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A LOCAL ERGODIC THEOREM ON L,

J. R. BAXTER AND R. V. CHACON

1. Introduction. Two general types of pointwise ergodic theorems have
been studied: those as ¢ approaches infinity, and those as ¢ approaches zero.
This paper deals with the latter case, which is referred to as the local case.

Let (X, %, u) be a complete, o-finite measure space. Let {T',} bea strongly
continuous one-parameter semi-group of contractions on %, (X, %, u),
defined for ¢ = 0. For T, positive, it was shown independently in [2] and (5]
that

ay it [ s = e

almost everywhere on X, for any f € ;. The same result was obtained in
[1], with the continuity assumption weakened to having it hold for ¢ > 0.

It was also shown in [5] that (1.1) holds without the positivity assumption
on T, provided that T, is a contraction of & . In [3] the &, restriction is
removed, so that (1.1) actually holds for any continuous one-parameter semi-
group of contractions on.%;.

If we let {T")} be a strongly continuous semi-group of contractions of
L,(X, % ,u), for a fixed p, 1 £ p < + o, and defined for ¢ = 0, then the
limit (1.1) still holds for f € L,, provided that the semi-group is positive. This
was shown in [4], where {T",} is not required to be a contraction, but merely a
bounded operator. The question is raised in [4] of whether (1.1) remains true
in the non-positive case. In this paper we prove:

TuEOREM 1. The limit (1.1) holds for f € L, if {T;} is a strongly continuous
semi-group of contractions of L,(X, F ,u), for a fixed p, 1 < p < + ©, and
defined for t = 0, provided that {T,} is also simultaneously a semi-group of
contractions of Lo (X, F, u).

We also obtain a more general result:

THEOREM 2. Let {T'}, t = 0 be a strongly continuous one-parameter semi-
group of contractions on L (X, F ,u), 1 < p < 0. Let there exist a measurable
Sfunction h on [0,0) X X such that

(1) k> 0 everywhere, and

(i) f € Ly |f(x)| S h(t,x) for almost all x € X implies |Tsf(x)| < h(t+s,x)

for almost all x € X, for any t, s = 0. Then (1.1) holds for all f in L.
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Theorem 2 yields Theorem 1 when z = 1. More generally Theorem 2 gives
convergence if |7, < e

In section 2 below, we prove a maximal lemma. Theorem 1 is proved in
section 3, and Theorem 2 is obtained from Theorem 1 in section 4.

2. A maximal lemma. The main result of this section is Lemma 2. The
following preliminary lemma is useful.

LeEmMA 1. Let T be a linear operator on a vector space V. Let f, hi, gr, B = 0, 1,

an,and dy, k = 1,. .., n, be elements of V such that:
@1)  f=ho+ g,
(2.2) Tg = gr1 + dprr, bor = by +dieyr, R =0,1,...,n — 1.
Then
23) f+Tf+...+Tf=h+Thr+ ... +Tho+ g0+ ...+ gu

and
24) I =Tho+d,+Tdp1+ ...+ T + g,
The proof of Lemma 1 is immediate by induction.
We now define a truncation operation for complex numbers.
Definition 1. For any complex numbers ¢ and b and any v > 0 such that
la] £ v, define
2.5)  Cy(a,b) =a+ N0b — a), where 0 < A =1
and \ is the largest number between 0 and 1 such that |a + N0 — a)| £ .

It is a straightforward matter to verify that for fixed v, C, is a continuous
function of the two variables ¢ and b.

LEMMA 2. Let (X, %, u) be a measure space. Let T be a linear contraction on
Ly =Y, (X, F,u), such that

26) |Tfle < [flo forcachf € LN L.

Let f be in L, H a set of positive, finite measure, and let 8 > 0 a number such
that 8 = |f| on H. Let R be a measurable function on H, |R| = 38 on H, and let
N be a positive integer such that for each x € H there exists an integer j, 0 = j <
N, such that

1 J
2.7 R{x) = Tri

Then there exist functions dy, . . . ,dy, g on X such that:

(28) di=0mX —Handld+ ...+ di| =28

T (x).
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0”H,k=1y-"7N;

2.9) el = If = G0, Nl

(2.10) I%f = TVCs(0,f) + dy + Tdy—r + ... + TV dy + g,
2.11) Co(f,R) = f+di+ ...+ dyon H.

Proof. Let hy = C5(0, f) and let go = f — ho. Having defined %; and g; for
1=0,1,...,k, and having defined d; forz =1,...,k, 0 <k = N — 1, let
a function Ui, be defined as follows:

(2.12) Uiy1(x) = the projection as a two-dimensional vector of 7'g,(x) along
Ca(f, R) (x) — he(®) if x € H and Tg,(x) - [Ca(f, R) () — he(x)] > 0
(Here *“ - " denotes scalar product.); in all other cases let U;;; = 0.
Let

(2.13)  hgyr = Ca(hy b + Upyr).

(By an obvious induction we have |k;] < 8 on X.) Let
(2.14)  dyy1 = M1 — hy,y

(2.15)  goy1 = Tgr — diya-

This process defines go, ..., gn, oy ..., ky, and dy,...,dy. Let g = gy.
From (2.13),

(2.16) d,c+1(x) = )\k+1(x) Uk+1(x), where 0 =< >\k+1(x) = 1.

Since Ugy1(x) is either 0 or a projection of T'g.(x) we see by (2.15) that
(2.17) |2k+1(x)| = ITgk(x)l
Hence

(2.18)  lgerlls = lleelly

and (2.9) follows.

By (2.12) and (2.16) we haved;, = Oon X — H.By (2.14),d, + ... + d;, =
hi — ho, so by (2.13) we see that (2.8) holds.

Equation (2.10) is merely a rewritten version of (2.3). Thus only (2.11)
remains to be proved. We can rewrite (2.11) as
(2.19) Cs(f, R) = hy on H.

Suppose for some pointx € Handsomek < N — 1thath;(x) = Cs(f,R) (x).
It follows at once from (2.12) and (2.13) that ki (x) = Cs(f, R) (x) also.
Thus, if at some point x € H we have Cs(f, R) (x) # hy(x), we also have
(2.20) Cs(f, R)(x) = hy(x) k=0,1,...,N.

Again, suppose for some point x € H and some k < N — 1 that d;;;(x) #
Ui1(x). Then clearly hyp1(x) # he(x) + Uppa(x). That is, Cg(hi(x), hx(x) +
Uis1(x)) # hy(x) + Uppi(x), so that |hy(x) + Upya(x)| > B. Also, since
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Upr1(x) # 0, we must have h(x) # Cs(f, R) (x), by (2.12). Ui1(x) has the
same direction as Cg(f, R) (x) — hi(x), by (2.12). Thus Cs(f, R) (x) is a point
on the line joining %, (x) and ky(x) + Ui (x). We have |k (x)| < 8, b (x) #
Cs(f, R)(x), |Cs(f, R)| = B, and |hy(x) + Uit1(x)| > B. From these facts it
follows by definition that Cg(hy(x), hy(x) + Uks1(x)) = Cs(f, R)(x). Thus we
have shown that if for some x € H and some 2 < N — 1 we have d;;1(x) #
Up+1(x), then

(2.21)  hia(x) = Go(f, R) (x).

Now let x € H be a point for which Cs(f, R) (x) # hy(x). We will obtain a
contradiction. Using (2.20) and (2.21) we see that

(222) dk+1(x) = U]H.l(x) for & = 0, 1, o« ooy N — 1.
Hence, by (2.12),
(2.23)  geni(x) - [G(f, R)(*) — h(x)] =0, k=0,1,...,N—1L

By induction, it is easy to show that Cg(f, R)(x) — hi(x) is a positive
multiple of R(x) — f(x), 2 =0,1,..., N.
Thus

(2.24) gpi(x) - [R(x) —fx)] £0,k=0,...,N — 1.
Since go(x) = 0,
(2.25) gr(x) - [R(x) —f(x)] £0,k=0,...,N.

Choose j, 0 = j < N, such that

(226) G+ DRE) = 3 T,

By (2.4),
2.27) G+ DR@) = k() + Thjor(x) + ... + Toho(x) + go(x) + ...
+ g;(x).
By (2.25),

(2.28) G+ DR@) - [Rx) —f)] = (hy(x) + Thja(x) + ... +
Tho(x)) - [R(x) — f(x)].
Since |T%h;—(x)| = B for each &, by (2.6), we have
(229) G+ D(R@)* = BIRX)|) = G+ DBIRE)| +8] = G+ 1)
X B(4/3)[R(x)],

or
(2.30) [R(x)| = (7/3)8,

a contradiction. This completes the proof of Lemma 2.
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3. Proof of Theorem 1. We are given a complete, o-finite measure space
(X, % ,u),and aset {T,},t = 0, of bounded linear operators on.¥, (1 £ p <
o0 ) satisfying:

B1) T4use=T1T,Ts forallt=0,5s=0,
B.2) T,=1,

(3.3) [T, =1, foreveryt =0,

(34) lmT,f=T, foreveryf € ¥y s=0.

58

We also assume that
(3.5)  NTufllw = lflle foreveryf € £, NLo t = 0.

We wish to prove that (1.1) holds for any f € .%,. Before proceeding, we
establish some well-known facts about

12
f Tsf (x)ds.
]
Fixa = 0, f € Z,(X, &, p). Define
(3.6) gt x) = Thamflx) for ka/m =t < (k+ L)a/n,

x€X,k=0,...,n— 1. Thus g* is defined on [0, a) X X. Since the map
t — T,f is a continuous map into ., (du), it is easy to see that there exists a
function g on [0, ¢) X X such that

3.7) g —ginZ,(dt X du) as n — 00.

For a subsequence #; we have g"i(t, x) — g(¢, x) as j — o0, for almost every
(¢, x). Thus for almost every ¢, g"i (¢, x) — g(¢, x) as j — o0, for almost every x.
However, considered as a function in £, (du), it is clear that g*i(¢,- ) — T, f
in %, (du) as j — o, for every t. Hence

(3.8) glt,x) = T,f(x) for almost every (¢, x).

Thus g does not depend on our interval [0, a¢), and we can define g on [0, )
X X.

Returning to a finite interval [0, a), we can choose our subsequence #; such
that g"i(¢,x) > g(t,x) as j— o for almost every (¢,x), and such that
2illg" — gll, < 0. Letr = [g| + 3,lg" — g|. Then [|7]l, < 0 and [r| = [g"]]
for all j. For almost every %, 7( -, x) will have finite .#,(d¢)-norm, and hence
finite & (dt)-norm. Also, for almost every x, g"i(t, x) — g(¢, x) as j — o for
almost every t. Hence, by Lebesgue’s dominated convergence theorem,

3.9) f g (@t x)dt — f g(t, x)dt asj— 0,
0 0
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for almost every x. But clearly

(3.10) j‘: g, - )dt — f: T fdt in%,(d,)

as j — 0. Thus

(3.11) fo “ o, x)dt = fo " T fdi )

for almost every x. We define

(3.12) j;a T f(x)dt = fag(t, x)dt,

0
for any ¢ = 0. The point of this definition is that the left hand integral is a
continuous function of ¢, for almost every x.
For future use we note that the sequence #; appearing in (3.9) can clearly
be chosen to be divisible by any fixed integer, and the proof of (3.9) shows
that for almost every x
b ) b

(38.13) f g ¢, x)dt — f T f (x)dt
0 0

forallb £ a.

LEMMA 3. For any f € ¥,

%j;t Tof (x)ds

for almost every x.

(3.14) lim sup < 5] f(x)]

Proof. Let E be a set of finite positive measure, and 8 a positive number
such that

1 1
= f Tf (x)ds
t Jo
We must show that
(3.16) |f(x)] = B for almost all x € E.

(3.15) lim sup = 58 onE.
150

Clearly we may assume that
3.17) |f(x)] =8 forallxin E.
Define
t
(3.18) S.(x) = C53(f(96),% f Tsf(x)ds) forx € E.
0

By the continuity of Css we see that S,(x) is measurable on [0,0) X E
and S,(x) is a continuous function of ¢ for almost every x € E.
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It is easy to see that we can find a measurable function S defined on E, such
that

38.19) |S(x)| = 58 forx € E,

and such that for almost every x € E there exists a sequence f; t; — 0 as
j — o0, with
(3.20) S(x) = lim S,;(x).
J->

Let ¢ > 0 be given. We will now introduce some notation to clarify the
remainder of the proof. Let % stand for a function in .%,, appearing in this
proof. In general there will be many ways of choosing the function for which
I stands. It may, for example, depend on the choice of ¢, or on subsequent
choices. Let us regard all choices made in the proof prior to the choosing of e
as fixed. Then if %, and %, stand for functions appearing in this proof, we will
write

(3.21) hl = ]’Lz,
if there exists one function ¢ (¢) such that

(3.22)  ||hy — hall, < o(e)

for all possible choices of %y, ks, and €, and
(3.23) o(e) >0 ase—0.

Let a positive integer / be chosen, with / > 1/e. Let a positive number §
be chosen, such that for every ¢t £ (I + 1)8 we have

B24) [I=T)fh<e T —=T)CO Nl <e

and ||(I — T )h|l, < ¢, where h(x) = Cs(f,S)(x) — f(x) for x € E, h(x) =0
for x ¢ E. We note that (3.24) can be rewritten as

(3.25) Tuf=f, T.G(0,f) = C(0,f), Th=h,

fort = (I 4 1)s.

Since S, (x) is a continuous function of ¢ for almost every x € E, we can find
aset £; € E with u(E — E;) < ¢, and a positive integer # such that for any
x € Ei, an integer k exists, 1 < k < #, with

(3.26)  [Sksm(x)] > 48
and
(3.27) [Ca(f(x), S(x)) — Cs(f(x), Sear(®))]| < e

By (3.18) we see that for each x € E;, an integer k exists, 1 < k < #, with

k /nd
(3.28) ‘%1771—) fo T f(x)dt | > 48
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and

(3.29) < 2e.

k8 /n
G, 569 - Gl gy [ o)

By (3.13) we can choose a sequence n; — o such that each #; is a multiple
of n, and such that for almost every x € E,;

ké /n kdé /n
(3.30) f g (¢, x)dt — f T f (x)dt,

0 0
for k. =1,...,n Here g"i(t,x) is defined to be T ,;(x) for i6/n; <t <
(i+1)5/nj,i=0,...,nj—1.

It follows that for some n; = N that there existsaset H C E;, u(E; — H) < ¢,
such that for each x € H an integer k exists, 1 < k < #n, with

kd /n
(8.31) ' (—];817;5 j; gV (¢, x)dt ‘ > 38

and

(3.32)

) 1 k8 /n
Gs(fx), S(x)) — Cs(f(x))ywn—) [ gV (¢, x)dt ‘ < 3e.

0
For each x € H, let

kd/n
RE) = s | €760

where k is chosen as in (3.31) and (3.32).
Let 7" = T, Since N is a multiple of #, it is easy to see that for each
x € H there exists an integer 7, 0 < j < N, with

1 o
(3.33) R(x) e T (x).
We now apply Lemma 2 from section 2 to obtain functions dy, . . ., dy,

g on X such that (2.8)-(2.11) hold.
Define the operator W by

IN—1

1 i
(3.34) W=E\—7; T

! as defined just before (3.24). Using (2.8), it follows easily that

W(il; ™, j di)

(3.35) < %‘—3 m(E)'".
14

Thus

N N
(3.36) W }_‘i ™, =W, d.
i=

i=1
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By (2.10)

(3.37) W 2231 di+ Wg = W(T™f — TVCs(0,f)) = f — Cs(0,f) by (3.25).

By (2.11)

N

(3.38) D dy=h,

i=1

where 71 (x) = Ca(f(x), R(x)) — f(x) for x € H and h(x) = 0 for x ¢ H.
By (3.32), hy = h, where % is defined as in (3.25). Thus

N
(3.39) W d;=Wh=h.
i=1

From (3.37) and (3.39) we obtain
(3.40) Wg = f — C5(0, f) — h.

But f — C3(0, f) and % have disjoint supports by the definition of 7%, while
1Well, < |If — Cs(0, f)|l, by (2.10). Since % does not depend on ¢, we must
have |4, = 0. This proves (3.16) and completes the proof of Lemma 3.

Proof of Theorem 1. Let V be the collection of elements f in &, such that
(1.1) holds. V is obviously a linear space. It follows easily from Lemma 3
that V is closed in the norm topology. For any f € .%,, we can find a sequence
t, — 0 such that

in
; f Tf@)ds ¢ V
‘n 0

for each n. (This is Lemma 1 in [4], a generalization of Lemma 2 in [2].) Hence
V is dense in %, and hence V = .%,. This proves Theorem 1.

4. Proof of Theorem 2. Let ¥V = [0, 00) X X. Let ¥ be the usual product
c-algebra, and let dv = dt X du. For any bounded operator T on %, (X, % ,u),
define T on &, (Y, 4, ») for any f in &, (Y, %, ») by

1) Tf(t,x) = Tfu(x),

where f,(x) is the function on X defined by f,(x) = f(¢, x). This defines
Tf(t, x) for almost every (¢, x). It is a straightforward matter to show that
Tf € £,(Y,¥9,»), and that | T]|, < ||7]|,- Given a strongly continuous one-
parameter semi-group {7°;} (i.e., {T,} satisfying (3.1)-(3.4)) it is easy to
see that {7} is also a strongly continuous one-parameter semi-group of
contractions on .Z,(Y, ¥, »).

Define the shift operator 4, for f in Z,(¥, %, ») by

A f(s,x) = f(s —t,x) fors =4,

(4.2) A f(s,x) =0 fors <t
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{A,} is clearly a strongly continuous one-parameter semi-group. Clearly
AT, =T, forallt,s.

Now let % be a measurable function on Y satisfying (i) and (ii) of Theorem 2.

Define the operator U, on.%, (¥, ¥, h?dv) as follows:

4.3) Ug= (1/hW)A,Thg foranyg ¢ &L, (Y, 7, hdv).

It is easy to verify that { U,} is a semi-group, since 4 , and T';, commute. Let 6
be the map from Z,(Y, ¥,») onto £Z,(Y, ¥, h?dv) defined by 6f = f/h.
Since 6 is an isometry, and U, = 64 ,T 671, it follows that {U,} is a strongly

continuous one-parameter semi-group of contractions on %, (Y, ¥, h?dv).
Finally we see that because of condition (ii) of Theorem 2 we have

4.4) |Ugle £ llglle for each g in L, (Y, G, k?dv) NEL (Y, G, h*dy).
By Theorem 1, we have
(4.5) lim 1 f Ug(t,x)ds = g(t, x)
a0 & 0

for almost all (¢, x) in Y.
Fix fin ¥, (X, &, u). Define g in ¥ ,(Y, 9, h?dv) by the equation

4.6) gt x) = h(—:x—)f(x), 0<t<b

g(t,x) =0,¢ = b, for some b > 0.
Then for a fixed (¢,x),0 <t < b, and any s < ¢, we have

Uglt,x) = (1 ATt %)

4.7) h(t %) Thgt — s,x)
_ Tjx)
h(t,x)’
Hence

a _ —1_ fa - -
(4.8) j; Ug(,x)ds = W) Js Tsf(x)ds for0 <t <b,a <t

For almost every x, (4.5) holds for almost every ¢. For such an x and such a
t, 0 <t < b, we have

(4.9) hmh(tlx)l f Tfe)ds = gt.x) = 7ot

This is (1.1), so Theorem 2 is proved.
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