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Abstract
Wedemonstrate a quasipolynomial-time deterministic approximation algorithm for the partition function
of a Gibbs point process interacting via a stable potential. This result holds for all activities λ for which the
partition function satisfies a zero-free assumption in a neighbourhood of the interval [0, λ]. As a corollary,
for all finiterange stable potentials, we obtain a quasipolynomial-time deterministic algorithm for all λ <

1/(eB+1Ĉφ) where Ĉφ is a temperedness parameter and B is the stability constant of φ. In the special case of
a repulsive potential such as the hard-sphere gas we improve the range of activity by a factor of at least e2
and obtain a quasipolynomial-time deterministic approximation algorithm for all λ < e/�φ , where �φ is
the potential-weighted connective constant of the potential φ. Our algorithm approximates coefficients of
the cluster expansion of the partition function and uses the interpolation method of Barvinok to extend
this approximation throughout the zero-free region.
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1. Introduction
Gibbs point processes are a fundamental model of random spatial phenomena in the continuum.
Most classically, such processes are used to model a gas under local interactions (see Ruelle’s [31]
text). Beyond that, Gibbs point processes are used tomodel various physical phenomena that often
exhibit local repulsion, such as the locations of galaxies in the universe, the time and place of earth-
quakes, and the growth of trees in a forest; see [5, 22] for these applications and more. A simple
and well-studied example of a Gibbs point process is the hard-sphere model, where one samples a
Poisson point process in a set of finite volume in R

d and conditions on no two points having dis-
tance less than some parameter r > 0. In order to better understand these models one often wants
to approximately compute the partition function of the model, which may be understood as a
weighted count of allowable configurations of points. The partition function grows exponentially
in the volume, making exact computation intractable even for basic examples. Additionally, the
rate of exponential growth is equal to the infinite-volume pressure, a central quantity in statistical
physics.

Approximating the partition function and sampling – either approximately or exactly – are
the two main algorithmic problems associated with Gibbs point processes. Under very mild
assumptions, polynomial-time approximate sampling of the point process can be used to pro-
vide a randomised approximation to the partition function. Many techniques have been applied
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to Gibbs point processes for approximate and exact sampling in certain regimes; in fact, the
seminal Metropolis-Hastings algorithm was developed to sample from the hard-sphere model
in dimension 2 [21].

On the other hand, deterministic approximation algorithms for partition functions of Gibbs
point processes are less well-understood. For Gibbs point processes, to our knowledge the only
rigorous result giving a deterministic algorithm is that of Friedrich, Göbel, Katzmann, Krejca and
Pappik [6], which shows that for the special case of hard spheres, one may approximate the par-
tition function in quasipolynomial time for a certain range of parameters. The authors show that
the hard-sphere model can be well approximated by its discrete analogue (the hard-core model)
allowing them to apply known algorithmic results from the discrete setting (see Section 1.3 for
more detail).

In this paper, we provide a quasipolynomial-time deterministic approximation algorithm for
the partition function for a general class of stable Gibbs point processes. Our main result is stated
only under the assumption of zero-freeness of the partition function; from there, we deduce
two main corollaries using existing zero-freeness results from the literature, one which applies
to all stable potentials and a stronger result that applies to the more restricted class of repulsive
potentials. We defer formal statements to Section 1.2.

Our approach is via Barvinok’s interpolation method [2] combined with use of the cluster
expansion for Gibbs point processes. This allows us to work with the Gibbs process directly,
rather than a discrete approximation of the process. By combining our result with the zero-free
region for stable potentials guaranteed by the cluster expansion, we obtain what appears to be
the first algorithmic result for stable, non-repulsive potentials. In the special case of a repulsive
potential, combining our result with previous work of the second author and Perkins on zero-
freeness [19] yields the first quasipolynomial-time deterministic approximation algorithm for a
large class of repulsive potentials (which includes the hard-sphere model) and range of param-
eters. For the hard-sphere potential φ, we note that [19, Lemma 12] gives an explicit bound of
�φ < Cφ(1− 8−d−1) where �φ , Cφ denote the potential-weighted connective constant and tem-
peredness constant of φ, respectively (defined in the next sections). This demonstrates that our
algorithm works for a wider range of parameters than the previous deterministic algorithms [6].
Additionally, [7] argues that the connective constant of the discretization used in [6, 7] would
not provide an improvement to their results; as such, working in the continuum and using the
zero-freeness result of [19] gets around this issue.

1.1. Formal definition of the model
The point processes we consider are defined by three parameters:

• a measurable set S⊂R
d of finite volume,

• a parameter λ� 0 referred to as the activity or fugacity,
• a pair potential φ :Rd →R∪ {+∞} satisfying φ(x)= φ(−x).

The temperedness constant of a potential is defined as

Cφ =
∫
Rd

|1− e−φ(x)| dx. (1)

The temperedness constant may be understood as a measure of the strength of the potential. We
say that a potential φ is tempered if Cφ < ∞, and always assume that φ is tempered. The energy of
a configuration of points {x1, . . . , xN} ⊂R

d is defined by

H(x1, . . . , xN)=
∑

1�i<j�N
φ(xi − xj). (2)
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We will always assume that φ is stable, meaning that there is a constant B� 0 so that for all N
and x1, . . . , xN we have

H(x1, . . . , xN)�−BN. (3)

The infimum over such B is called the stability constant of φ. The assumption of stability is used
to show that the partition function – and thus the Gibbs point process – itself is well-defined.
Under certain conditions on φ, the assumption of stability is a necessary condition for the point
process to be well-defined (see [31, Section 3.2] for a detailed discussion and many examples).
A potential φ is repulsive if φ(x)� 0 for all x. In particular, repulsive potentials are stable with
stability constant B= 0.

TheGibbs point process in Swith potential φ at activity λ is the point process in Swhose density
against the Poisson point process of activity λ is proportional to e−H(x1,...,xN ). The grand canonical
partition function at activity λ is defined by

ZS(λ)=
∑
k�0

λk

k!
∫
Sk
e−H(x1,...,xk) dx1 . . . dxk. (4)

Throughout, we work with the case of S= �n := [−n, n]d ⊂R
d, i.e. the axis parallel box of side-

length 2n. One of the most studied examples of a Gibbs point process is the hard-sphere model,
which is defined by the potential

φ(x)=
{+∞ if ‖x‖2 < r

0 otherwise,
(5)

for fixed r > 0. The hard-sphere model is supported on configurations {x1, . . . , xN} such that
H(x1, . . . , xN)= 0 i.e. configurations consisting of the centres of a packing of spheres of radius
r/2.

Another similar example is the Strauss potential, in which the +∞ in the definition of the
hard-sphere potential is replaced with a parameter a> 0.

Among the most common examples of a stable potential that is not repulsive is a Lennard-Jones
potential (see [31, Section 3.2.10]). While there are many examples of potentials that are called
Lennard-Jones potentials, they are characterised by being strongly repulsive at short distances
and weakly attractive at far distances. A large family of widely used potentials is of the form

φ(x)=A‖x‖−2α
2 − B‖x‖−α

2

for parameters A, B> 0 and α > d, where we recall d is the underlying dimension. One may also
truncate this potential to be of finite range by simply setting it equal to 0 if ‖x‖2 � T for some
parameter T, and this still yields a stable potential.

1.2. Statement of results
Our results will require only two additional assumptions on the potential: first a basic assumption
on its form so that we may approximately compute certain volumes; and second a zero-freeness
assumption. The zero-freeness assumption we use for stable (non-repulsive) potentials is a clas-
sical result that follows from the cluster expansion [28, 31], while in the repulsive case, we will
use the work of the second author and Perkins [19]. We begin with the assumption required for
computational purposes.

Assumption 1.1. There are compact centrally symmetric convex sets {0} =K0 ⊂K1 ⊂K2 ⊂ . . . ⊂
K� so that the function x �→ exp(−φ(x)) is L-Lipschitz on each of �j := Kj \Kj−1. Additionally
assume that there is an R> 0 so that supp(φ)⊂K� ⊂ [−R, R]d and [−1/R, 1/R]d ⊂K1. We work
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in a real-valued model of computation, and assume unit cost for elementary operations; we also
assume that evaluation of e−φ as well as checking if a point lies in a given Kj have unit cost.

Assumption 1.1 essentially has two elements: it assumes that the potential φ has a certain
amount of (piecewise) regularity, and also assumes that φ is of finite range. We are not aware
of any natural potential φ in the literature that fails to satisfy the piecewise regularity portion of
the assumption. There are however many natural potentials that are not of finite range.

We remark that the hard-sphere potential (5), the Strauss potential, and the truncated Lennard-
Jones potential are easily seen to satisfy Assumption 1.1.

1.2.1. A note on asymptotic notation
Throughout the paper, we think of the parameters d, �, L, and R from Assumption 1.1 as fixed and
allow the implicit constants in our asymptotic notation to depend on these parameters.

Our main theorem is that we obtain deterministic approximation algorithms for ZS(λ) for
potentials satisfying Assumption 1.1 and the following zero-freeness assumption on ZS(λ).

Assumption 1.2. We say a stable potential φ satisfies Assumption 1.2 at λ0 > 0 if there exist
constants δ, C > 0 so that the following holds. For all bounded, measurable S⊂R

d we have

ZS(λ) 	= 0 and
1
|S| | log ZS(λ)|� C for all λ ∈Nδ([0, λ0]), (6)

where

Nδ([0, λ0])= {z ∈C : d(z, [0, λ0])< δ} .
Assumption 1.2 may be understood as saying that the Gibbs point process exhibits no phase

transition in the regime [0, λ0] in the Lee-Yang sense (see Section 1.3).
Given a number Z, an ε-approximation to Z is a value Ẑ so that e−εẐ� Z� eεẐ. Our main

theorem asserts a quasipolynomial-time approximation for the partition function under these two
assumptions. Recall that �n := [−n, n]d ⊂R

d.

Theorem 1.3. Let φ be a stable pair potential that satisfies the regularity Assumption 1.1. Suppose φ

satisfies the zero-freeness Assumption 1.2 at λ� 0. Let ε ∈ (0, 1), n ∈N. Then there is a deterministic
algorithm to compute an ε-approximation to Z�n(λ) with runtime at most exp(O( log3 (|�n|/ε))).

We note that the implicit constant in the exponent depends on the potential φ as well as the
activity λ.

We will deduce two main corollaries from Theorem 1.3. The first of which deduces an algo-
rithm for all stable potentials in the regime of cluster expansion convergence. The fact that for
λ < (e1+2BCφ)−1 a stable potential φ satisfies Assumption 1.2 is a direct consequence of the clus-
ter expansion (see, e.g., (11) or [31, Thm 4.2.3]). This classical result was recently improved
by Procacci and Yuhjtman [28] who showed that any stable tempered potential φ satisfies
Assumption 1.2 at all λ < (e1+BĈφ)−1, where

Ĉφ =
∫
Rd

1− e−|φ(x)| dx. (7)

We note that Ĉφ � Cφ for all φ with equality if φ is repulsive.

Corollary 1.4. Let φ be a stable tempered potential satisfying Assumption 1.1, let B denote its sta-
bility constant and let Ĉφ be as in (7). Let ε ∈ (0, 1), n ∈N. Then for all λ < (e1+BĈφ)−1, there
is a deterministic algorithm to compute an ε-approximation to Z�n(λ) with runtime at most
exp(O( log3 (|�n|/ε))).
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Our second corollary applies for repulsive potentials – i.e. the case of B= 0 – for a much wider
range of parameters. To apply Theorem 1.3 in the repulsive case, we will use pre-existing work
on zero-freeness of Gibbs point process partition functions. In [19], the potential-weighted con-
nective constant �φ was introduced, which captures a relationship between the strength of the
potential and the geometry of the underlying space.

First, define Vk via

Vk =
∫
(Rd)k

k∏
j=1

⎡
⎣exp

⎛
⎝−

j−2∑
i=0

1‖vj−vi‖<‖vi−vi+1‖φ(vj − vi)

⎞
⎠ · (1− e−φ(vj−vj−1))

⎤
⎦ dv (8)

where we write dv= dv1 dv2 . . . dvk and interpret v0 = 0, and in the case of j= 1 interpret
the empty sum as equal to 0. Since the potential φ is repulsive, the sequence {Vk}k�1 is
submultiplicative and so we may define the potential-weighted connective constant �φ via

�φ = lim
k→∞

V1/k
k = inf

k�1
V1/k
k . (9)

For any repulsive potential φ we have�φ � Cφ where Cφ is the temperedness constant defined
at (1). So long as φ is non-trivial we in fact have�φ < Cφ . In [19] it was shown that Assumption 1.2
is satisfied for each tempered repulsive potential for all λ0 < e/�φ . We, therefore, obtain the
following immediate corollary.

Corollary 1.5. Let φ be a repulsive tempered potential satisfying Assumption 1.1 and let �φ

denote its potential-weighted connective constant. Let ε ∈ (0, 1), n ∈N. Then for all λ < e/�φ ,
there is a deterministic algorithm to compute an ε-approximation to Z�n(λ) with runtime at most
exp(O( log3 (|�n|/ε))).

1.3. Context and related work
Much of the classical work on Gibbs point processes has consisted of showing the absence of a
phase transition when λ is small. There are many definitions and notions of a phase transition.
One of the most robust definitions is due to Lee and Yang [13, 33], which states that a phase
transition is a point at which the pressure fails to be analytic. Often, various other definitions of
phase transitions, e.g. in terms of infinite-volume Gibbs measures, can be shown to coincide with
the Lee-Yang definition (see e.g. [4] for some rigorous equivalences in the discrete case).

It remains a major open problem to demonstrate – or rule out – a phase transition for even
a single non-trivial pair potential φ.1 Groenveld [9] used the cluster expansion to prove that no
phase transition occurs for λ < 1/(eCφ) for repulsive potentials; this was extended to the broader
class of stable potentials by Penrose [24] and Ruelle [29]. For repulsive potentials, works ofMeeron
[14, 15] extend this regime to 1/Cφ . Taking inspiration from Weitz’s groundbreaking work [32]
on the hard-core model – a discrete repulsive spin system – the work of the second author and
Perkins [18] proved that there is no phase transition for λ < e/Cφ . This was extended further in
[19], which showed that Cφ may be replaced with the potential-weighted connective constant �φ .

In practice, variousMarkov chainMonte Carlo algorithms are used to sample fromGibbs point
processes, both approximately and exactly. There is a large literature dedicated to this study, see
for example [1, 3, 7, 8, 11, 12, 16, 17, 20, 21, 26, 27]. We refer to [20] and the references therein for
more context and background on these results; we also note that [20] demonstrates a fast mixing
approximate sampling algorithm and polynomial-time random approximation algorithm for a
repulsive Gibbs point process in the regime λ < e/�φ , the same regime in which the results of
this work hold.
1The first example of a continuous system for which a phase transition was proven was the Widom-Rowlinson model, a

result due to Ruelle [30]. However, this does not fit into the framework of indistinguishable particles that we consider in this
paper.
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When it comes to deterministic algorithms, there are several results for discrete systems. In this
setting, three approaches for obtaining approximation algorithms have emerged in recent years.
The first is due to Weitz [32] who pioneered an approach based on a notion of correlation decay
(strong spatial mixing) related to the absence of phase transitions. The second is the interpola-
tion method introduced by Barvinok [2] – a framework for showing that under a zero-freeness
assumption, one can approximate the logarithm of a polynomial using a small number of Taylor
coefficients (see also [25] for an important extension of this method). The third is a method based
on the cluster expansion in statistical physics pioneered by Helmuth, Perkins, and Regts [10] that
is closely related to Barvinok’s method.

For Gibbs point processes, to our knowledge the only rigorous result giving a deterministic
algorithm is that of Friedrich, Göbel, Katzmann, Krejca, and Pappik [6]. They show that for the
hard-spheres model, one may approximately compute the partition function in quasipolynomial
time for λ < e/Cφ . The approach of [6] works by showing that one may approximate the partition
function of the hard-sphere model with the partition function for the hard-core model on a graph
given by discretizing Euclidean space with a small mesh. After this approximation is in place, an
application of Weitz’s method [32] provides an algorithm. We also note that [6] applies not only
to the hard-sphere model but also to a class of multi-type Gibbs point processes with hard con-
straints, an example of this more general class being the Widom-Rowlinson model. Additionally,
while both the algorithm of [6] and Theorem 1.3 have quasipolynomial runtime, the algorithm of
[6] runs in time exp(O( log2 (|�n|/ε)) rather than our runtime of exp(O( log3 (|�n|/ε)).

To our knowledge, Theorem 1.3 marks the first approximation algorithm of any kind for the
partition function for stable, non-repulsive potentials.

1.4. Our approach
Our approach is via Barvinok’s interpolation method combined with use of the cluster expansion.
The cluster expansion – also called the Meyer series – is a combinatorial description of the Taylor
coefficients of log ZS(λ). In particular for bounded, measurable S⊂R

d and |λ| < (e1+BĈφ)−1, we
have

log ZS(λ)=
∑
k�1

λk

k! Ck(S) (10)

Ck(S)=
∑
G∈Gk

∫
Sk

∏
{i,j}∈E(G)

(e−φ(xi−xj) − 1) dx (11)

where Gk is the set of connected labelled graphs with k vertices and E(G) is the set of edges in a
graph G (see, e.g., [28] for this and similar expansions).

The algorithmic significance of the cluster expansion stems from two observations. The first is
that in order to compute 1

|S| log ZS(λ) up to an additive error of ε, it suffices to compute the first
O( log(|S|/ε)) coefficients Ck(S). This simple but crucial observation is at the heart of Barvinok’s
interpolation method and algorithmic applications of the cluster expansion. The second is that
the description of the Taylor coefficients as a sum over connected graphs allows us to approximate
them efficiently.

At first sight, it seems that the use of the cluster expansion restricts the range of λ for which
we can obtain algorithms to the interval (0, (e1+BĈφ)−1) where the cluster expansion is known
to converge. Moreover, the work of Groeneveld [9] and Penrose [24] implies that for a repulsive
potential, the radius of convergence of the cluster expansion is at most 1/Cφ (see Remark 3.7 in
[23]). In order to use the cluster expansion to produce an algorithm throughout the zero-free
region (which for repulsive potentials is known to include values of λ outside of the radius of
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convergence), we use an idea of Barvinok and apply a well-chosen polynomial to map between
the zero-free region and the disk. This is handled in Section 3.

The main technical contribution of this work is to approximate the coefficients of the cluster
expansion (11) in quasipolynomial time. We note that the problem of approximating coefficients
of the cluster expansion was pointed out in [6] as a central obstacle to obtaining an efficient deter-
ministic algorithm that works entirely in the continuum. To approximate the coefficients Ck(S),
the main challenge is that for each graph G ∈ Gk, the integrand in (11) need not be well-behaved;
in particular, it need not be Lipschitz. To handle this, we break each such term into many subse-
quent terms, each of which will give us an integral of a function that is Lipschitz over its support.
We then approximate each of these integrals by taking a sufficiently fine mesh and comparing the
integral to a weighted sum over this mesh. Our assumption that the potential φ has finite range
allows us to restrict our attention to approximating integrals over regions whose volume is inde-
pendent of n. It would be interesting to extend the results of this paper to include stable potentials
of infinite range.

2. Approximating coefficients in the cluster expansion
Throughout this section, we fix a stable potential φ with stability constant B that satisfies
Assumption 1.1. Recall that�n := [−n, n]d ⊂R

d. Our goal in this section is to provide an approx-
imation algorithm for Ck(�n) (as defined at (11)). In the next section, we show how to use these
approximate coefficients to arrive at an approximation of the partition function Z�n(λ).

Proposition 2.1. Let φ be a stable potential satisfying Assumption 1.1. There are constants C, c> 0
depending only on φ and the dimension d so that the following holds. For each ε ∈ (0, 1) and k, n ∈N,
we may approximate Ck(�n)/|�n| up to an additive error of ε in time at most C|�n|ε−dkeck3 .

Note that Proposition 2.1makes no use of a zero-freeness or correlation decay type assumption.
In order to prove Proposition 2.1, we will approximate each summand in (11). Further, we will

break up the term for each graph into the terms that are Lipschitz on their support. Themain work
of this section is Lemma 2.3 below, which provides an approximation for each of these Lipschitz
terms. Before stating this precisely, we make a few definitions.

Definition 2.2. Let �1, . . . ,�� be defined as in Assumption 1.1.

1. Given a connected graph G on k vertices, an edge-labelling is a function σ : E(G)→
= {1, . . . , l}.

2. For each labelling, σ and edge {i, j} ∈ E(G) define the function f σi,j : (Rd)k →R via

f σi,j (x) := (e−φ(xi−xj) − 1)1{xi − xj ∈ �σ ({i,j})}.

3. Define f σ via

f σ (x) :=
∏

{i,j}∈E(G)
f σi,j (x) .

4. Define Aσ ⊂ (Rd)k via

Aσ := {x ∈ (Rd)k : xi − xj ∈ �σ ({i,j}) for all {i, j} ∈ E(G)},

and note that supp(f σ )⊆Aσ .
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Recall that Gk is the set of connected labelled graphs with k vertices. Given a graph G ∈ Gk we
have ∫

�k
n

∏
{i,j}∈E(G)

(e−φ(xi−xj) − 1) dx=
∑
σ

∫
�k

n

f σ (x)dx, (12)

where the sum ranges over all edge-labellings σ of G. We note that there are �|E(G)| � �k
2/2 such

labellings, and there are at most 2k2/2 connected graphs on k vertices.
With this setup in mind, in order to approximate Ck(�n), it is sufficient to approximate the

integral of f σ for each labelling σ of each graphG ∈ Gk. In the next subsection, we will demonstrate
such an approximation:

Lemma 2.3. Let n, k ∈N. For any G ∈ Gk, labelling σ , and δ < cd,R, there is a set of points Sσ ,δ ⊂ �k
n

with |Sσ ,δ| =O(|�n|(2R)d(k−1)δ−dk) so that we have∣∣∣∣∣∣
∫

�k
n

f σ (x) dx−
∑

x∈Sσ ,δ

δdkf σ (x)

∣∣∣∣∣∣ =O(k2eBk
2
δ|�n|(2R)d(k−1)).

Further, the set Sσ ,δ may be computed in time O(k2|�n|(2R)d(k−1)δ−dk).

Proposition 2.1 follows quickly from here.

Proof of Proposition 2.1. Note that by (12)

Ck(�n)=
∑
G∈Gk

∑
σ

∫
�k

n

f σ (x)dx.

Taking δ = ε exp(−Ck2) in Lemma 2.3 with C sufficiently large as a function of R, d, � and B
we may approximate Ck(�n)/|�n| up to additive error ε in time O(k2eBk2 |�n|(2R)d(k−1)δ−dk)=
O(|�n|ε−dkeck3 ) where c is a constant depending only on R, d and � and B. �

2.1. Approximating the integral over a labelling
In this section, we prove Lemma 2.3. Fix G ∈ Gk and set S= �n.

Recall fromAssumption 1.1 that the sets�j are defined via�j =Kj \Kj−1. For a given γ � 0,

�
(γ )
j := (1− γ )Kj \ (1+ γ )Kj−1.

Define the set Uγ via

Uγ := {x ∈ Sk : xi − xj ∈ �
(γ )
σ ({i,j}), for all {i, j} ∈ E(G)} ∩ supp(f σ ) .

Before continuing, let us motivate the definition of Uγ . We will show that if x ∈Uγ , then f σ
is Lipschitz on a small neighbourhood of x (see Lemmas 2.8 and 2.7 below). This will allow us to
approximate the integral

∫
Uγ

f σ (x) dx by a sum over a mesh. Indeed, we define

Sσ ,δ := Uγ ∩ ((δZ)d)k,
and prove the following lemma.

Lemma 2.4. ∣∣∣∣∣∣
∫
Uγ

f σ (x) dx−
∑

x∈Sσ ,δ

δdkf σ (x)

∣∣∣∣∣∣ =O(k2eBk
2
δ|S|(2R)d(k−1)).
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To complete the proof of Lemma 2.3 we show that
∫
Uγ

f σ (x) dx closely approximates∫
�k

n
f σ (x) dx and that the sum in Lemma 2.4 can be computed efficiently. We turn our attention

first to the latter task.

Lemma 2.5. The set Sσ ,δ may be enumerated in time O(k2|S|(2R)d(k−1))δ−dk) and satisfies |Sσ ,δ| =
O(|S|(2R)d(k−1))δ−dk).

Proof. Fix a spanning tree T of G and let

T = {x ∈ Sk ∩ ((δZ)d)k : ‖xi − xj‖∞ � 2R for all {i, j} ∈ E(T)} .
First observe that Sσ ,δ ⊆ T , since if x ∈Uγ then xi − xj ∈ �

(γ )
σ ({i,j}) ⊆ [−R, R]d for all {i, j} ∈

E(G). In particular, ‖xi − xj‖∞ � 2R for all {i, j} ∈ E(T).
Note that |T | =O(|S|(2R)d(k−1)δ−dk) and that T may be enumerated in time

O(|S|(2R)d(k−1)δ−dk) as well. Further, for each point in T , we may check membership in
Sσ ,δ in time O(k2), completing the lemma. �

To show that
∫
Uγ

f σ (x) dx closely approximates
∫
Sk f

σ (x) dx it will be enough to show that the
measure of

Wγ = Sk ∩ supp( f σ ) \Uγ ,
is small.

Lemma 2.6. For γ � 1/d, we have |Wγ |� 4|S||E(G)|(2R)d(k−1)dγ .

Proof. For each edge, {a, b} ∈ E(G) define

Wγ ,a,b =
{
x ∈ Sk : xi − xj ∈ �σ ({i,j}) for all {i, j} ∈ E(G), and xa − xb /∈ �

(γ )
σ ({a,b})

}
.

Note then thatWγ ⊆ ∪{a,b}∈E(G)Wγ ,a,b. Thus, it is sufficient to prove

|Wγ ,a,b|� 4|S|(2R)d(k−1)dγ . (13)
To see (13), fix a spanning tree T of G so that {a, b} ∈ E(T). We then have that

Wγ ,a,b ⊆
{
x ∈ (Rd)k : x1 ∈ S, xi − xj ∈ [−R, R]d for all {i, j} ∈ E(T), xa − xb ∈ �σ ({a,b}) \ �

(γ )
σ ({a,b})

}
.

This provides a bound of

|Wγ ,a,b|� |S|(2R)d(k−2)|�σ ({a,b}) \ �
(γ )
σ ({a,b})|.

Write j= σ ({a, b}) for notational simplicity. By convexity of the sets Kj and Kj−1 we have
(1− γ )Kj ⊂Kj and Kj−1 ⊂ (1+ γ )Kj−1. We may therefore bound

|�j \ �
(γ )
j |� |Kj| − |(1− γ )Kj| + |(1+ γ )Kj−1| − |Kj−1|

= |Kj|
(
1− (1− γ )d

)
+ |Kj−1|

(
(1+ γ )d − 1

)
� (2R)d · 2dγ + (2R)d · 2dγ . (14)

Combining the two previously displayed equations shows (13) and completes the lemma. �
Assuming Lemma 2.4, the proof of Lemma 2.3 now follows quickly.

Proof of Lemma 2.3. Bound∣∣∣∣∣∣
∫
Sk
f σ (x) dx−

∑
x∈Sσ ,δ

δdkf σ (x)

∣∣∣∣∣∣�
∣∣∣∣∣
∫
Sk\Uγ

f σ (x) dx

∣∣∣∣∣ +
∣∣∣∣∣∣
∫
Uγ

f σ (x) dx−
∑

x∈Sσ ,δ

δdkf σ (x)

∣∣∣∣∣∣ . (15)
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Since |e−φ(x) − 1|� e2B, we have that |f σ |� eBk2 . The first term on the RHS of (15) may thus be
bounded by eBk2 |Wγ |, which we bound using Lemma 2.6, and the latter term may be bounded by
Lemma 2.4. �

It remains to prove Lemma 2.4. As discussed, a key step will be to show that if x ∈Uγ , then f σ
is Lipschitz on a small neighbourhood of x. This is carried out in the following two lemmas.

Lemma 2.7. The function f σ is (2eBk2L|E(G)|)-Lipschitz on Aσ .

Proof. Let x, y ∈Aσ . Then by definition

|f σ (x)− f σ (y)| =
∣∣∣∣∣∣

∏
{i,j}∈E(G)

(e−φ(xi−xj) − 1)−
∏

{i,j}∈E(G)
(e−φ(yi−yj) − 1)

∣∣∣∣∣∣ . (16)

To bound (16) we use the inequality∣∣∣∣∣
m∏
i=1

zi −
m∏
i=1

wi

∣∣∣∣∣� Tm−1
m∑
i=1

|zi −wi|,

which holds whenever |zi|� T, |wi|� T for all i. This yields

|f σ (x)− f σ (y)|� eBk
2 ∑

{i,j}∈E(G)

∣∣∣e−φ(xi−xj) − e−φ(yi−yj)
∣∣∣

� eBk
2 |E(G)|L max

{i,j}∈E(G)
‖(xi − yi)− (xj − yj)‖2

� 2eBk
2 |E(G)|L‖x− y‖2,

where we used that x �→ exp(−φ(x)) is L-Lipschitz on each �j by Assumption 1.1. �
Set

γ := 2Rδ. (17)

Since we are working in the context of Lemma 2.3, we may also assume that γ � 1/d by taking
δ small enough as a function of d and R.

Lemma 2.8. Let γ be as in (17). If x ∈Uγ , then

B∞(x; δ)⊆Aσ ,

where B∞(x; δ) denotes the open �∞ ball of radius δ centred at x.

Proof. Let x ∈Uγ ⊆ supp(f σ ). Suppose that v ∈ (Rd)k is such that ‖v‖∞ < δ. It suffices to show
that x+ v ∈Aσ . Let {i, j} ∈ E(G) and let t = σ ({i, j}). Our task is to verify that

xi − xj + vi − vj ∈ �t . (18)

Since x ∈Uγ we have, by definition,

xi − xj ∈ �
(γ )
t .

Moreover ‖vi − vj‖∞ � 2δ. The statement (18) then follows from the following claim.

Claim 2.9. If y ∈ �
(γ )
t , then B∞(y; 2δ)⊆ �t .

Proof. Recall that
�t =Kt \Kt−1 and �

(γ )
t = (1− γ )Kt \ (1+ γ )Kt−1 .
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We will show that B∞(y; 2δ)⊆Kt . The argument to show that B∞(y; 2δ)⊆Kc
t−1 is analogous. We

let ‖ · ‖ denote the norm associated to the centrally symmetric convex set Kt , that is for u ∈R
d,

‖u‖ := inf{θ > 0 : u ∈ θKt} .
We note that since [−1/R, 1/R]d ⊆Kt ⊆ [R, R]d by assumption, we have

1
R

‖u‖∞ � ‖u‖� R‖u‖∞ . (19)

With these observations in hand, we note that since y ∈ �
(γ )
t ⊆ (1− γ )Kt , we have ‖y‖� (1− γ ).

Suppose now that ‖z‖∞ < 2δ, then by the triangle inequality, (17) and (19)

‖y+ z‖� ‖y‖ + ‖z‖ < 1− γ + 2Rδ = 1 .

In other words y+ z ∈Kt as desired. �
Applying Claim 2.9 verifies (18). �

With the previous two lemmas in hand, we are now in a position to prove Lemma 2.4.

Proof of Lemma 2.4. Given x ∈ (Rd)k, let r(x) denote the point in ((δZ)d)k closest to x in �∞
distance (breaking ties arbitrarily). Note that if x ∈Uγ then r(x) ∈Aσ by Lemma 2.8. It follows
from Lemma 2.7 that∣∣∣∣∣

∫
Uγ

f σ (x)− f σ (r(x)) dx

∣∣∣∣∣� 2eBk
2
LE(G)

√
dkδ|Uγ | =O(eBk

2 |E(G)|δ|S|(2R)d(k−1)) . (20)

Define

U ′
γ :=

⋃
x∈Sσ ,δ

B∞(x, δ/2)

and note that ∫
U′

γ

f σ (r(x)) dx=
∑

x∈Sσ ,δ

δdkf σ (x). (21)

Using the bound |f σ |� eBk2 gives∣∣∣∣∣
∫
Uγ

f σ (r(x)) dx−
∫
U′

γ

f σ (r(x)) dx

∣∣∣∣∣� eBk
2 |U ′

γ �Uγ | . (22)

Combining lines (20), (21) and (22), it suffices to show that |U ′
γ �Uγ | =O

(
|E(G)|δ|S|(2R)d(k−1)

)
to complete the lemma. To this end note that

U ′
γ �Uγ ⊆ Xγ := {x ∈ (Rd)k : d∞(∂Uγ , x)� δ/2} .

If y ∈ ∂Uγ , then ya − yb ∈ ∂�
(γ )
σ ({a,b}) for some {a, b} ∈ E(G). Thus, if x ∈ Xγ , then

d∞(xa − xb, ∂�
(γ )
σ ({a,b}))� δ

for some {a, b} ∈ E(G). Arguing as in Lemma 2.6, it suffices to show that for t ∈ [�],

|{z : d∞(z, ∂�
(γ )
t )� δ}| =O((2R)dδ) .

Suppose then that d∞(z, ∂�
(γ )
t )� δ. Since,

∂�
(γ )
t ⊆ ∂((1− γ )Kt)∪ ∂((1+ γ )Kt−1),
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let us suppose first that

d∞(z, ∂((1− γ )Kt))� δ. (23)

As in the proof of Claim 2.9, let ‖ · ‖ denote the norm associated to Kt . Then by (23), there exists
p, q ∈R

d such that z = p+ q, ‖p‖ = (1− γ ), ‖q‖∞ � δ. By the triangle inequality, (17) and (19)

‖z‖� ‖p‖ + ‖q‖� 1− γ + Rδ < 1.

Similarly ‖z‖ > 1− 2γ . In other words,

z ∈Kt\(1− 2γ )Kt .

If instead d∞(z, ∂((1+ γ )Kt−1))� δ, then by a similar argument we have that z ∈ (1+
2γ )Kt−1\Kt−1. By the same calculation as in (14), we conclude that

|{z : d∞(z, ∂�
(γ )
t )� δ}|� |Kt\(1− 2γ )Kt| + |(1+ 2γ )Kt−1\Kt−1| =O((2R)dδ),

as desired. �

3. Reducing cluster expansion coefficients
Here we show that one can approximate 1

|�n| log Z�n(λ) using approximations of the coefficients
of the cluster expansion. A slight nuisance is that λ need not lie in the radius of convergence of
the cluster expansion; in particular, it is known [9, 24] that for a repulsive potential, the radius
of convergence of the cluster expansion is at most 1/Cφ (see remark 3.7 in [23]). To get around
this issue, we will use an idea of Barvinok and precompose our function f = |�n|−1 log Z�n with
a well-chosen polynomial map sending the unit disk into our zero-free region. This will result in
a function that is analytic in the disk, and the appearance of the polynomial will end up providing
only a polynomial fuzz to the efficiency of our algorithms. This approach is outlined in Barvinok’s
monograph [2, pg. 22] on partition functions; we isolate and prove an abstract version of this idea
here.

DefineNγ := {z ∈C : d(z, [0, 1])< γ } for all γ ∈ (0, 1).

Theorem 3.1. Let γ ∈ (0, 1). Suppose f is analytic inNγ and |f (z)|� 1 for all z ∈Nγ . Then there is
a constant C = Cγ > 0 depending only on γ so that the following holds for all ε ∈ (0, 1/2). If one can
approximate each of f (j)(0)/j! up to an additive error of εC for all j= 0, 1, . . . , C log(1/ε) in time at
most T, then one can approximate f (1) up to an additive error of ε in time CT log(1/ε)+ logC (1/ε).

We let D= {z ∈C : |z| < 1} denote the open unit disk in C. Our first step is finding a polyno-
mial to map D into the region Nγ so that some point in D is mapped to 1. While there are many
ways to find such a polynomial (e.g. [2, Lemma 2.2.3] gives an explicit construction) the form of
the polynomial is not important for us here, and so we state the relevant properties:

Lemma 3.2. For each γ > 0, we may find a polynomial � = �γ so that �(D)⊂Nγ , �(0)= 0 and
there is a point z1 ∈D so that �(z1)= 1.

The point now will be to work with the function g :D→C defined by g = f ◦ �. Under the
assumptions of Theorem 3.1, such a function g is analytic in D and |g(z)|� 1 for all z ∈D. The
Cauchy integral formula will imply that we can approximate g by its Taylor polynomial provided
we are not near the boundary:
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Fact 3.3. Let g be analytic in D with |g(z)|� 1 for all z ∈D. Then for all z ∈D and k ∈N, we
have ∣∣∣∣∣∣g(z)−

k−1∑
j=0

g(j)(0)
j! zj

∣∣∣∣∣∣�
|z|k

1− |z| .

Proof. Bound ∣∣∣∣∣∣g(z)−
k−1∑
j=0

g(j)(0)
j! zj

∣∣∣∣∣∣�
∑
j�k

∣∣∣∣∣g
(j)(0)
j!

∣∣∣∣∣ · |z|j

and note that by Cauchy’s integral formula we have∣∣∣∣∣g
(j)(0)
j!

∣∣∣∣∣� 1.

Summing over j� k completes the proof. �
Let z1 be as in Lemma 3.2. It follows that in order to approximate f (1)= g(z1) up to an additive

error of ε, it is sufficient to approximate the first k= Cγ log(1/ε) terms g(j)(0)/j! up to an error of
ε/(2k) each. To do so, we will relate the derivatives of g to those of f . Iterating the chain rule gives
the classical Faà di Bruno formula:

Fact 3.4 (Faà di Bruno’s formula). Let � and f be analytic at 0 with �(0)= 0 and set g = f ◦ �.
Then for each n ∈N, we have

g(n)(0)=
n∑

k=1

f (k)(0)Bn,k(�′(0),�′′(0), . . . ,�(n−k+1)(0)) (24)

where Bn,k(x1, x2, . . . , xn−k+1) are the Bell polynomials given by

Bn,k(x1, x2, . . . , xn−k+1)=
∑ n!

j1!j2! · · · jn−k+1!
(x1
1!

)j1(x2
2!

)j2 · · ·
(

xn−k+1
(n− k+ 1)!

)jn−k+1
(25)

where the sum is over all sequences of non-negative integers j1, j2, . . . , jn−k+1 satisfying
∑

ji = k
and

∑
iji = n.

To make use of this fact, we will need to evaluate the Bell polynomials Bn,k at derivatives of our
polynomial �. A simple term-by-term bound will be good enough for our purposes.

Lemma 3.5. For each polynomial �, there is a constant C = C� > 0 so that the following holds. For
all n, k ∈N, we may compute Bn,k(�′(0),�′′(0), . . . ,�(n−k+1)(0)) in time O(kC) and we have the
bound ∣∣∣∣ k!n!Bn,k(�′(0),�′′(0), . . . ,�(n−k+1)(0))

∣∣∣∣� eCk.

Proof. First compute all derivatives of� at 0, which takesO�(1) time since� is a polynomial. Set
xj = �(j)(0) and note that xj = 0 for j> d where d is the degree of�. We may thus reduce the sum
in (25) to those for which ji = 0 for all i> d as all other summands are 0. Since the values j1, . . . , jd
are non-negative integers of size at most k, we have (k+ 1)d choices for the sequence (j1, . . . , jd).
Moreover, the constraints

∑
ji = k and

∑
iji = n imply that n� dk and so each summand in (25)

can be computed in timeOd(kC
′) for some C′ = C′

d > 0. Wemay, therefore, calculate the sum (25)
in time O�(kC) for some C = Cd > 0.
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To see the claimed bound, apply the triangle inequality to see∣∣∣∣ k!n!Bn,k(x1, x2, . . . , xn−k+1)
∣∣∣∣�∑ (

k
j1, . . . , jd

)
|x1|j1 |x2|j2 · · · |xd|jd .

Relaxing the sum to consist of sequences satisfying
∑

ji = k, the binomial theorem gives∑ (
k

j1, . . . , jd

)
|x1|j1 |x2|j2 · · · |xd|jd = (|x1| + |x2| + . . . + |xd|)k � eCk

for C large enough with respect to �. �
The proof of Theorem 3.1 now follows from some bookkeeping.

Proof of Theorem 3.1. Apply Lemma 3.2 to find a polynomial � = �γ satisfying the hypotheses
of the lemma and define g = f ◦ �. Then by Fact 3.3 we may take k := Cγ log(1/ε) large enough
so that ∣∣∣∣∣∣g(z1)−

k−1∑
j=0

g(j)(0)
j! zj1

∣∣∣∣∣∣� ε/2.

Since g(z1)= f (1), it is thus sufficient to approximate g(j)(0)/j! for j= 0, 1, . . . , k− 1 up to an
additive error of at most δ := ε/(2k). By Fact 3.4 and Lemma 3.5 we may expand

g(j)

j! (0)=
j∑

i=1

f (i)(0)
i! Bi,j

where the coefficients Bi,j satisfy |Bi,j|� eCi � eCk =O(ε−C) and may be computed in time
O(kC)=O( logC (1/ε)). Thus, if we take C′ large enough (as a function of γ ) and approximate
f (i)(0)/i! up to additive error εC

′
, we obtain an approximation to g(z1)= f (1) up to additive

error ε. �

4. Proof of Theorem 1.3

Proof of Theorem 1.3. Set f (z) := 1
C|�n| log Z�n(λz), where C is as in Assumption 1.2. Then f

satisfies the hypotheses of Theorem 3.1, and note that by (11) we have f (j)(0)= λjCj(�n)/(C|�n|).
If we set δ = ε/(C|�n|), then we are seeking to approximate f (1) up to an additive error of δ. By
Propostion 2.1, for each j= 0, 1, . . . ,O( log(1/δ)), we may compute f (j)(0) up to additive error
δO(1) in time at most O(|�n|δ−O(j)eO(j3))= exp(O( log3 (1/δ))). Applying Theorem 3.1 completes
the proof. �
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