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Abstract

We show that the mod p cohomology of a simple Shimura variety treated in Harris-Taylor’s book vanishes outside a

certain nontrivial range after localizing at any non-Eisenstein ideal of the Hecke algebra. In cases of low dimensions,

we show the vanishing outside the middle degree under a mild additional assumption.

1. Introduction

Let � be a CM field that contains an imaginary quadratic field K. Let � be a unitary similitude group

that is associated with a division algebra � with center � of dimension =2 and an involution of the

second kind, so that it gives rise to Kottwitz’s simple Shimura variety - for a fixed sufficiently small

level  defined over the reflex field � .

Fix a prime number ?. Let m be a system of Hecke eigenvalues appearing in �8
ét
(-
 ,�

,F?) for some

8. Caraiani and Scholze [2] constructed a semisimple Galois representation

dm : Γ� ≔ Gal(�/�) → GL= (F?)

associated with m. (Our normalization of dm is ‘geometric’.) Their proof also provides a character

jm : ΓK → F
×

? corresponding to the similitude factor; see the main text.

Assume that the signature of � is (0, =) except at one infinite place g0 : � → C. Let ℓ ≠ ? be a

prime such that everything is unramified at ℓ and ℓ splits over K. Let E be a finite place of � dividing

ℓ ≠ ?, and fix an embedding Γ�E
→ Γ� . In particular, the restriction of dm to Γ�E

is unramified. All

lifts of geometric Frobenius FrobE at E have the same image under dm, and we write dm (FrobE ) for the

image by abuse of notation. Moreover, the conjugacy class of dm (FrobE ) is independent of the choice

of Γ�E
→ Γ� . Let UE,1, . . . , UE,= be the set of generalized eigenvalues of dm (FrobE ). (This means

we count usual eigenvalues with multiplicities being the dimensions of the corresponding generalized

eigenspaces.) We say that dm is generic at E if UE,8 ≠ @EUE, 9 for 8 ≠ 9 , where @E is the size of the

residue field of E.

The main result of Caraiani-Scholze’s work [2] in this setting is the following vanishing theorem:
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Theorem 1.1 ([2, 1.5, 6.3.3]). If dm is generic at some E, then 8 = dim - . Namely, �∗
ét
(-
 ,�

,F?)m
vanishes outside the middle degree.

Remark 1.2. In [2], dm is assumed to be decomposed generic at E: a slightly stronger condition than

being generic. But their proof can be modified easily to cover generic ones; see also [3], especially the

proof of Corollary 5.1.3.

Now, assume the signature at g0 is (1, = − 1); this is essentially the Harris-Taylor case [7]. (There are

some additional technical assumptions in [7].) So, the reflex field equals �, and dim - = = − 1. In the

Harris-Taylor case, the above vanishing theorem is also proved in [1, 4.7] by a different argument. In fact,

Boyer proved the following stronger result. Note first that the Galois action on �8
ét
(-
 ,�

,F?)m ⊗ jm is

unramified at E.

Theorem 1.3 ([1]). If U is an eigenvalue of FrobE acting on the cohomology �8
ét
(-
 ,�

,F?)m ⊗ jm,

then the multiset

U, @EU, . . . , @
(=−1)−8
E U

is a subset of the multiset {UE,1, . . . , UE,=} of generalized eigenvalues of the action dm (FrobE ).

Remark 1.4. There is an immediate variant using a finite extension of �: let � ′ be a finite extension of

�, and let E′ be a finite place of � ′ above E. Then the theorem holds with FrobE and @E replaced by

FrobE′ and @E′ . Indeed, it follows from the theorem since FrobE′ = Frob
[:E′ ::E ]
E and @E′ = @

[:E′ ::E ]
E .

Later, the theorem or the variant above is used in the following way, combined with the Cheb-

otarev density: let 6 be an element of dm (Γ� ′). Then there exist infinitely many finite places E′ (re-

spectively, E) of � ′ (respectively, �) to which the variant can be applied, and the conjugacy class of

6 equals that of dm (FrobE′). Moreover, we can make @E′ = ?E′ = E′ |Q as only such E′ contribute

to nonzero Dirichelet density (this makes ?E′ = ?E ≔ E |Q split in K, and we can apply the results

above).

Finally, note that if � ′ contains � (Z?), then @E′ ≡ 1 mod ? for E′ prime to ?, and the statement of

the variant simplifies. This simplification is very useful and will be used frequently.

Remark 1.5. Theorem 1.3 is not clearly stated in [1] but follows from an argument along the line of [1,

4.14] by considering the greatest integer 8′ ≥ 0 such that �
(=−1)−8′

ét
(-
 ,�

,F?)m ≠ 0 or (in fact, and, a

posteriori) �
(=−1)−8′

ét
(-
 ,�

,F?)m∨ ≠ 0, where m∨ is the ‘dual’ of m. It can be proved using the method

of [2] as well. This will be discussed in a forthcoming article by the author.

Remark 1.6. Assume that ℓ splits completely in �. Then any eigenvalue of Frobenius at E acting on

�8
ét
(- ,F?)m ⊗ jm is a Frobenius eigenvalue of dm |Γ�E

by Wedhorn’s congruence relation [11] and

our normalization of dm.

As part of a mod ? analog of the Arthur-Kottwitz conjecture, one would consider hy-

pothetical Lefschetz operators �
9

ét
(-
 ,�

,F?)m → �
9+2

ét
(-
 ,�

,F?)m (1) inducing isomorphisms

�
(=−1)−8

ét
(-
 ,�

,F?)m � �
(=−1)+8

ét
(-
 ,�

,F?)m (8). This would imply that each U, . . . , ℓ8U is a Frobenius

eigenvalue of dm. Theorem 1.3 is stronger and gives information about multiplicities; this may also be

regarded as part of the mod ? analog of the Arthur-Kottwitz conjecture.

The main result of this note, which is deduced from Boyer’s result, is the following:

Theorem 1.7. Let - be Harris-Taylor’s Shimura variety of dimension = − 1 [7]. Let m be a maximal

ideal of the Hecke algebra contributing to the cohomology of - and dm : Γ� → GL= (F?) be the

associated Galois representation. If dm is irreducible, then �
9

ét
(-
 ,�

,F?)m vanishes for 9 < =/2 and

9 > 2(= − 1) − =/2.

In particular, the cohomology localized at m vanishes outside the middle degree if dm is irreducible

and = ≤ 3. While the case = = 4 is difficult as = is no longer prime, we can push the argument further if

= = 5:
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Theorem 1.8. Suppose = = 5 and dm is irreducible. Then �∗
ét
(-
 ,�

,F?)m vanishes outside the middle

degree, except possibly when ? = 5 and every minimal noncentral normal subgroup of dm (Γ� (Z?) ) is

an elementary abelian A-group with A = 2 or 3.

Remark 1.9. For instance, the above excludes a case where ? = 5 and dm (Γ� (Z?) ) is the semidirect

product of {diag(±1, . . . ,±1)} (of order 32) and a permutation of order 5. (Thanks to the referee for

pointing out an erroneous claim in the first version of the manuscript.)

There are previous works in this direction, including Shin [10] (see also [5]), Emerton-Gee [4], and

Boyer [1]. The novelty here is that we only assume the irreducibility of dm. (Let us also mention that

Boyer is recently claiming a rather strong vanishing result.) For the proofs, we use Theorem 1.3 and

also group-theoretic results from [6], which, in full generality, rely on the classification of finite simple

groups.

It is easy to control dm with a large image. Let us record the following remark. The argument passing

to � (Z?) is very important throughout this note and will also be used frequently later.

Theorem 1.10. If the image dm (Γ� (Z?) ) of Γ� (Z?) contains a regular semisimple element of GL= (F?),

then �∗
ét
(-
 ,�

,F?)m vanishes outside the middle degree.

Proof. Let 6 ∈ dm (Γ� (Z?) ) denote a regular semisimple element of GL= (F?). We shall apply Theorem

1.3, Remark 1.4 to 6. So, we choose a prime-to-? finite place E′ of � ′ = � (Z?), as in Remark 1.4.

In particular, 6 belongs to the conjugacy class of dm (FrobE′). Hence, dm (FrobE′) is also regular

semisimple. Observe that the multiset of eigenvalues of dm (FrobE′) does not contain a subset of the

form of {U, @E′U} as @E′ ≡ 1 mod ?. Therefore, �∗
ét
(-
 ,�

,F?)m vanishes outside the middle degree

by Remark 1.4. �

Example 1.11. Suppose = is an odd prime, ? > 2=−3, and the restriction of dm to Γ� (Z?) is irreducible:

that is, dm is irreducible and not induced from a character. Then [6, 1.6] says that the image of Γ� (Z?)

contains a regular semisimple element. So, �∗
ét
(-
 ,�

,F?)m vanishes outside the middle degree by

Theorem 1.10.

Example 1.12. Another example satisfying the assumption of Theorem 1.10 is the case where the

image of Γ� contains SL= (F?). (Note that SL= (F?) contains a regular semisimple element.) Indeed,

if (=, ?) ≠ (2, 2), (2, 3), SL= (F?) is perfect and contained in the image of Γ� (Z?) . If ? = 2, then

� = � (Z?), and there is nothing to prove. If ? = 3, [� (Z?) : �] divides 2, and SL2(F3) does not have

a subgroup of index 2, so it is contained in the image of Γ� (Z?) .

We also remark that Theorem 1.3 implies the following:

Proposition 1.13. Suppose

◦ dm is irreducible and induced from a character of Γ� for some cyclic extension � ⊂ � of degree =

contained in � (Z?), and

◦ [� (Z?) : �] > =.

Then �∗
ét
(-
 ,�

,F?)m vanishes outside the middle degree.

Proof. Suppose �8
ét
(-
 ,�

,F?)m is nonzero for some 8 < = − 1. Pick a generator ℎ ∈ Gal(� (Z?)/�).

It maps to a generator of the quotient Gal(�/�) as well. We can write ℎ as the (geometric) Frobenius

of some finite place E of � such that @E = ?E . (In particular, ?E splits in K.) Let f ∈ Γ�E
denote a lift

of FrobE ; so f maps to ℎ ∈ Gal(� (Z?)/�). As ℎ maps to a generator of Gal(�/�), the characteristic

polynomial of dm (f) has the form -= − 2. Combined with Theorem 1.3, this implies that @=E ≡ 1

mod ?. However, as ℎ is a generator of Gal(� (Z?)/�) ⊂ (Z/?Z)× and [� (Z?) : �] > =, we have

@=E ≡ ?=E . 1 mod ?.

The dual argument settles the case 8 > = − 1. �
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2. Preliminaries

2.1. Setting

Let � = �+
K be a CM field with a totally real field �+ and an imaginary quadratic field K. We fix an

embedding K ↩→ C. We consider a PEL datum (�, ∗, +, (·, ·)) of type A such that

◦ � is a division algebra with center � and + � �, and

◦ The associated group � has signature (1, = − 1) at one infinite place and (0, =) at the other infinite

places, where =2 = dim� �. (The signature is calculated using the fixed embedding K ↩→ C.)

Fix a sufficiently small open compact subgroup  =
∏
ℓ  ℓ of � (A 5 ). If ℓ splits in K, by choosing

a place H of K over ℓ, we have an isomorphism � (Qℓ) � Q×
ℓ
×
∏
G �

op×
G , where G runs over the places

of � lying over H.

Let Splur denote the set of unramified places E of � satisfying

◦ E does not divide ?.

◦ ?E = E |Q splits in K.

◦ � splits at all places above ?E .

◦  ?E , as a subgroup of Q×
?E

×
∏
G �

op×
G , decomposes into a product of Z×

?E
and maximal open

compact subgroups  G of �
op×
G .

Let T denote the Hecke algebra
⊗

?E ∈Splur |Q

Z[� (Q?E )// ?E ] .

If we identify  E with GL= (O�E
), its factor at E is generated by

)E, 9 =  E diag(?−1
E , . . . , ?

−1
E︸          ︷︷          ︸

9

, 1, . . . , 1︸   ︷︷   ︸
=− 9

) E .

We write 2E for the element of T determined by ?−1
E ∈ Q×

?E
. Our choice of the Hecke operators is

different from [11], [4], [1], and [2].

We denote by - the canonical model of the Shimura variety attached to (�, ∗, +, (·, ·)) of level  ,

which is a smooth projective variety over �. (We use the convention that [a disjoint union of copies of]

the canonical model admits a usual moduli interpretation.) The mod ? cohomology of -
 ,�

is naturally

a module of T × �� .

Theorem 2.1 ([2, 6.3.1]). Let m be a maximal ideal of T such that, for some 8, �8
ét
(-
 ,�

,F?)m ≠ 0.

Then there is a (unique) semisimple Galois representation dm : Γ� → GL= (F?) and a character

jm : ΓK → F
×

? , both unramified at E ∈ Splur, such that the characteristic polynomial of dm (FrobE ) for

E is given by

=∑

9=0

(−1) 9@
9 ( 9−1)/2
E ) E, 9-

=− 9

and jm (Frob?E ) = 2
−1
E , where ) E, 9 and 2E denote the image of )E, 9 and 2E in T/m � F? , respectively.

Proof. The existence of dm is proved in [2] and [1] up to normalization; our dm is a twist of the dual of

the representation they constructed. The existence of jm can be proved by the same method. Namely,

we find a characteristic 0 lift Π of m at first; Π is a �-algebraic cuspidal automorphic representation of

�, and its stable base change is a �-algebraic isobaric automorphic representation of K× × GL= (�) of

the form of k ⊗ Π1. The first factor k gives rise to a character j̃−1
m : ΓK → Q

×

? via class field theory.
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(The Artin map is normalized so that uniformizers correspond to lifts of geometric Frobenius.) The

reciprocal of the reduction mod ? of j̃−1
m is jm. �

Throughout this note, we regard jm as a character of Γ� (⊂ ΓK) as well.

2.2. The Congruence Relation

The congruence relation is not logically needed (in the sense that Theorem 1.3 is stronger), but we give

a short explanation to clarify our notation and conventions. For every E ∈ Splur, there is a canonical

integral model X of - , which is smooth and projective over O�E
. The action of T × Γ�E

passes to

the mod ? cohomology of the special fiber -
 ,: (E)

of the canonical integral model. In particular, the

Galois action on �8
ét
(-
 ,�

,F?) is unramified at E.

Assume that ?E splits completely in �. If we look at the Frobenius action on �8
ét
(-
 ,�

,F?)m ⊗ jm,

the main result of [11] implies the following relation:

=∑

9=0

(−1) 9@
9 ( 9−1)/2
E )E, 9 Frob

=− 9
E = 0.

The formula is stated incorrectly (or imprecisely) in [4, 3.3.1] and [1, 4.2]:

◦ The Hecke correspondence in [11] is a left action (as a correspondence), while the Hecke action on

the Shimura variety is a right action. This is why we change the choice of the Hecke operator.

◦ The twist by jm is needed.

3. Proof of Theorem 1.7

Suppose �8
ét
(-
 ,�

,F?)m ≠ 0 for some 8 < =/2, and let d be an irreducible constituent of

�8
ét
(-
 ,�

,F?)m ⊗ jm as a representation of Γ� .

Suppose that d is a character j. Then, by Theorem 1.3 and Remark 1.4, j(6) ∈ F
×

? for any 6 ∈ Γ� (Z?)

appears in the set of generalized eigenvalues of dm (6) with multiplicity ≥ =−8. Therefore, (dm⊗j−1) (6)

has a generalized eigenvalue 1 with multiplicity ≥ = − 8. Since = − 8 > =/2, it contradicts the following

theorem. (This discussion also works for 8 = =/2.)

Theorem 3.1 ([6, 1.5.(a)]). Let � ⊂ GL= (F?) be a finite group whose action on F
=

? is irreducible. For

any nontrivial normal subgroup � ′ of �, there exists semisimple ℎ ∈ � ′ such that the multiplicity of 1

in the set of eigenvalues of ℎ is less than =/2.

Proof. In [6], this is stated with � ′ = �. The proof actually finds ℎ in any given minimal normal

subgroup # of �. �

Suppose dim d ≥ 2. Then we claim that d |Γ� (Z? )
is not unipotent modulo scalar: namely, d(ℎ) is not

unipotent modulo scalar for some ℎ ∈ Γ� (Z?) . Indeed, assume that d(ℎ) is unipotent modulo scalar for

every ℎ ∈ Γ� (Z?) . Set � ≔ d(Γ� (Z?) )/(scalar); this is a ?-group because the order of any element

is a power of ?. If � is nontrivial, � has a nontrivial center / . If /̃ denotes the inverse image of /

in d(Γ� (Z?) ), then /̃ is abelian. (Consider the Jordan decomposition of elements of /̃ .) Moreover, the

restriction of d to /̃ is semisimple since /̃ is normal in d(Γ� (Z?) ) and d(Γ� (Z?) ) is normal in d(Γ� ).

This is impossible as /̃ contains an element of order ?. Thus � is trivial: that is, d is scalar on Γ� (Z?) .

Then d(Γ� ) is abelian as � (Z?) is a cyclic extension over �. Contradiction.

So, there exists ℎ ∈ Γ� (Z?) such that d(ℎ) has at least two distinct eigenvalues, say U, V. Each has

multiplicity ≥ = − 8 in the multiset of generalized eigenvalues of dm (ℎ). Thus, dim dm ≥ 2(= − 8) > =.

Contradiction.
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If 8 > 2(= − 1) − =/2, the vanishing of �8
ét
(-
 ,�

,F?)m follows from the vanishing of

�
2(=−1)−8

ét
(-
 ,�

,F?)m∨ and the Poincaré duality because dm∨ is also irreducible.

4. Proof of Theorem 1.8

We may only consider cohomology below the middle degree because the duality preserves the condition

that dm is irreducible (and the exceptional case stated in Theorem 1.8).

Suppose that �8
ét
(-
 ,�

,F?)m ≠ 0 for some 8 < 4. We will consider two cases:

(1) The restriction of dm to Γ� (Z?) is irreducible.

(2) The restriction of dm to Γ� (Z?) is not irreducible.

4.1. Group-Theoretic Results

We will use another group-theoretic result from [6]:

Theorem 4.1 ([6, 1.7]). Let � be a finite non-abelian simple group and ? be a prime number. Assume

that (�, ?) ≠ (A5, 5). Then there exist ?′-elements G, H, I ∈ � with GHI = 1 such that � = 〈G, H〉.

This will be combined with Scott’s lemma:

Theorem 4.2 ([9]). Let � be a finite group acting on a finite-dimensional vector space + over a field : .

Assume that G, H, I generate � and satisfy GHI = 1. Then

dim+ + dim+� + dim(+∨)� ≥ dim+ G + dim+ H + dim+ I ,

where +∗ denotes the space of fixed vectors under the action of ∗.

4.2. Preliminary Analysis

Before dealing with case (1), let us first analyze a slightly more general situation where = is a prime and

dm |Γ� (Z? )
is irreducible. The discussion below partly follows the referee’s suggestion.

Let # be a minimal noncentral normal subgroup of dm (Γ� (Z?) ). We make the following hypothesis

throughout Section 4.2:

# is not a quasi-simple group.

We shall show that dm (Γ� (Z?) ) contains a regular semisimple element in the following cases:

(i) The restriction of dm to # is irreducible.

(ii) The restriction of dm to # is not irreducible, and = ≠ ?.

(iii) The restriction of dm to # is not irreducible, = = ? = 5, and # is not an elementary abelian A-group

for A = 2, 3.

Hence, Theorem 1.10 gives the vanishing outside the middle degree in these cases.

Let us first observe that the hypothesis above implies that # is not perfect in all cases: if # is perfect,

then # is non-abelian, and dm |# is a faithful irreducible representation of # of prime dimension.

However, this cannot happen because # modulo the center / (dm (Γ� (Z?) )) of dm (Γ� (Z?) ) is the direct

product of (more than one) isomorphic simple group as #// (dm (Γ� (Z?) )) is a minimal normal subgroup

of dm (Γ� (Z?) )// (dm (Γ� (Z?) )).

Therefore, [#, #] is central in dm (Γ� (Z?) ) by the minimality of # . Hence, # is nilpotent. Using the

minimality again, we see that # is an A-group for some prime A . Let us now study each case.

(i) Assume dm |# is irreducible. In particular, # is a non-abelian nilpotent A-group. As dm |# is

irreducible and = is prime, we see that = = A and ? ≠ =. In fact, dm |# is induced from a character.
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So, # contains a regular semisimple element by [6, 5.2]. (Note that = is assumed to be odd in the

reference, but it is not used in the argument of [6, 5.2].)

(ii) Assume dm |# is not irreducible and = ≠ ?. Then dm |# is the direct sum of distinct characters as

# is a noncentral normal subgroup of dm (Γ� (Z?) ). So, dm |Γ� (Z? )
is induced from a character of a

subgroup of dm (Γ� (Z?) ) containing # , and dm (Γ� (Z?) ) contains a regular semisimple element by

[6, 5.2].

(iii) Assume dm |# is not irreducible, = = ? = 5, and # is not an elementary abelian A-group for

A = 2, 3. Note that # is a subgroup of the diagonal (F
×

5 )
5 stable under a permutation g of

order 5, so # is an elementary abelian A-group for the prime A ≥ 7 by the minimality of # . (It

suffices to observe that # contains a non-scalar element of order A: take a non-scalar element

G ∈ # such that GA is a scalar. Then g(G)G−1 is a nontrivial element of order A , and it is not a

scalar since g has order = and = = ? ≠ A .) We claim that there is a regular semisimple element

inside # .

Let us prove the claim. From now on, we identify # with a nontrivial subrepresentation of Z/5Z

acting on F5
A . If A . 4 mod 5, then the complement of the trivial representation in F5

A is either

irreducible or the direct sum of four distinct characters, and it is easy to find a regular semisimple

element as A ≥ 7.

If A ≡ 4 mod 5, then the complement of the trivial representation is the direct sum of two

irreducible two-dimensional subrepresentations. An element G of each subrepresentation can be

written as the component-wise trace of (0, 0Z5, 0Z
2
5
, 0Z3

5
, 0Z4

5
) for 0 ∈ FA2 and a choice of Z5. It

is easy to see that G corresponds to a regular semisimple element if and only if all coordinates are

distinct, if and only if 0/0 ∉ {1, Z5, Z
2
5
, Z3

5
, Z4

5
}, where 0 denotes the conjugate of 0. Any norm 1

element in FA2 has the form 0/0. Since the number of norm 1 elements in FA2 is A +1, and A +1 > 5

by the assumption, we can find a regular semisimple G.

4.3. The Case (1)

Now = = 5, and assume dm |Γ� (Z? )
is irreducible as in (1). By the discussion on (i)–(iii) above with

Theorem 1.10, we only need to consider the case where some minimal noncentral normal subgroup # of

dm (Γ� (Z?) ) is quasi-simple. Note that # acts irreducibly on dm. Let d0 be an irreducible constituent of

�8
ét
(-
 ,�

,F?)m ⊗ jm as a representation of Γ� . We regard d0 as a representation of #; this is possible

by [4, 4.1.3]. (The action of Γ� on d0 factors through dm (Γ� ).)

Now let d be an irreducible constituent of d0 as a representation of # . By Theorem 1.3 and Schur’s

lemma, the center / of # acts on d and dm by the same character. Therefore, dm ⊗ d∨ becomes a

representation of #// , which is a simple non-abelian group.

Assume #// ≠ A5 or ? ≠ 5. Suppose first that d is not isomorphic to dm |# . Then we can apply

Theorem 4.1 and Scott’s lemma (Theorem 4.2), and there is an element =0 of # satisfying the following

conditions:

◦ =0 is a ?′-element. In particular, the action of =0 on dm ⊗ d∨ is semisimple.

◦ dim(dm ⊗ d∨)=0 ≤ (5 dim d)/3.

(Note that / is a prime-to-? group since / ⊂ # ⊂ dm (Γ� ) consists of scalars.) But this contradicts

Lemma 4.3. dim(dm ⊗ d∨)=0 ≥ 2 dim d.

Proof. Let _1, . . . , _dim d denote the eigenvalues of d(=0), and write E_,8 for an eigenvector correspond-

ing to _8 so that it forms a basis of d. The dual basis is denoted by E∨
_,8

. Theorem 1.3 and Remark 1.4

imply that, for each 8, dm (=0) has eigenvalue _8 with multiplicity ≥ 2 since =0 ∈ # ⊂ dm (Γ� (Z?) ). Take

two linearly independent eigenvectors F8,1, F8,2 of dm (=0) with eigenvalue _8 . The following 2 dim d

vectors

F1,1 ⊗ E
∨
_,1, F1,2 ⊗ E

∨
_,1, . . . , Fdim d,1 ⊗ E

∨
_,dim d, Fdim d,2 ⊗ E

∨
_,dim d

are linearly independent and fixed by =0. �
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Next, suppose d is isomorphic to dm |# . Then dm ⊗ d∨ � End(dm), as a representation of # , is self-

dual and has a 1-dimensional subrepresentation and quotient representation given by the scalars and the

trace map, respectively, and there is no other trivial subrepresentation or quotient representation. So,

again by Theorem 4.1 and Scott’s lemma (Theorem 4.2), we get an inequality (25+2)/3 ≥ 2 dim d = 10,

which is impossible.

The only remaining case is #// = A5 and ? = 5. Note that the only such quasi-simple group is A5

itself or SL2(F5), which is a double covering of A5.

◦ Suppose # = A5. There are only three isomorphism classes of irreducible representations in

characteristic 5, and one of them has dimension 5; it must be dm. The other two are the trivial

representation and a faithful three-dimensional representation defined over F5. Whatever d is, any

element 6 of order 3 has an eigenvalue 1. However, dm (6) has the eigenvalues {1, Z3, Z3, Z
2
3
, Z2

3
}, and

1 has the multiplicity one. This contradicts Theorem 1.3 and Remark 1.4.

◦ Suppose # = SL2 (F5). Any irreducible representation in characteristic 5 is given by the symmetric

power Sym: F2
5

of the standard representation of dimension 2 for an integer : ∈ [0, 4]. So, dm |#

must be isomorphic to Sym4 F2
5
. However, the central character of Sym4 F2

5
is trivial; this contradicts

# ⊂ dm (Γ� (Z?) ).

4.4. The Case (2)

Again, = = 5; and now assume that dm |Γ� (Z? )
is not irreducible as in (2). (In particular, 5 divides

[� (Z?) : �] and ? − 1.) Then dm is induced from a character, and if [� (Z?) : �] > 5, we can apply

Proposition 1.13.

Suppose [� (Z?) : �] = 5, in which case dm is induced from a character k of Γ� (Z?) . Take a lift

6 ∈ Γ� of a generator of Gal(� (Z?)/�); and we denote dm (6) by the same symbol, 6. The restriction

of dm to Γ� (Z?) is the direct sum of k6
8

for 8 = 0, 1, 2, 3, 4.

Let d be an irreducible constituent of �8
ét
(-
 ,�

,F?)m ⊗ jm as a representation of Γ� . By [4, 4.1.3],

d may be regarded as a representation of dm (Γ� ). By Theorem 1.3, Remark 1.4, and [4, 4.1.4], the

restriction of d to � ≔ dm (Γ� (Z?) ) decomposes into characters. We first show that d itself is not a

character of Γ� ; this implies that d is of dimension 5 and is induced from a character of �.

Lemma 4.4. d is not a character of Γ� .

Proof. Suppose d is a character j. Then dm ⊗ j−1 satisfies, by Theorem 1.3 and Remark 1.4, the

following condition: for any ℎ ∈ �, the multiplicity of 1 in the multiset of eigenvalues of (dm ⊗ j−1) (ℎ)

is ≥ 2. Up to a permutation, the multiset of eigenvalues of (dm ⊗ j−1) (ℎ) has two possibilities:

(a) 1, 1, U, V, W, (b) 1, U, 1, V, W, for some U, V, W ≠ 0.

Here, conjugation by 6 acts by a cyclic permutation (1 2 3 4 5).

In case (a), consideration of (dm⊗ j−1) (ℎ ·62ℎ6−2), (dm⊗ j−1) (ℎ ·63ℎ6−3) gives V = 1 or U = W = 1.

If V = 1, consideration of (dm ⊗ j−1) (ℎ · 6ℎ6−1), (dm ⊗ j−1) (ℎ · 64ℎ6−4) gives U = 1 or W = 1. So, the

multiplicity of 1 is ≥ 4 for every ℎ ∈ � satisfying (a) up to a permutation.

Similarly, in case (b), consideration of (dm ⊗ j−1) (ℎ · 6ℎ6−1), (dm ⊗ j−1) (ℎ · 64ℎ6−4) gives U = 1

or V = W = 1. Since we are in case (i) as well if U = 1, we deduce that the multiplicity of 1 is ≥ 4 for

every ℎ ∈ �. But consideration of (dm ⊗ j−1) (ℎ · 68ℎ6−8) with 8 ≠ 0 gives that (dm ⊗ j−1) (ℎ) is the

identity for every ℎ. This is impossible. �

Now we may assume that d is induced from a character of �. By [4, 4.2.1] and a slight variant of [4,

4.2.4 (1)] with the same proof, we deduce that det d = det dm.

Take 6′ ∈ � such that d(6′) is not a scalar; such an element exists because d decomposes into

distinct characters of �.

Lemma 4.5. Each eigenvalue of 6′ has multiplicity 2 or 3 in the multiset of eigenvalues of 6′.
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Proof. Let us first observe that d(ℎ) has at most two distinct eigenvalues for every ℎ ∈ � because if

d(ℎ) has three distinct eigenvalues, then ℎ must have 6 eigenvalues by Theorem 1.3 and Remark 1.4.

If d(6′) has eigenvaluesU, U, U, V, VwithU ≠ V, then the multiplicities ofU, V in the set of eigenvalues

of 6′ are both ≥ 2, and using the equality of determinants, we see that d(6′) and 6′ have the same

characteristic polynomial. Otherwise, d(6′) has eigenvalues U, U, U, U, V with U ≠ V. (Conjugation by

6 acts by (1 2 3 4 5) as before.) By applying the observation above to d(6′2 · (6′)6
8

) with 8 ≠ 0, we see

that U2 = V2 holds. Using the equality of determinants, we deduce that 6′ has eigenvalues U, U, V, V, V.

This proves the lemma. �

Let us complete the proof. By a permutation, we may assume that k(6′) = k6 (6′) = k6
2

(6′) or

k(6′) = k6 (6′) = k6
3

(6′). In the former case, 6′ · 626′6−2 has an eigenvalue k(6′)2 with multiplicity

one. In the latter case, 6′ · 66′6−1 has an eigenvalue k(6′)2 with multiplicity one. These contradict

Lemma 4.5 with 6′ replaced by the corresponding elements as d(6′ · 626′6−2), d(6′ · 66′6−1) are not

scalars.
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