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EXTREMAL PROBLEMS FOR THE CLASSES 
V AND V 

WALTER HENGARTNER AND WOJCIECH SZAPIEL 

1. Introduction. Let H(D) be the linear space of analytic functions on a 
domain D of C endowed with the topology of locally uniform convergence and 
let Hf(D) be the topological dual space of H(D). For domains D which are 
symmetric with respect to the real axis we use the notation HR(D) = {f G 
H(D) : f(D D R) C R}. Furthermore, denote by S the set of all univalent 
mappings / defined on the unit disk A which are normalized by /(0) = 0 and 
f'(0) — 1. A well studied subclass of //(A) is the set TR of typically real 
functions / which have the following properties: 

(1) / ( 0 ) = / , ( 0 ) - l = 0 

(2) Im{z}.Im{/(z)}^0 for all z G A. 

There is a one-to-one correspondence between T& and the set P[-i,i] of all 
probability measure /i on the Borel a-algebra over [—1, 1]. Indeed, if/i G P[_i, i], 
then 

(1.1) f(z)= [ z/(l-2tz + z2W(t) 
*/[-i,i] 

belongs to the class 7R. Conversely, for each / G T& there is a unique fi G P[_i, i] 
such that (1.1) holds. It follows from there that TR is convex and compact. For 
simplicity, we shall use the notation 

(1.2) qt(z) = z/(l - 2tz + z2), - 1 ^ t^ 1. 

Observe that the mappings qt are univalent on A and that 

qt(A) = C\{(-oo, -1 / (2 + 20] U [1/(2 - 2t\ oo)}. 

The set of all univalent mappings in 7R we shall denote by SR. 
Iff G 7R, then/ is strictly monotone increasing on the interval (—1, 1). For 

simplicity, we shall denote the radial limit of / at z = — 1 by 

(1.3) / ( - 1 ) = l im/ (*) . 
J C — > • — 1 
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620 W. HENGARTNER AND W. SZAPIEL 

Let A be a compact subset of H (A). 

Definition 1.1. 
(a) A function/ G A is called to be a support point of A, / G <r(A), if there 

is an L G //'(A) such that Re{L(/ )} = max{Re{L(g)} : g £ A} and that Re{L} 
is not constant on A. 

(b) A function/ G A is called to be an extreme point of A, / G £(A), if/ is 
not a proper convex combination of two other functions in A. 

The set of all finite convex combination of functions in A we denote by co(A) 
and its closure by co(A). For example, £ ( r R ) = {qt : —I ^ t ^ 1} and 
a(rR) = c0(£( r*) )and 

(1.4) cô(SR) - 7R. 

Lately, W. Koepf [6] has shown that *E(SR) = CT(SR) = £ ( r R ) . 
The class of univalent mappings / G //(A) with fixed value /(0) and fixed 

omitted values was examined by G. M. Goluzin and others (see e.g. [3], [5]). Re­
cently, P. Duren and G. Schober [4] gave some geometric properties of extreme 
points and support points of the class S0 of univalent nonvanishing functions / 
on A with /(0) = 1. The corresponding case, when / has real coefficients, was 
studied by W. Koepf [6]. In this paper we consider the classes 

(1.5) V = {f = z + ̂ 2ak(f)z
k G TR :/omits a given point - / ? } , p > 0 

and 

(1.6) S^ = T^HS. 

Since we require that /'(()) = 1, the choice of p is important. For instance, T^p 

and S^p are empty, if 0 < p < 1/4, and contain only the Koebe mapping q\, if 
p — 1/4. Furthermore, for 1/4 < s < t, we have the strict inclusions T^s C rR

r 

and SR
S C SR

? and T^iS^00 resp.) is the usual class TR(SR resp.). Hence, the 
solutions of most of the optimization problems will depend on the omitted value 

-P-
There is a close relation between S^p and the class SR(M) of all univalent 

typically real functions which are bounded by M. Indeed, if g G SR(M), then/ = 
M.qxig/M) G SR

M/4 and, vice versa, if / G Sjf, then g = \pq\x(//\Ap)) G 
SR(4/?). The class SR(M) has been studied extensively by O. Tammi [12]. 

Extremal functions in 5R
P , /? > 1/4, (i.e. extreme points and support points) 

are slit mappings (Proposition 3.7 and Corollary 3.10) but they can split at 
several finite points or at infinity (Theorem 3.5). However, if —p is not an 
endpoint of the slit on the negative real axis, then no splitting can occur at 
infinity (Proposition 3.8). The main result of section 3 is a kind of a Schiffer-
Goluzin differential equation (Theorem 3.9). 
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In section 4 we complete a result of W. Koepf in determining explicitly 
the set of all support points of the class (S0)R which consists of all univalent 
nonvanishing mappings / , /(0) = 1, which have real coefficients. 

Section 5 deals with the class 7 ^ , p > 1/4. Evidently T^p is compact and 
convex but, in contrast to (1.4), T^p, p > 1/4, is not the closed convex hull 
of S^p (Proposition 5.1). There is an interesting difference between the extreme 
points different from qt, 1/(2/?) - 1 Û t ^ 1, in S^p and T^p. While in the 
first class splitting occurs, they are two-valent in the second class and all its 
boundary values lie in RUoo (Theorem 5.2). Indeed, the set of extreme points 
for the class T^p is exactly the set of all mappings 

(1.7) / - qsqt/q2p(i+s)(i+t)-u -1 £ s £ 1/(2/?) - l ^ t ^ L 

Note that any / of the form (1.7) can be expressed as a convex combina­
tion of qs and qt. First we give sharp lower bounds and upper bounds for 
/(*)> /'(*)? 02(/), a3(/)> anc* a^if) (Proposition 5.4, Theorem 5.6, Proposition 
5.8, and Theorem 5.10) and we determine in Theorem 5.5 the set of values of 
f(z) for a given nonreal z in A. Next (Lemma 5.11), we give a sufficient condi­
tion for L G //'(A) in order to get a univalent extremal function. In theorem 5.12 
we apply the above Lemma to the odd coefficients off. The last Theorem is sur­
prising. We show that for each L £ //'(A) there is a pL > 0 such that, if/? > pL, 
there is a univalent mapping/ G T^p such that Re{L(/)} = maxRe{L(r^/7)}. 

2. Some auxiliary Lemmas. For A C H (A) let £(A), a(A), co(A) and 
cd~(A) denote the set of all extreme points of A, the set of all (proper) support 
points of A, the convex hull of A and the closed convex hull of A respectively. 
Let T be a compact metrizable space and PT the set of all probability measures \L 
on the a-algebra of Borel subsets of T. The support of \i we denote by supp(/x). 
Furthermore, £ (P^) consists of all Dirac measures 8t concentrated at the points 
t G T. The Krein Milman Theorem states that P^ is the closed convex hull of 
TriPr) with respect to the weak*-topology of the dual space of C(T). Finally, if 
\i € Pr and A is a Borel set of T, we shall use the notation 

(2.1) /xA(B) = /x(A H B) for all Borel sets B in T. 

Our first Lemma characterizes compact and convex sets in //(A). 

LEMMA 2.1. A set A C H (A) is compact and convex if and only if there exists 
T described as above and a continuous function Q : A x T —• C such that 
<2(-, 0 € H (A) for all t ET and 

(2.2) A = ta = j G(-, t)dfi(t) : /i G PT J • 

Furthermore, we have 

(2.3) •£(A)c{Q(;t):t£T}. 
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Equality holds if the mapping /x —> /M is injective on ¥T, (i.e. if the linear space 
spanned by f = 1, the real parts and imaginary parts of the Taylor coefficients 
(as functions of t) of the kernel function is dense in C(T)). 

The necessity of the existence of Q was shown in [8] and the sufficiency 
can be found in [2]. The case of equality is discussed in [9]. For example, the 
simplest realisation of the Lemma is the case 

T=ZjÂ) and G ( z , / ) = /(z). 

The next Lemma considers a special case of Lemma 2.1. 

LEMMA 2.2. Let T and Q be as in Lemma (2.1). If T is a line segment or a 
circle and if Q is analytic at each point of A x T, then we have 

(2.4) a(A)Cco(tE(A)). 

Proof. Let L G //'(A) such that m = max{Re{L(/) : / G A} > 
min{Re{L/)} : f e A}. Consider the hyperplane M = {/ G //(A) : 
Re{L(/)} = m} which supports the set A. Denote by t* the reflected point 
of t with respect to T and let O(0 be defined by 

<B(0 = L(G(-, t)) + L(Q(-, '*))• 

By the above assumptions, the function O is analytic on a domain containing 
T and O is not constant on T. Therefore there are only finitely many functions 
<2(-, t) which belong to A DM. From (2.3) we conclude that 

(7(A) H M =AHM = co(<L (A D M)) C co{% (A)). • 

The following Lemma is a particular case of a more general result given in 
[8, see also 9-11]. For the convenience of the reader we shall give a proof of it. 

LEMMA 2.3. Let O : P[a,b] —> R> be an affine continuous mapping. Then we 
have for all r G 0(P[a^]) 

(2.5) £ {/i G ?[aM : 0>(/i) = r} - {i/ = (1 - A& + Afi, : 5, f G [a, ft], 

0 ^ A ^ 1, 0 ( I / ) = T}. 

Proof Let z/ G *E {/x G P[a^] : 0(/x) = r} and assume that supp(/x) contains 
at least three points *i, JC2, *3, « ^ JCI < X2 < *3 ^ b. Choose c G (JCI, X2) and 
J G (JC2, JC3). Then the intervals T\ = [a, c), /2 = [c, d] and 73 = (d, Z?] form a 
partition of [a, &] and we have 

3 3 

i/(7}) > 0 , 5 ^ ( 7 } ) = 1 and I/ = ^ I / ( 7 } ) M „ 

where /*,- = vT.jv{Jf) G P ^ . 
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Next, there are three real numbers Sj such that 

3 3 3 

J2 sj = 0,^2 \sj\ > 0 and ] T SJ&QJLJ) = 0. 

; = 1 7=1 y = l 

Consider now the real measure i/o = e Xw=i
 sj^j^ 0 < e < min{i/(T)}/ max{|.sy|}. 

Then v0{Jf) = e. 5} and i/o is not the zero measure. Moreover we have 

v = [i/-i/o) + {i/ + i/0)]/2, 
3 

v ± i/0 = ^ M T ; ) ± «/]/*/ G P M ] and 
7=1 

3 

0(i/ ± i/o) = 5 > ( 7 } ) ± 6^](D(/iy) - <D(i/) = r. 
7=1 

which leads to a contradiction. 
The converse inclusion is trivial since supp[(l — s)v\ + si/2] = suppOi] U 

supp[z/2] for all i/\, 1/2 G P[fl̂ ] and all 0 < s < 1. • 

To each L G //'(A) we associate the linear functional V G //'(A) defined by 

(2.6) L*(/) = (l/2)[L(/) + L e n ] 

where 

(2.7) f(z)=m. 

The Toeplitz representation for L and L* is then of the form 

00 00 

L(f) = J2 bnOnif) and V(f) = J^ Re(*„)fl„(/) 

where «n(/)=/ ( w )(0)/n!. 

Furthermore, iff G # R ( A ) , then L*(/) = Re{L(/)}. 

LEMMA 2.4. Lef L G Hf(A), c G R and suppose that the equation L*(qt) = 
c (L*(qt/z) = c respectively) has an infinite number of solutions. Then we have 
L*(f) = Re{M./(0) + cf'iO) (L*(f) = c./(0) resp.)/or all f G //(A). 

Proo/ Since L*(qt) (L*(qt/z) resp.) as a function of t is analytic on [—1, 1], 
we conclude that L*(f) (L*(f/z) resp.) is constant on 7R and we have therefore 
L*(z) = L*(z+zn/n) = c (L*(l) = L*(l+zn~l/n) = c resp.) for all n = 2, 3, 
and the result follows. • 
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3. Extremal Problems for S^p. In this section we are interested in the class 
S^p of univalent mappings defined on the unit disk À which have the following 
properties: 

( l ) / ( 0 ) = / ' ( 0 ) - l = 0 
(2) / is real on the interval (—1, 1) 
(3) / omits a given point —p on the negative real axis. 

Since S^p is empty for 0 < p < 1/4 and contains only the Koebe mapping 
q\{z) = z/(l — z)2, if p — 1/4, we shall assume that p > 1/4. Observe also 
that for 1/4 < s < t, S^p is strictly included in S^* and that S^°° is the usual 
class SR of all normalized univalent typically real functions. Furthermore, for 
each t G [1/(2/?) — 1, 1] the mapping qt{z) = z/(l — 2tz + z2) belongs to S^p. 
They are also extreme points and support points for this class. There are many 
other support or extreme points for S^p. 

We start our investigation with an elementary automorphism on S^p. Let 
f(z) — z + a2Z2 + «3Z 3 +. . . . Then the correspondence/ —> gf defined by 

(3.1) gf(z) = -p.f(-z)/[p+f(-z)] 

= Z-(a2- \/p)z2 + (a3 - 2a2/p + l/p2)z3+ . . . 

is a homoeomorphism from S^p onto itself. For instance, the function qt is 
mapped onto q-t+\/(2p), 1/(2/?) — 1 ^ t Û 1. As an immediate consequence we 
get the following elementary results. 

PROPOSITION 3.1. For f G S^p, p ^ 1/4, we have 
(i) 2^as(f)^-2+l/p 

(Hi) q\/(2P)-\(x) ^f(x) ^ qx(x), if - 1 < x < 1. 
For each case, equality holds only for f = qt with t = 0, t — 1 /(2p) — 1 or 
t= 1. 

Proof. Statement (/) follows from the fact that a2(f) ^ 2 for a l l / G TR and 
that a2(gf) = (l/p) — a2(f). The upper bound for a3(f) holds also for a l l / G 7R 
and its lower bound follows from the inequality a3(f) ^ a\(f) — 1 which is true 
for a l l / G TR. Next, we have q-\(\x\) ^ |/(JC)| ^ q\(\x\) for all x G ( - 1 , 1) 
and a l l / G TR which implies that/(jc) ^ #I(JC) for all JC G (—1, 1). Finally, 
gf(x) ^ <7I(JC) implies that [1 — (2 — (l/p))x + x2]f(— x) ^ —JC. Replacing JC by 
—x statement (Hi) follows. D 

The following proposition creates a chain in S^p from any mapping / G S^p 

toqh l/(2p)-l£t£ 1. 

PROPOSITION 3.2. Let f G V , p ^ 1/4, 0 < r ^ I, and 1/(2/?) - 1 ^ tè 1. 
/>M, r = p/[\ + (1 - r)(2/?(l + 0 - 1)]. Then 1/4 < r ^ /? and 

(3.2) F(-, r, 0 =f(q7l(rqt(.))/r G V C V 
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Moreover, F(-, 0% t) = qt and F(-, 1, i) — f. 

Proof. Fix t G [l/(2p) - 1, 1] and let d = q-{(rqt(-l)). Then qt(d) = 
- r / ( 2 + 20 = l/[(d + l/d) - It] and, by proposition 3.1 (Hi), we have 

F(-lJr,t)=f(d)/rèql/Qpy-l(d)/r 

= l/{r[(d+l/d) + 2-l/p]} = -r^-p. D 

As an immediate consequence we get 

PROPOSITION 3.3. 

(i) / / / G V ^ ïA2/7) ~ ! = f= h then 

F(-, r, 0 = / ~ [/"W^ "" /Kl - '") + ̂ (1 - r ) € V as r tends to 1. 

(ii) The chain F satisfies the differential equation 

rdF/dr = (dF/dz)(qt/q't) - F, F(z, 0+, 0 = qt(z) 

andF(z, 1, t)=f(z). 

(Hi) Let L G H'(A) and suppose that f G SR
P is a solution of max L*(S^P). 

Then we have L*(f) ^ L*(fqt/rft)for all t G [1/2/?) - 1, 1]. 

The next result is a direct application of Proposition 3.2. 

PROPOSITION 3.4. Let L G //'(A) and put <j>(p) = maxL*(Sj^), /? > I/4- ^ ^ 
</> satisfies locally the Lipschitz condition. 

Proof. For/? > 1/4, choose e > 0 such that/?-e > 1/4. Then SjJ^"0 C V 
and </>(/? — e) ^ </>(/?). Let / G S^p be an extremal function for L* (i.e. (/>(/?) = 
L*(/)). Put r = /?-e and f = 1 in relation (3.2). Then r = l-e/[(4p-l)(p-e)] G 
(0, 1) and from Proposition 3.2 we conclude that F(-7 r, 1) G S ^ - 0 . On the 
other hand, by Proposition 3.3 (/), we have 

0 ^ </>(/>) - <Kp - c) ^ (/>(/?) - L*(F(-, r, 1) 

= r ( A i M - / ) ( l - 0 + O(l-r), 

where r = 1 — e/[(4p — \)(p — e)] tends to 1 as e tends to zero. Therefore 
0 ^ [(/>(/>) - </>(/> ~ e)]/e ^ L\fqx/q

f
l -f )/[(4p - \)(p - c)] + o(l) = 0(1) as 

e tends to 0. D 

The class S^p is closely related to the class SR(M) which consists of all 
mappings in SR which are bounded by M. Indeed, consider the transformation 

(3.3) g^f8=4pqi(g/(4p)). 

Then/g G S^p, if and only if g G SR(4/?). Tammi [12] has extensively studied 
the class SR(M). In particular he derived a Lowner-type differential equation for 
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a dense subclass of SR(M) consisting of mappings whose images are the disk 
{w: \w\ < M} minus two slits. Applying the transformation (3.3) one gets the 
differential equation 

t. dF(z, t)/dt = -F 2 (z , 0[1 + cos(0(f))]/[2f + [1 - cos(fl(0)]F(z, 01, 

F(-, 1/4) = qi and *"(•,/>)=/, 

where 8(t) is a real continuous function on [1/4, p]. 
We get the following nontrivial examples of support points. 

THEOREM 3.5. For f G S^p we have the inequalities 

-l-l/(4p2)^a3(f)-a2(f)/p 

< f 1 - 3/(8/72), ifl/4£p£e/4 
1 - 3/(8/>2) + (4pa - l)2/(8/>2), </> ^ e/4, 

where a is the unique solution of the equation 4pa ln(a) + 1 = 0 in the interval 
[l/e, 1). The lower bound is reached by the function q\/(4p) and the upper bound 
by the solutions f = F(-, p) of the above Lowner differential equation, where 

(i) cos(0(f)) = 0 and a2(f) = 2/e, if 1/4 ^ p < e/4, 
(ii) cos(0(O) = -2Af, |A| ^ 2/e, and a2(f ) = A + 2/e, if p = e/4, 

On) cos(0(f)) = { , , 1 // ^ <r , < -
{ ± 1 ; l/(4a) ^ t ̂  p 

and a2(f) = T2cr + 2/e, //> > e/4 

All extremal functions map À either 
(a) onto the complement of a three-fork slit consisting of the halfline 

(—oo, —p] and a bounded symmetric are cutting the interval (—oo, —2p\ or 
(b) onto the complement of three slits consisting of the halfline (—oo, —p] 

and two unbounded Jordan arcs which are symmetric with respect to the real 
axis and which contain no points of R, or 

(c) onto the complement of two slits consisting of the halfline (—oo, —p] and 
a two-fork slit which contains a real halfline [a, oo) for some a > 0. 

Proof of Theorem 3.5. The lower estimate follows immediately from Propo­
sition 3.1 (i) and the inequality a3(f) ^ a\(f) — 1 , / G 7R. L e t / G S^p and 
g = *P<lil(f/(4p)). Then g G SR(4p) and a3(g) = a3(f) - a2(f)/p + 5/(16/?2). 
Apply now the results of Tammi to a3(g). 

Remark. Tammi has also discussed the extremal functions in SR(M) which 
correspond to the linear functional a$(g). The homeomorphism (3.3) transforms 
a^(g) to a concave functional on S^p. 

In what follows, we give some geometric properties of extreme points and 
support points of S^p. The next Lemma will be useful later on. 

LEMMA 3.6. Let f G S^p, p > 1/4, L, G H'(A) and suppose that there is an 
infinite number of points a G C\f(A)for which 
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(i) L*(f2(f+p)/(f-a)2) = 0 
or 

(ii) L*(f(f +p)/(f - a)) + c/a = 0,c = const, 
holds. Then L*(f) = Re{fco}/(0) + Re{fci}/'(()). 

Proof. Suppose that (i) holds. Let / i b e a representing measure for L* whose 
support lies in a compact set K C A. Put dp,\(w) = w2(w + p)dp,(f~l (w)). Then 
the function 

(3.4) a^L*(f2(f+p)/(f-a)2) 

is analytic in a neighborhood of infinity and fi\ is a complex Borel measure 
with support in f(K). Observe that the function (3.4) vanishes at infinity and 
that all its Laurent coefficients are zero. In other words, we have 

(3.5) (n - 1) / fn(z)(f(z) +pW(z) = (n - 1) / wn~2d^(w) = 0 
JK Jf{K) 

for all n = 2,3, . . . . 
Define now L0 by L0(F) = Jf(K)F(w)dfil(w) and let F G HR(f(A)). By 

Runge's Theorem there is a sequence of polynomials pn which converges uni­
formly to F on f(K). Replacing pn by /?* defined in (2.7) we may assume that the 
coefficients of pn are real. From (3.5) we conclude that L0 vanishes on / / R ( / ( A ) ) . 

Put gn(z) = zn/[f2(z)(f(z)+p)l n = 2, 3, . . . . Then, gn(f-
{) G HR(f(A)) 

and we have 

L0(gn(f -1)) - / gn(z)dfil(f(z)) = [ zndfi(z) = L*(zn) = 0 
JK JK 

for all n = 2, 3, . . . , which shows the case (i). The proof for the case (ii) is 
similar. • 

PROPOSITION 3.7. If fis an extreme point or a support point of S^p, p > 1.4, 
then f (A) is dense in C. 

Proof. Let / E SK
P and suppose that /(A) omits an open set T>. Then there 

is a closed disk {w: \w — a\ S e} C (D Pi {w: lm{w} ^ 0} and there is a 6 > 0, 
such that the functions 

(3.6) &j(w) = w + {-\)jbw2(w +p)[(w - a)'2 + (w - ay2], j = 1, 2, 

have the following properties: 
(i) They are analytic and univalent in {w: \w — a\ > e} Pi {w: \w — a\ > 

e} = Q. Indeed, [0/(w) — ®J(UJ)]/[W — u] = 1 +6. H/vv, UJ) where S7(w, u) is 
bounded in Q x Q. 

(ii) They are strictly increasing on R and Oj(0) = 1. 
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(iii) 0 ; 0 ) > —p for all real w > -p. Indeed, 0/(-/?) = -/?, Oj(0) > 0 and 
®j(w) is univalent on the real axis. Therefore, 0 7 ( / ) G S^p and / = [Oi(/) + 
*2(/)]/2. 

Suppose first that / is an extreme point of SR
P. T h e n / 2 ( / +/?)[(/ — a)~2 + 

( / — a)"2] = 0 on À which leads to a contradiction. 
Next, suppose that / is a support point of Sj^\ Then there is an L G H'(Is) 

for which L* is not constant on SR
P and 

L*(/) = maxL*(S^)^ i*(* / ( / ) ) 

= L\f) + 2 ( - l )^Re{L*[ / 2 ( / + p ) / ( / - a)2]}. 

This implies that Re{L*[/2(/ +/?)/(/ - a)2]} = 0 for all a in the exterior of 
/(A). But this is impossible by Lemma 3.6. • 

Suppose now that D is a simply connected domain of C and let a and b, a^fib, 
be in C\D. Then both functions 

(3.7) *¥j(w) = w + ( - iy [ (w - a)(w - fc)]1/2 

are univalent and analytic on D and they have disjoint images. Historically, L. 
Brickman [1] has used this two functions to show that extreme points of S are 
monotonie slit mappings. Later, W. Koepf [6] adapted the method of Brickman 
to the class (S0)R. Unfortunately, this method gives not so strong results for the 
class S^p. Indeed, if/ G S^p and/(—1) = —p in the sense of (1.3), then only 
one of the two mappings 

[^ . ( / ) -^ . (0 ) ] /^ (0) ,^ = â, 

belongs to the class S^p. However, we have: 

PROPOSITION 3.8. Let f € S^p, p > 1/4, and /(—1) > —p in the sense of 
(1.3). If there is a sequence of nonreal an G C\/(A) which converges to infinity, 
then f is neither a support point nor an extreme point of S^p. 

Proof L e t / ( - l ) = ~p{ > -p, a G C\/(A) with lm{a} ^ 0, and let 

(3.8) <&,-(/) - Wjj(f) - ^.(0)]/¥;(0), 7 = 1,2 

where *F/(H>) is defined in (3.7) with b = à and (l^2)1/2 = \a\. Then, for y = 1 , 2 , 
define/ = ¥,-(/) G SR. Then/ = A1/1+A2/2, A, = l - ( - i y Re{a}/M > 0 and 
A! + A2 = 1. Since/2(—l) = 02(—p\) > —px > —/?, we conclude that/2 G S^p. 
On the other hand, Oi converges locally uniformly to the identity on a simply 
connected domain containing/(A) and {—p\} as a tends to infinity. Hence, we 
have/(—1) = Oi(—p\) > —p for sufficiently large non real a G C\/(A) and 
/i G S^p. This shows that/ is not an extreme point of S^p. 
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For any L E //'(A) for which L* is not constant on SR
P we conclude from 

Proposition 3.7 that max L*(S^P) > L*(fj) and therefore/ is also not a support 
point of S^p. D 

Remark. Proposition 3.8 is not in contradiction with the examples of support 
points we have given in Theorem 3.5, since we require here that/(—1) > —p. 

We present now an analogue of the Goluzin variation (see [5, p. 99] for the 
general form and p. 106 for the specific choice of Q(w)). Let A*, 1 ^ k ^ n, 
be n arbitrary complex numbers and let a ,̂ 1 = k ^ n, be n arbitrary nonreal 
numbers. For/? > 1/4, consider the function 

(3.9) w*(w, A) = w + Ag(w), where 

w(w+p) —w(w+p) 
G(H>) = > Ak + Ak 

* * \AJ flu W — Clk W — dje 
k=\ K K 

Then w* is analytic and univalent in w on any domain 

(3.10) {w eC:\w-ak\>6 and \w - âj\ > <S, 1 ^ k ^ n} 

whenever 

(3.11) |A| < ' ~ 2^ ] |A , | (1 + | ^ | K + / 7 | ^ 2 ) 
L k=\ 

Indeed, this follows from 

w*(u>, A) — w*(w, A) 

*=1 

x + x y A k ( x - ak(ak+p) ) 

f^ V (w - ak)(u - ak) ) 

V (w - ak)(u - ak) J Let / 6 S^p and suppose that for some r, 0 < r < 1, all the points ak are in 
f({z: |z| < r}). Then, for sufficiently small |A|, the function w*(w, A) is analytic 
and univalent on the annulus {z : r < \z\ < 1}. 

Choose n nonreal numbers zk, 1 = k ^ n, in À such that a* = f{zk). Then 
the function Q(f)/[z.f] has only simple poles in À which lie on the set {zk. 
1 û k ^ n}. The Goluzin interior variation/* of/ as given in equation 2 in [5, 
p. 100] takes the form 

n 

(3.12) f =f + A 5 } A * « % +Â^/%] + 0(A2) G V + ° ( A % A G R, A -+ 0, 
k=\ 

under the condition that 

(3.13) Re j A t < ( 0 ) = 0, 
, £ = 1 
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where 

(3.14) Gc(z) = zf\z)(\-z2)l[{\-C£){\-zlQ] 

and 

(3.15) Hc(z) = / ( 0 [ / ( 0 +p]Gc(z)/lCf'(Q]2 +f(z)[f(z) +p]/[/(z) -f(Ql 

Observe that HQ{Z) G //(A x A) as a function of the variables z and £ and that 
/ # is typically real. 

From the variation formula (3.12), (3.13) we deduce the following Schiffer-
type differential equation. 

THEOREM 3.9. Let f be a support point of SR
P', p > 1/4, and let L G //'(A) 

for which L* is not constant on S^p and for which L*(f) = m3xL*(S^p). Using 
the notations (3.14) and (3.15) the following conclusions hold: 

(0 #(0 = L*(Hç)/Hç(0) is constant on A. 
(ii) For all £ G A we /lave; 

(316) (L V7^J+7âJ7(ô^ 
Cf'iQ12 

no 
+ L*(G c)-C = 0 

(lïi) C - g(0) = 2L*(f + /?[1 - (1 - z2)/ '])/(l - 2pfl2(/) wfefiever a2(f) ? 
1/(2/7). / / f l 2 ( / ) = 1/(2/?), f/i*;i L*(/ + /?[1 - (1 - z2)f ']) = 0. 

Proof Take n = 2 in (3.12) and (3.13). By Proposition 3.4, the function 
0(/?) = max L*(5^), /? > 1/4, satisfies the local Lipschitz condition. Since 
L*(JZ2) = Z*(flàweget 

£*(/*) - 0(/7) + 2A Re L* f ^AkHak j + 0(A2) 

^ 0(/7 + 0(A2)) = 0(/7) + 0(A2) 

as A tends to zero. Therefore we have 

(3.17) Re J2AkL*(Hak) = 0 andRe ] T A,//;(0) = 0. 

Next, put in (3.17) a\ — (, a2 = r/, A\ = eia and A2 = le*13, where a, /? and 7 
are real numbers. Then we get 

(3.18) é>/aL*(//c) + e-iaL\H-^ + ye^L*(Hv) + le^V^) = 0 

which holds under the restriction 

(3.19) Re{é?/a7Jc'(0) + 7 ^ / ^ ( 0 ) } = 0. 
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Now, we multiply both sides of (3.18) by 

2 Re{^// ;(0)} = ^ ( 0 ) + r ^ ( 0 ) 

and we use (3.19) in order to eliminate 7. Since a and (5 are arbitrary real 
number, we conclude that 

//;(0)L*(//C) = H^ViH^H'^L^H^) = //C'(0)L*(/^) 

and therefore 

//C'(0){/^(0)L*(/^) - H'^L*^)} = 0 for all C and 77 in A. 

The function H£(0) = / ( 0 ( / ( 0 +P)/(£f'(Q)2 ~p/f(Q is analytic on A and is 
identically zero if and only if 

(3.20) f(z) =fo(z) = 4pqi(z/(4p)) = z + z2/(2p) +.... 

Observe that fo is bounded and belongs to the class S^p but is not a support 
point of S^p (see Proposition 3.7). Hence 

^ ( 0 ) L * ( ^ ) G R for all 77 G A. 

On the other hand, g(rj) = L* H^) / H^O) is meromorphic and real on A and 
therefore g is constant on A. 

COROLLARY 3.10. Iff is a support point of S^p', p > 1/4, f/zen C\Z"(A) w « 
/mte wn/on of analytic arcs. 

Proof Le t / G a(«V) and let L G //'(A) for which L* is not constant on SR
P 

and for which L*(f) = max L*(S^P). By Lemma 3.6 (ii), the function b(w) — 
L*(f(f +p)/(f — w))+pC/w, C defined in Theorem 3.9 (iii), is not constant on 
C\f(A). Furthermore, L*(Gç) is real on the unit circle 3A. Hence, except for a 
finite number of points of 3 A, the differential equation (3.16) determines a finite 
system of analytic arcs (see e.g. [3, 5, 7]). • 

4. A completion of a result of W. Koepf. In this section we weaken the 
conditions which we have imposed on the mappings in T^p and S^p. We shall 
no more require that/ '(0) = 1, but rather let it be free. There is no essential 
importance which negative prescribed value —p has to be omitted. Historically, 
one finds rather the normalization f(0) = 1 and the omitted point is w = 0. In 
concordance with this fact, we shall use the notations: 

(4.1) (7b)R = {/ G //(A) :/(0) = 1, w = 0 G C\/(A) 

and Im{/(z)}. Im{z} > 0 on A}, 

(SO)R = {/ € / /R(A) : / univalent on A, /(0) = 1 

and w = 0 G C\/(A)}, 

(5O)R = { / G ( 5 0 ) R : / , ( 0 ) > 0 } . 
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Observe, that/'(*) > 0 for all JC G ( - 1 , 1) and a l l / G (T0)R and that (S0)R 
is not contained in (7O)R. The following result was shown in [11] but we give 
a new proof for it. 

THEOREM 4.1. The following relations hold. 
(i) <E((T0)R) = {qt/q-i:-l£t£l}, 
(ii) (r0)R = cô{(So)+

R} = {f/q-i :feTK} = {/„ = J M u[qt/q-iW(t) : 
M€P[-i,i]}. 

(///) Furthermore, we have f^— 1) = /z({—1}). 

Proo/ Le t / G (7O)R. Then, except for / = 1, the function ( / - 1 )//'(()) G 
j^- i / / (0) an (j tnerefore there is a positive measure A on the Borel cr-algebra over 
[ -1 , 1] such that for all r, 0 < r < 1, 

-1 S/(-r) - 1 = [ qt(-r)d\(t) = - [ q-t(r)d\(t). 
•A-Mi ^[-i,i] 

Define Xr by d\r(t) — q^t(r)dX(t). Then Ar is again a positive measure on 
the Borel a-algebra over [—1, 1] whose total mass is Ar([—1, 1]) S 1. By 
the Banach-Alaoglu Theorem and by the Riesz representation Theorem for 
C'([—1, 1]) there exists a Borel measure /ij such that Ar converges to fi\ in 
the weak*-topology as r tends to 1. (Strictly speaking one should take a weak* 
convergent sequence of Ar as r tends to 1. However, by Lemma 2.1, fi\ is 
uniquely determined.) For each fixed z G A we have 

f(Z) = 1 + 2 [ (1 + t)qt(z)dXr(t) + ( > / ? - l/y/?)2 [ qt(z)dXr(t). 
J [-hi] J[-h\] 

Letting r tend to 1, we get 

f(Z) = 1 + 2 f (1 + t)qt(z)d^(t) = [ [qt/q-ûizWM, 

where /i = fi\ + [1 — /ii([— 1, l])]<S-i G P[-i,i]. Thus, 

(7O)R C co{qt/q-\ : - i s ^ 1} c (r0)R. 

Hence, we have 

(7O)R = {f/q-\ : / É r R } and £((7b)R) = {//<?-i : / G £ ( 7 R ) } 

and (i) follows. 
Statement (ii) follows from (i) and the facts that (SO)R *s contained in (7O)R 

which is compact and convex and that qt/q-\ = 1 + 2(1 + t)qt is univalent on A 
for each t, — 1 < t ^ 1. Finally, the inequality 

U(*)-/*({-!})- /" Wtf-iK*>*Mo| 

= 1 / fe/MlW#)k((-ij)) 
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holds for all x G (—1, 0) and all y G (—1, 1). Letting first x tend to —1 and 
then y tend to —1 statement (iii) follows. D 

For the class (SO)R W. Koepf [6] has obtained the following result: 

THEOREM 4.2. The following relations hold: 
(i) £((SO)R) - {qt/q-i :-K t £ l}U{qt/qi : - l S K l } . 
(II) O((SO)R) C {?,/?, : " I ^ J, ^ 1, s? t}. 

We shall now complete statement (ii) of the above Theorem. 

THEOREM 4.3. We have <7((S0)R) = {qt/q-i : - 1 < tû 1} U {qt/qi : - 1 ^ 
r < l } = £((S0)R). 

Proo/ Le t / G <7((S0)R). If/ '(0) > 0, then, by Lemma 2.2 and Theorem 4.1 
(i), we conclude tha t / G ^ ( (7 0 )R) C co{qt/q-\ : — 1 ^ f ^ 1}. Moreover, 
since/ is univalent, there is a À G [0,1) and an s G (— 1, 1] such that/ = (1 — 
X)qs/q-i + A. Moreover, there is an L G //'(À) such that L*(f) = maxL*((So)R) 
and L* is not constant on (SO)R- In particular, we have L*(f — qt/q±\) = 0 for 
all f G [—1, 1] which implies that 

(4.2) (1 - A)(l + s)L*(qs) - (±1 + t)L\qt) ^ 0 for all t G [ -1 , 1]. 

Put t = 1. Then (4.2) becomes (l-\)(l+s)L*(qs) ^ 0 which is satisfied if either 
A = 1 or L*(qs) ^ 0. The first case is excluded since / = 1 is not univalent. 
Next, put t = s. Then (4.2) reduces to —A(l + s)L*(qs) ^ 0 which holds if 
either A = 0 or L*(qs) ^ 0. Suppose that A ^ 0. Then L*(qs) = 0 and, by (4.2), 
we have (±1 - t)L\qt) ^ 0 for all t G [ -1 , 1]. Therefore, L\qt) = 0 for all 
t G (— 1, 1). By Lemma 2.4, we conclude that L* is constant on (SO)R- Therefore, 
the only possible case is A = 0, i .e./ = qs/q-\ for some s G (—1, 1]. 

Let now/'(0) < 0. Put/i(z) =f(-z) and Lx(f) = L(/i) and apply the above 
proof. Therefore we have 

<T((SO)R) C {qt/q-x : - 1 < t£ 1}U {qt/q} : - 1 ^ t < 1}. 

It remains to show that the converse inclusion holds. Fix s G (—1, 1] and 
consider the continuous linear functional 

(4.3) L(f) = J2bk(n)ak(f), 
k=l 

where — (n— l)/(n+1) < s and L(qt) = [(n+ \)s + n — t]n. The coefficients bk(n) 
exist since the polynomials a\(qt), a2(qt), • . . , an+\(qt) form an algebraic basis 
for the linear space of all real polynomials of degree at most n. First, observe 
that (n+ l)s+n-t > l-t^ 0 for all t G [ -1 , 1] and that {\+t)[(n+\)s+n — t\n 

has the unique global maximum at the point t = s on the interval [—1, 1]. Since 
L(qt/q-\) — L(qt/qq) — 4L(qt) > 0, we conclude that 

L(qt/qx) ^ Uqtlq-Ù = 2(1 + t)L{qt) Û L(qs/q^) for all t G [ -1 , 1]. 
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Therefore, {qs/q-i : - 1 < s ^ 1} C a((50)R). 
Similarly, for fixed s G [—1,1) and (n — \)/(n + 1 ) > s, we have 

-(n+l)s + n + t> 1+f ^ 0, f e [ -1 , 1]. PutL(^r) = [-(n+l)-s + n + r]rt. Then 
the functional (4.3) has the property 

Uqt/q-Ù ^ Uqt/qi) = -2(1 - f)Lfo) 
^L(qs/q{) for all* G [ -1 , 1]. 

Therefore, {qs/q\ : — l ^ s < l } c O"((SO)R) and Theorem 4.3 is established. 

5. Extremal problems for the class T^p. In this section we solve some 
extremal problems for the class T^p of all normalized (/(0) = / '(O) — 1 = 0 ) 
typically real functions which omit a given point —p on the negative real axis. 
Again, T^p is empty for 0 < p < 1/4 and contains only the Koebe mapping 
qx(z) = z/(l - z ) 2 , if p = 1/4. Furthermore, if 1/4 < s < t, then T^p is strictly 
included in T^ and T^°° is the usual class TR of all normalized typically real 
functions. The mappings 

qt(z) = z/(l - 2ft + z2); t e [1/(2/7) - 1 , 1 ] 

belong to T^p and are extreme points and support points for this class. However, 
there are many other support or extreme points for T^p which are different from 
those for SR

P. The first proposition shows that there is no similar relation to 
(1.4) for this class. 

PROPOSITION 5.1. For each p > 1/4 we have the strict inclusions 

cd{qt : 1/(2/7) - 1 ^ t< 1} C c5{Sj?} C V -

Proof. Both inclusions are obvious. Let us show that they are strict. For any 
/ G TR we have the unique Robertson representation 

(5.1) f(Z) = [ qCOs(t)(zW(t), 
J[0,7T] 

where \i — /if E P[O,TT]- Each \if is the weak* limit of the sequence /xn € P[O,TT] 

defined by 

d\in = (2/TT) Im{/((1 - l/n)eif)} sin(t)dt, 0 ^ t ^ TT. 

(a) The mappings fr(z) = q\(rz)/r belong to S^p for all r close to 1, 0 < 
r < 1. The unique measure [i of the representation (5.1) for/r is 

d[ir = (2/TT). Imiqxire^/r] s\n{t)dt. 
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Since /ir(cos-1[— 1, 1/(2/7) — 1)) > 0, we conclude that/ r does not belong to 
co~{qt : 1/(2/7) — 1 ^ t ik 1}. Also the examples given in Theorem 3.5 show 
that the first inclusion is strict. 

(b) Le t / = (1 - \)qs + \qt, 0 < A < 1, -\< s < l/(2p) - 1 < t < 1, such 
that/X— 1) = —p. Then/ G TR

P\S. In particular,/ is not an extreme point of 
the closed convex hull of S^p (Krein Milman). Suppose now that/ is a convex 
combination of two other functions/ and/2 in T^p. Then the support of the 
representing measures (5.1) of both functions consists of at most two points. 
Since/i(—l) =/2(—1) = —p in the sense of (1.3), we conclude that / =fs=f 
and therefore / G £ (T^p). D 

In the next theorem we determine the set of all extreme points for the class 
i R * 

THEOREM 5.2. Let p > 1/4. Then the following relations hold: 
(i) £ ( V ) = {<lsqt/q2p(ns)(i+t)-i :-1 £ s Û 1/(2/7) - 1 ^ t^ 1}. 

w/iere £ = {(j, 0 e R 2 : - l ^ ^ 1/(2/7) - l ^ r ^ 1}. 

Remark. Observe that for every (s, f) G E we have 

qsqt/q2p(i+s)(\+o-\ = (l - A)^ + A<?„ 

where A = [1-2/7(1+s)](l+0/(f-s) G [0,1], if s < f, and A = 0 or 1 if s = f = 
1/(2/7)- 1. Furthermore, if - 1 < s ^ f ^ 1, then qsqt/q2p(\+sKi+t)-\(—l) = - p . 

Proo/ We have V = { / : / / p + l G (7b)n and/'(0) = 1}. Using Theorem 
4.1 (ii) and the relation qt/q~\ = 1 + 2(1 + t)qt we get 

V = if a = 2P [ (l+ Oqtd^t) : ? G PM,,] 
^[-1,1] 

and 2/7 / ( 1 + 0 ^ ( 0 = !}• 
^[-1,1] 

Next, we want to apply Lemma 2.3. Since the correspondence \x —» /M is an 
affine homeomorphism, we get 

£ ( V ) = ( / r ^ £ ( ^ p [ - i , i ] 

such that 2/7 / (1 + O^KO = l 

J[-hU 

Putting 0(i/) = 2/7 r_j ^ ( 1 + 0 ^ ( 0 we get from (2.5) that/ is an extreme point 
of T^p if and only if/ = 2/7(1 — A)(l + 5)^ + 2/7A(l + t)qt under the condition 
that/ '(0) = 1 = 2/7(1 - A)(l +s) + 2/7A(l +0- Without loss of generality we may 

• 
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assume that s ^ t. The last condition shows that —l^sfH 1/(2/?) — 1 ^ t ^ 1 
and the result follows. • 

Let L G //'(A) and let V be as defined in (2.6). Then any linear optimisation 
problem over the class T^P,M — max L*(r^)(min L*(T^P) resp.), can be 
reduced by means of Theorem 5.2 to a classical optimization problem involving 
a real-valued differentiable function of two real variables, i.e. 

M = max(min){F(s, t) : - 1 ^ s ^ 1/(2/?) - 1 ^ tû 1}, 

where 

(5.2) F(s, t) = L*(qsqt/q2p(i+s)(i+t)-i)' 

In all the calculations it is convenient to use the following relations: 

(5.3) (qt - qs)/(t - s) = 2qsqtl qt/qs = 1 + 2(f - s)qt, 

dn{qt)/df = 2mn\qr\ q't = (z~2 - \)q], 

((1 + t)qt - (1 + s)qs)/(t -s) = qsqt/q-u 

(t - s)F(s, t) = [1 - 2p(l + s)](l + t)L*qt) 

- [ 1 - 2/7(1+ OKI + s)L*(qs). 

The classical necessary and sufficient conditions for a local maximum 
(local.minimum resp.) of F are summarized in the Lemma below. 

LEMMA 5.3. Let J(t) — L*(qt). Then the following statements hold, 
(i) If (s, t) is a critical point of F in {(s, t) : — 1 < s < 1/(2/?) — 1 < t < 1}, 

f/zen it is a solution of the two equations 

(5.4) (J(t) - J(s))/(t -s) = Jf(t)(l + 0/(1 + s) = J'(s)(l + s)/(l + 0. 

(//) Let (s, t), —I < s < 1/(2/?) - 1 < K 1, fe fl critical point of F. Then 
(5, 0 is a local maximum (local minimum resp.) of F if 

(5.5) (1 + s)J"(s) + 2Jf(s) < 0 and (1 + t)Jn(t) + 2 / ( 0 < 0 

(5.6) ((1 + s)J"(s) + 2J'(s) > 0 and (1 + t)J"(t) + 2J'(t) > 0 resp.). 

(Hi) If s is a critical point of G(s) = F(s, 1), —1 < s < 1/(2/7) — 1, then it 
is a solution of the equation: 

(5.7) (7(1) - J(s))/(l -s) = J'(s)(l + s)/2. 

If in addition, (1 + s)J"(s) + 2J'(s) < 0 (> 0 resp. ), then s is a local maximum 
(local minimum respj of G. 

https://doi.org/10.4153/CJM-1990-033-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-033-x


EXTREMAL PROBLEMS 637 

In Proposition 5.1 we have seen that the convex hull of S^p is contained in 
T^p but there are functions in T^p which do not belong to the convex closure 
of S^p. The next Proposition is an easy application of Lemma 5.3 and could 
also be shown by the same way as Proposition 3.1 (iii). 

PROPOSITION 5.4. Iff e T^p, p ^ 1/4, then we have for all x, — 1 < x < 1, 
the sharp inequalities: 

qi/(2p)-\(x) = / ( * ) = qi(x). 

Proof The upper bound holds for all functions in TR. Fix x G (—1,0) U 
(0,1) and put L*(f) =f(x). Condition (5.4) becomes 

(qt(x) - qs(x))/(t -s) = 2qs(x)qt(x) = 2q*(x)(l + 0/(1 + s) 

= 2q2
s(x)(l+s)/(l+t)>0 

which implies that qt(x){\ +t) — qs(x)(l +s). But there is no point (s, t), —1 < 
s < 1/(2./?) - 1 < t < 1 such that 

((1 + t)qt(x) - (1 + s)qs(x))/(t -s) = qs(x)qt(x)/q-i(x) - 0. 

In other words, there is no critical point in — 1 < s < 1 /(2p) — 1 < t < 1. On 
the boundary part {(5, 1) : - 1 ^ s ^ 1/(2/?) - 1} the function G(s) = F(s, 1) 
is a homography of the variable s. Therefore, G has no critical point on {(5, 1) : 
- 1 < s < 1/(2/?) - 1}. The same fact holds for the function H(t) = F ( - l , t) = 
J(t) on the boundary part {(—1, t) : 1/(2/?) — 1 ^ t ^ 1}. Observe furthermore 
that F(s, 1/(2/?) - 1) = F(l/(2/?) - 1 , 0 = q\/(2p)-i(x). Therefore, the extremal 
functions are q\ and q\/(2P)-\- The first gives the maximum value and the second 
the minimum value of f(x). D 

THEOREM 5.5. Fix /? > 1/4 and z G À, Im{z} ^ 0. Then the set 

(5.8) E = {w=f(z):f£ V } 

is the closed circular lens which is bounded by the two arcs 

7i ={?,(*): l / ( 2 p ) - l S f S I } and 

72 = {qi(z)qs(z)/q4p(i+s)-i(z) :-I ^ s ^ 1/(2/?) - 1}. 

Furthermore, 72 is tangent to the straightline segment from q-\(z) to q\(z) at 
the point q\(z). 

Proof Consider the functional L(f) — eiaf(z) where a is a real number. The 
equations (5.4) lead to the equalities 

Re{eiaqs(z)qt(z)/q-i(z)} = Re{eiaqt(z)q2
s(z) q-i(z)} = 0. 
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Hence, qs(z)/qt(z) G R. Since qs(z) and qt(z) lie on a circle passing through 
the origin, this situation is impossible for t ^ s. Therefore, there is no critical 
point of F in—1 < s < 1 /(2p) — 1 < t < 1. On the other hand, through each 
boundary point of the compact convex set E defined by (5.8) passes a straight 
line which supports E. Thus, by theorem 5.2 (i), 

E = co{[qsqt/q2p(\+s)(\+t)-i](z) : 0 , 0 G d ( [ - l , 1/(2/?) - 1] 

X [1/(2/7) - 1 , 1])} 

= co{7iU72J. Finally, 7i U1 2 = dE. • 

The next Theorem gives estimates for the derivative of / at a given point in 

( - 1 , I)-

THEOREM 5.6. Let p > 1/4 and let x0 be the unique solution in (—1, 0) of 
x0 + l/x0 = - l - a + 2 / / ? ) 1 / 2 . Puts = [(JC + 1/JC)2 + 2(JC + 1 / J C ) - 4 ] / 4 . / / / G Tjf, 
then 

(0 *i/Gp)-i(*) ^ / ' ( * ) ^ </i(*X (f 0 S x < 1. 
(iï) ^(*) ^ / ' (* ) ^ ^ ^ W , i/*0 û x S 0. 
(m) ^(x) ^f'(x) ^ fai^/^o+^-il'to, « / - l < * = *0. 

Prao/ First observe that JC/'(JC) ^ V,(JC) for all x G ( - 1 , 1). Let L(f) = 
f'(x), - 1 < x < 1, JC ^ 0, and put 7(0 = <?'r(jc) = (JC~2 - l)qj(x). We now show 
that F(s, 0 has no critical points in — 1 < s < 1/(2/?) — 1 < t < 1. Indeed, 
Condition (5.4) becomes 

(q2(x) - q2(x))/(t -s) = 2qs(x)qt(x)[qs(x) + qt(x)] 

= 4</,3(*)(l + 0/(1 + s) = 4q3
s(x)(l + s)/(l + 0 

which implies that [qs(x)qt(x)(qs(x)+qt(x))f = 4q](x)q](x) or [<?* (*)<7r (*)(<?* (•*)-
qt(x))]2 — 0 which leads to a contradiction for s ^ t. Therefore there are no 
critical points in — 1 < s < 1/(2/?) — 1 < t < 1. Consider now the function 
H(t) = F ( - l , 0 = J(t) on the boundary part { ( - 1 , 0 : 1/(2/?) - 1 ^ t ^ 1}. 
Since x/ '(0 > 0 for all JC G ( - 1 , 1)\{0}, we have 

Ji/(2p)-i(x) = ^d/(2p) - 1) ^ A 0 ^ A D = </i(4 if 0 < x < 1 

and 

tfi/W-iW = '(1/(2?) - 1) ^ J(0 ^ J(D = «1 (4 if - 1 < * < 0. 

Consider now the function G(s) = F(s, 1) on the boundary part {(s, 1) : —1 ^ 
^ ^ l/(2p) — 1}. Then the condition (5.4) becomes 

(5.9) $i(*)foi(*)+ ?,(*)] = (1 +s)q2
s(x), -\<s< 1/(2/7) - 1. 
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Substituting Q = qx(x)/qs(x) in (5.9) we get Q(Q + 1) = 1+s. Since Q > 0, 
we obtain Q = [-1 + (1 + 4(1 + s))xl2}/2. Put w = (x + 1/JC)/2. Then |w| ^ 1 
and 

5 + 4s = (2Q + l)2 = [2(w - s)/(w - 1) + l]2 , 
and therefore 

(s- l)(s-w2-w + l) = 0. 

Since — 1 < s < 1/(2/?) — 1, the only possible solution is s* = w2 + w — 1 which 
implies that - [ 1 + (1 + 2/p)l/2]/2 < w < - 1 or - 1 < x < x0. Therefore, if 
x0 Û x < 1, the only extremal functions are qi/(2P)-\ and q\ and the statements 
(i) and (ii) are proved. 

It remains the case (iii). For all JC G (—1, 0), we have 

(1 + s*)j"(s*) + 2Jf(s*) = 8(JC"2 - 1)^(*)[3(1 + s*)qs*(x) + 1] < 0. 

Therefore, the function G(s) has a local maximum at s* and we have the in­
equalities 

q[(x) ûf'(x) ^ max{^/
1/(?p)_1(a:), [q\qs*/q4pa+s*)-\]'(x)}, 

— 1 <x ^ x0. 

It remains to show that for all JC, —1 < x ^ x0, 

(5.10) [q\qs*lq4P{\+s*)-û'(x) ^ </i/(2/>)-iC*)-

For convenience put u = — w and m = 1/(2/?)— 1. Then we have s* = u2 — u— 1 
and 1 < w < [1 + (1 + 2//?)1/2]/2. First, observe that 

(5.11) q\qs*/q4p(\+s*)-\ = (1 - A)<?5* + A î 

where A = [2-4/?( l+s*)] / ( l -s*) = [2-4pu(u- l)]/[(l+w)(2-ii)] € (0, 1). 
Using the fact that u + s* — u2 — 1, we are lead to show that 

(5.100 [(1 - A) + X(u - l)2]/(w2 - l)2 - l/(w + mf ^ 0. 

But 

[(1 - A) + \{u - l)2]/(u2 - l)2 = [1 - Aw(2 - u)]/(u2 - l)2 

= (4 /™ 2 - l ) / [ ( W
2 - l ) ( M +l ) 2 ] . 

From the identity 

(4pu2 - 1)(K + m)2 - (u2 - l)(i* + l)2 = (4/7 - \){u2 -u-\-m)2 
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we conclude that (5.10) holds. Equality holds if and only if x — x0. • 

The following Lemma will be useful for our next result. 

LEMMA 5.7. For all positive integers and all JC G (o, 7r) W have 

(5.12) sin(njc)/[nsin(jc)] < [2 + COS(HJC)]/[2 + COS(JC)]. 

Proof. Put u(x) — sin(jc)/[jc(2 + COS(JC))] and v(x) = xu(x). Since 

[u'(x)x2(2 + COS(JC))2]' = 2. sin(jc)[sin(jc) - JC] < 0 

we conclude that u'(x) < 0 for all x G (0, 7r) and therefore u(x) is strictly 
decreasing on [0, 7r]. Moreover, v(x) is strictly increasing on [0, 27r/3] and 
decreasing on [27r/3, 7r]. Therefore, for 0 < JC ^ n/n, we have: 

(5.13) sin(nx)/[2 + COS(HJC)] = v(nx) — nxu(nx) < nxu(x) = nv(x) 

= n sin(jc)/[2 + COS(JC)]. 

Next we show that (5.12) holds for all JC G {n{n — l ) /n , 7r). If n is even and 
7r(n — \)/n ^ JC < 7r, then 

sin(«jc)/[nsin(jc)] = — sin(n(7r — jc))/[nsin(7r — JC)] ^ 0. 

For odd n and Tx(n — \)/n ^ JC < TT we have COS(JC) < cos(nx) and, according to 
(5.13), we get 

sin(njc)/[nsin(jc)] = sin(«(7r — jc))/[nsin(7r — JC)] 

< [2 + cos(n(7r — JC)) ] / [2 + cos(7r — JC)] 

= [2 - cos(njc)]/[2 - COS(JC)] 

< [2 + COS(«JC)]/[2 + COS(JC))]. 

Observe also that it is sufficient to show (5.12) for the subset of JC G (0, n) for 
which sin(«jc) ^ 0, i.e. if the integer part of WC/TT is even. Let now n/n < x < 
(n — l)7r/n be fixed and let the integer part of «JC/7T be equal to 2k where k is 
an integer in (0, (n — l ) /2) . Then we have 0 ^ JC — Ik-KJn < n/n and, by (5.13), 
we conclude that 

v(nx) = v(n(x — 2nk/n)) ^ AZV(JC — litk/n) < nv(ir/n). 

If JC G (7r/n, 27r/3], then, by the monotonicity of v we have v(nx) < nvin/n) < 
nv(jc). Similarly, if JC G (27r/3, IT — ir/n), then 

nv(x) > nv(iT — ir/n) ^ nv(ir/n) > v(nx). 

This completes the proof. • 
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In what follows, we are interested in sharp estimates of some coefficients of 
functions in the class T^p. Using the same proof as for Proposition 3.1 (i) and 
(ii) we have 

PROPOSITION 5.8. If f G T^p, p ^ 1/4, then the following sharp estimates 
hold: 

(i) 2^a2(f)*-2+l/p 

(ii) 3 £ ae(f) S { ( _Y ^ ) ( 3 " l&> £ V* f f " ^ 2 . The extremal 

functions are q\/(2P)+\ or qo for the minimum and q\ for the maximum. 

Evidently, an(f) ^ n for all rc, G N, since q\ G 7 ^ for all p ^ 1/4. The 
situation is quite different for the minimum of a^(f). We shall use the same 
method as we have applied for the previous Theorems. Put J(t) — an(qt) and 

(5.14) F(s, t) = an(qsqt/q2p(i+s)(i+t)-i) = (1 - X)an(qs) + \an(qt), 

where A = [l-2p(l+s)](l+t)/(t-s) G [0, 1] and - 1 ^ 5 ^ 1/(2/7)— 1 ̂  f ̂  1. 

LEMMA 5.9. Let p > 1/4 and put An(p) = min{an(qt) : (2/7) — 1 ^ t ^ 1}. 
Denote by B the set of all critical points of (5.14) in the open rectangle {(s, i) : 
- 1 < s < 1/(2/7) - 1 < t < 1}. Then we have: 

rmn{an(T^p)} = min{An(p), min{F(s, 0 : (s, t) G B}}. 

Proof First, observe that F ( - l , 0 = an(qt), F(s, 1/(2/7) - 1) = F(l/(2p) -
1,0 = <*n(qi/(2p)-\)- Put s = COS(JC). Then, by Lemma 5.7, we conclude that 

[dF/ds](s, 1) = (4/7 - l)n(2 + COS(JC)) 

( sin(«x) 2 + cos(ftjc) 1 
nsin(jc) 2 + COS(JC) J 

for all JC G (0, TT). D 

In contrast to the cases of min{a2(T^p)} and min{û3(7^p)} we get for the 
problem vmn{a4(T^p)} extremal functions which are not univalent for some 
values of p. 

THEOREM 5.10. Iff G TR
P, p > 1/4, then we have the sharp estimate 

04(f) ^ 
[ 4m(2m2 - 1), if 1/4 <p ^ 3 - VÏ orp ^ 3 + VÏ 
{ -I-/7/4, if3-y/î^p^3 + y/ï 

where m = 1/(2/7) — 1. The extremal function is qm for the upper case and 
4s*<It*/<}2p(i+s*)(i+t*)-\ for tne lower case where s* — —(1 + V/)/4 and t* — 
(v/7-l)/4. 
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Proof. Put J(t) = a4(qt) = At(2t2 - 1) and Y(s, t) = (1 + s)(l + t)(J(t) -
J(s))/(t - s). Then Y(t, t) = (1 + 02^'(0 and (5-4) can be written in the form 

(5.4') Y(s, t) = Y(t, t) = Y(s, s), - 1 < s < 1/(2/?) - 1 < t < 1. 

or 

(5.4") [Y(s, t) - Y{t, t)]/[(t - 5)(1 +1)] = [Y(s, t) - Y(s, s)]/[(t - s)(l + s)] 

= 0, - 1 < J < 1/(2/7)-1 <t< 1. 

But y(s, 0 = 4(1 + s)(l + 0[2(r2 + ts + s2)-l] and, by (5.4"), the critical points 
in {(s, 0 : — 1 < s < 1/(2/?) — 1 < t < 1} have to satisfy the equations 

2(1 + s)(t -s)- 6t(l +5 + 0 + 1 = 0 , 

2(1 + i)(t -s) + 65(1 +5 + 0 - 1 = 0 . 

The only critical point in {(s, t) : - 1 < s < 1/(2/?) - 1 < t < 1} is 

s* = - ( 1 + y/ï)/4 and t* = (y/ï - l) /4 

which is, by (5.6), a local minimum provided that 3 — y/ï < p < 3 + y/ï. The 
correspondent value for a4 is F(s% f*) = — (p + 4)/4 = — 1 — l/[8(m + 1)]. Let 
A4(p) be as in Lemma 5.9 and put m — l/(2p) — 1. Then we get 

{ 4m(2m2 - 1), if 1/4 < p S (6 - V^ / IO 
or p ^ (3 + >/6)/2 

-4>/6/9, if (6 - V6)/10 ^ /? ^ (3 + >/6)/2 

Next, observe that 
4m(2m2 - 1) + 1 + l/[8(m + 1)] = (8m2 + Am - 3)2/[8(m + 1)] ^ 0. 

Furthermore, we have —1 —p/4 < —Ay/6/9, whenever p ^ 3 — y/ï, and the 
interval [ ( 6 - \/6)/10, (3 + \/6)/2] is contained in the interval [3 - y/ï, 3 + y/ï]. 
By Lemma 5.9, we conclude that for the case 3 — y/ï < p < 3 + y/ï the function 
F attains its global minimum at the point (s% t*). For the remaining values of 
p the extremal function is qm. • 

It is a natural question to ask under what conditions the extremal functions 
are univalent. The following Lemma gives a partial answer to it. 

LEMMA 5.11. Let L G //'(A) and J(t) = L*(qt), - 1 ^ t ^ 1. Suppose that 
there is a t* £ [— 1, 1) such that J is convex and increasing on [/*, q] and J 
attains the global minimum at t*. Then 

minL*(V) - mm L*(S^P) = mm{V(qt) : 1/(2/?) - 1 ^ t ^ q} 

for all p > 1/4. 
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Proof. Let m = 1/(2/?) - 1 be fixed. If - 1 < m ^ t*, then qt* <E S^p 

and J(f) = minL*(TR) ^ minL*(Tj?) ^ minL*(V) = *(**)• Hence, the 
result follows for this case. It remains to verify the case —l^t*^m<l. 
Consider the linear functional K(f) = a2(f)/2 + / . £* ( / ) , / E //(A). Since 
K(qt) = t + U(t), we conclude from Proposition 5.8 that K(T^P) lies in the strip 
{w : m ^ Re{w} = 1 } . Furthermore, Theorem 5.2 and the above assumptions 
on t* imply that K(T^P) is contained in the set {w : m Û Re{w} ^ 1 and 
Im{w} ^ 7(Re{w})}. Therefore, we get 

J(m) ^ min{Im{w} : w € K(TK
P)} = minL*(V) 

^ minL*(V) ^ L*(</m) = 7(m). D 

The next result is an application of the above Lemma. 

THEOREM 5.12. For all odd integers n ^ 3 and all p > 1/4, we have 
mman(T^p) — min«n(5^p) = min{sin(n;c(/sin(jc) : 1/(2/?)— ^ COS(JC) ^ 1}. 

Proof. Put ? = cos(;c), tk = COS(XA;) and Xk = kn/n, k — 1, 2, . . . , n — 1. It 
is sufficient to check that the polynomial 

n - l 

7(0 - an(qt) = 2n_1 JJ(r - ft) - u;(x) = sin(/i*)/ sin(x) 
k=\ 

satisfies Lemma 5.11 for a suitable t*. For n = 3, 7(0 is a convex parabole. 
If « = 5, then 7(0 = 16/4 - I2t2 + 1 satisfies Lemma 5.11 with f = A/6 /4 . 

Let now n ^ 1. Then 7(—0 = 7(0 and 7'(0 has exactly n — 2 distinct zeros 
Sk E (ft+i, tk), k = 1, 2, . . . , n — 2, on the interval (—1, 1). Moreover, 7"(0 
has exactly n — 3 distinct zeros r̂  G fe+i, ty)> & = 1? 2, . . . , n — 3, on (— 1, 1). 
Thus we conclude 7 > 0 on (fi, 1], 7' > 0 on (si, 1] and 7" > 0 on (n, 1]. 
Put f* = s\. Then, 7 is convex and increasing on (f*7 1). It remains to show that 
the global minimum of 7 is attained at t*. Observe that the local minima of 7 
are at the points s^-i = cosCx^j), *2*-i < *2*-i < X2À:- By the symmetry it is 
sufficient to check the interval 0 < x < TT/2. Put ^ - l = x2k-\ ~ ^(k — l)n/n G 
(JCI, JC2). Then we get 

u(*2k-i) = sin(n&k-\)/ sinix^) = sin(n£2*-i)/sin(£2*-i) ^ uKx*) 

and Theorem 5.12 is shown. • 

The problem of sharp lower bounds for even coefficients of functions in S^p 

is still open. However, for/? large enough (depending on n), there is a qt* which 
minimizes an(f). 

THEOREM 5.13. For every L G H'(A) there is a constant pi such that for all 
p > pL we have minL*(T^P) = minL*(5^) - min{L*(qt) : 1/(2/7)—1 ^ t£ 1}. 
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Proof. Let J(t) = L*{qt), — 1 ^ t ^ 1, and suppose that J attains its global 
minimum at a point f G ( - 1 , 1]. Then Theorem 5.13 holds for/?L = 1/(2+2**). 
Assume therefore that r* = —1 is the only global minimum of J. We shall 
proceed in two steps. 

Step 1. Denote by B the set of all critical points of the function F(s, t) = 
L*(qsqt/<ï2p(i+s)(i+t)-i) o n m e domain {(s, t) : —I < s < t < I}. Suppose first 
that B is nonempty. Then J" is not identical zero on [—1, 1]. We want to show 
that s0 = inf{s : (s, t) G B} > — 1. Assume that the contrary holds. Then there 
is sequence (sn, tn) e B such that limn_+oo sn = — 1 and lim^oo tn — T G [—1, 1]. 
The case r ^ — 1 is excluded. Indeed, if r ^ — 1, then (5.4) implies that 

U(T) - 7 ( - l ) ] / ( r+ 1) = lim f(sn)(l + sn)/(l + fn) = 0 
n—>oo 

which contradicts the assumption t* = —1 is the unique global minimum of 
/ . Since / is analytic on [—1, 1] and J" does not vanish identically there, 
there is a 8 > 0 such that J'(t)J"(t) ^ 0 for all t G ( - 1 , - 1 + S). From 
the fact that 0 < [J(t) - J(-l)]/(t + 1) = J'(0) for all t G ( - 1 , - 1 + 6) 
and some 6 G (—1,0 we conclude that J' > 0 on (—1,-1+5) . Moreover, 
if n is sufficiently large, then, by (5.4), we get — 1 < sn < tn < — 1 +8 and 
0 < J\tn) < J'(tn)(l+tn)/(l+sn) = J'(sn)(l+sn))/(l+tn) < J'sn). In other words 
we have J"(t) < 0 for all f G ( - 1 , - 1 +5) and we conclude that J'(-l) > 0. 

Next we use again (5.4) and (5.3) and we get for points (s, t) € B 

2L\qsqt) = L\qt - qs)/(t - s) = 2L\q2
t){\ + 0/(1 + s) 

and hence 

0 = (1 + s)L\qs.qt) - (1 + t)L\q2
t) = (s - t)L\qsq

2
t/V-i). 

In particular, /'(— 1) = 2L*{q2_{) = 2 lim^ooL*(qSnq2
n/q-\) = 0 which leads to 

a contradiction. Therefore, if B is nonempty, s0 > — 1. Put p\ = 1/4, if Z? is 
empty and /?i = 1/(2 + 2s0), if 5 is otherwise. 

Step 2. Let G(s) = F(s, 1), — 1 < s < 1 and consider the condition (5.7). 
First, we claim that there are only finitely many solutions of (5.7). Indeed, if 
not, then (5.7) holds for all s G [—1, 1], since / is analytic on [—1, 1]. But the 
only analytic solution for (5.7) on [—1, 1] is the constant function. Therefore, 
there is an interval (—1, — 1 +p), p > 0, which contains no critical points of G. 
Put/?2 = l/(2p). 

Finally, put pL = max{/?i, p2}. By Lemma 5.3, Theorem 5.13 follows. 
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