−a − b, z] is the Gauss hypergeometric

function. We remark that, in the slab limit obtain by setting α = 0 in (D4) (and thus β = 1
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in (D5)), (D5) reduces to the orthogonality relation between Laguerre polynomials, (2.11).
The s‖-integration in (D4) is evaluated by expanding Hp(s‖) such that

Hp(s‖) =
�p/2�∑
p1=0

(−1)p1 2p−2p1 p!
p1!( p − 2p1)!

sp−2p1
‖ . (D6)

Using the above identities, we derive

N̂pj
2 = − iqω

τ

∞∑
n=0

Kn√
2pp!

Ipj
n , (D7)

where we introduce the real definite integral
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× (n + j)!
n!j!

(iασ)n+j

(1 + iασ)j+n+1
F j

n

[
(1 + iασ)(iσα − 1)

(iασ)2

]

×
{(

1 + (−1)p−2p1
) (

p
2

− p1 − 1
2

)
!Mp/2−p1+1/2

1/2

[
− z2

‖σ
2

4(1 + 2αiσ)

]

−2i
z‖σ

(
1 + (−1)p−2p1+1

)
2
√

(1 + 2iσα)

(p
2

− p1

)
!Mp/2−p1+1

3/2

[
− z2

‖σ
2

4(1 + 2αiσ)

]}
, (D8)

where Ma
b[z] = M(a; b; z) is the Kummer confluent hypergeometric function, which

stems from the s‖-integration.
Finally, using the recursive properties of Hermite and Laguerre polynomials, we deduce

that

N̂pj
3 = ik⊥√

2pp!

∞∑
n=0

Kn

{
Ipj

n + η

[
(2j + 1)Ipj

n − jIpj−1
n − (j + 1)Ipj+1

n

+Ip+2j
n

4
+

(
p + 1

2

)
Ipj

n + p( p − 1)Ip−2j
n − 3

2
Ipj

n

]}
. (D9)

With (D3), (D7) and (D9), the closed semianalytical expressions of the collisionless
gyromoment response, (3.8), can be evaluated. We remark that a simpler expression for Ipj

n
can be obtained in the purely toroidal limit, i.e. k‖ = 0, neglecting the resonance effects
due to the parallel streaming. Hence, from (D8), one obtains

Ipj
n =

�p/2�∑
p1=0

(−1)p1 2p−2p1 p!
p1!( p − 2p1)!

(n + j)!
n!j!

√
π

(
p
2

− p1 − 1
2

)
!

×
∫ ∞

0
dσeiσω(1 + 2iσα)p1−p/2−1/2 (iασ)n+j

(1 + iασ)j+n+1
F j

n

[
1 + α2σ 2

α2σ 2

]
, (D10)

if p is even and 0 otherwise.
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Appendix E. FLR closures

We explore possible FLR closures for the terms, proportional to K0, K1 and K2
appearing in the 6GM and 4GM using the Padé approximation technique. In order to
deduce Padé approximation of the kernel functions, we rewrite the exact form of Kn
defined in (2.13) as

Kj = (−1) j

j!
∂ j

∂β j
Υ (aβ)

∣∣∣∣
β=1

, (E1)

where we introduce the basic FLR operator Υ (aβ) = ∑∞
l=0(βa)l/(l!2l) = e−βa/2. From

(E1), approximation to Kj can be constructed by specifying the basic FLR operator Υ .
We remark that in contrast to the choice Υ (aβ) = e−βa/2 introduced in Brizard (1992),
Dorland & Hammett (1993) proposed a modified basic FLR operator such as Υ (aβ) =√

Γ0(aβ). The latter approximation is motivated by the fact that basic FLR operator,
Υ (aβ) = e−βa/2, yields a large damping at short wavelength with respect to Dorland &
Hammett (1993) when applied to, for example, the collisionless ITG case. We focus on
the basic FLR operator Υ (aβ) = e−βa/2, as little difference with respect to

√
Γ0(aβ) is

expected in the high-collisional limits as collisions damp short wavelength modes (see
figure 8).

We now aim to construct a Padé approximant, of order ( p, q), of the basic FLR operator,
that we denote by p

qΥ̌ (x) = R( p)(x)/S(q)(x) where R( p)(x) and S(q)(x) are polynomials in x of
order p and q, respectively. The Padé approximant p

qΥ̌ (x) satisfies Υ ( p+q)(0) = p
qΥ̌

( p+q)(0).
Once p

qΥ̌
( p+q)(0) is specified, the self-consistent Padé approximant, of order ( p, q), of the

jth-order kernel function, denoted by p
qǨj 
 Kj, is expressed by

p
qǨj = (−1) j

j!
∂ j

∂β j
p
qΥ̌ (βa)

∣∣∣∣
β=1

. (E2)

We consider the Padé approximant of order ( p, q) = (1, 2) and (1, 4) for j = 0, 1, 2 to
approximate K0, K1 and K2 appearing in the FLR terms contained in both the 6GM and
4GM models (see (4.2)). Equation (E2) yields the ( p, q) = (1, 2) self-consistent Padé
approximants

1
2Ǩ0 = 1

1 + b2/4
, (E3a)

1
2Ǩ1 = b2

4
1

(1 + b2/4)2
, (E3b)

1
2Ǩ2 = b4

16
1

(1 + b2/4)3
, (E3c)

and the ( p, q) = (1, 4) Padé approximants

1
4Ǩ0 = 1

1 + b2/4 + b4/32
, (E4a)

1
4Ǩ1 = b2/4 + b4/16

(1 + b2/4 + b4/32)2
, (E4b)

1
4Ǩ2 = 1

2

[
2(b2/4 + b4/16)2

(1 + b2/4 + b4/32)3
− b4

16(1 + b2/4 + b4/32)2

]
. (E4c)
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(a) (b)

FIGURE 21. (a) Lowest-order kernel functions Kj (solid line) and the corresponding Padé
approximants, p

qǨj for j = 0, 1, 2 when ( p, q) = (1, 2) (dashed line) and ( p, q) = (1, 4) (dotted
line). (b) The ITG linear growth rate γ as a function of the perpendicular wavenumber
k⊥, obtained by the 4GM with the exact kernel functions Kj (solid line) and with the
Padé approximants p

qǨj, with ( p, q) = (1, 2) (dashed line) and ( p, q) = (1, 4) (dotted line),
respectively.

Figure 21(a) displays the lowest-order kernel functions, Kj for j = 0, 1, 2, and the Padé
approximants, given in (E3) and (E4), respectively. As observed, the ( p, q) = (1, 2)
Padé approximants decay slower in the larger b limit, compared with the ( p, q) = (1, 4)
models, while they both agree with the kernel functions Kj in the small b limit. Also,
the ( p, q) = (1, 4) case provides a better approximation near the K1,2 maxima. Using
the Padé approximants, defined (E3) and (E4), allows us to compute the sITG growth
rate using the 4GM. We consider the parameters k‖ = 0.1, η = 5 and ν = 1 and show
the results in figure 21(b) (similar results are obtained with the 6GM). Notice that, while
the Padé approximants yield a good approximation when k⊥ � 0.4, the ( p, q) = (1, 4)

Padé approximant models accurately describe the linear growth γ rate near the peak and
behave qualitatively well when k⊥ � 1. The second peak corresponds to the SWITG mode
(see § 6.2). This simple application demonstrates the ability of the Padé approximant
to accurately model FLR terms. Indeed, in conventional space, the kernel function, Kn
introduced in (2.13), defines an infinite linear combination of differential operators in
conventional space, i.e.

Kj =
∞∑

l=0

(−1) j

l!j!

(
ρ2

4
Δ⊥

)j+l

, (E5)

where Δ⊥ = ∇ · ∇⊥ is the perpendicular Laplacian. From a numerical point of view, (E5)
is not practical due to the presence of the infinite sum over the l index. A naïve approach is
by performing a truncation of the sum at a given order in b. But, it would yield an arbitrary
loss of accuracy, in particular, for short wavelength mode, such as, e.g. ITG that peak at
k⊥ ∼ 0.6/ρs (in physical units). A second option is to approximate the functional form
of (E5) using a Padé approximant as discussed in this appendix. Such approach can be
generalized to describe FLR terms in the GK collision operators and in the gyromoment
hierarchy for arbitrary number of gyromoments.
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