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A LOCAL ERGODIC THEOREM ON Lp 

J. R. BAXTER AND R. V. CHACON 

1. I n t r o d u c t i o n . T w o general types of pointwise ergodic theorems have 
been s tudied: those as t approaches infinity, and those as t approaches zero. 
This paper deals with the la t ter case, which is referred to as the local case. 

Le t (X, &~, /x) be a complete, c-finite measure space. Le t {Tt} be a strongly 
cont inuous one-parameter semi-group of contract ions on »Sf i(X, &~, \i), 
denned for t ^ 0. For Tt positive, it was shown independent ly in [2] and [5] 
t h a t 

(1.1) l i m y f Tsf(x)ds=f(x) 
t->o t Jo 

almost everywhere on X , for any / ë *£x. T h e same result was obtained in 
[1], with the cont inui ty assumption weakened to having it hold for t > 0. 

I t was also shown in [5] t h a t (1.1) holds wi thout the posit ivi ty assumption 
on Tu provided t h a t Tt is a contract ion of o£f œ . In [3] the ££^ restriction is 
removed, so t h a t (1.1) actual ly holds for any continuous one-parameter semi­
group of contract ions on Jzf i. 

If we let {Tt} be a strongly continuous semi-group of contract ions of 
LP(X, ^ , M), for a fixed p, 1 ^ p < + oo , and defined for t ^ 0, then the 
l imit (1.1) still holds f o r / £ Lp, provided t h a t the semi-group is positive. This 
was shown in [4], where {Tt} is not required to be a contract ion, bu t merely a 
bounded operator . T h e question is raised in [4] of whether (1.1) remains t rue 
in the non-positive case. In this paper we prove: 

T H E O R E M 1. The limit (1.1) holds for f £ Lp if {Tt\ is a strongly continuous 
semi-group of contractions of LP(X, J ^ , /*), for a fixed p, 1 ^ p < + co, and 
defined for t ^ 0, provided that {T t] is also simultaneously a semi-group of 
contractions of Lœ(X, J^~, n). 

W e also obtain a more general result : 

T H E O R E M 2. Let {Tt}y t ^ 0 be a strongly continuous one-parameter semi­
group of contractions on££v{X, &~, /x), 1 ^ p < oo . Let there exist a measurable 
function h on [0, oo ) XX such that 

(i) h > 0 everywhere, and 
(ii) / G oSfp, \f(x)\ ^ h(t,x) for almost all x G X implies \Tsf(x)\ ^h(t + s,x) 

for almost all x £ X,for any t, s ^ 0. Then (1.1) holds for allfin££p. 
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Theorem 2 yields Theorem 1 when h = 1. More generally Theorem 2 gives 
convergence if \\Tt\\œ ^ e"'. 

In section 2 below, we prove a maximal lemma. Theorem 1 is proved in 
section 3, and Theorem 2 is obtained from Theorem 1 in section 4. 

2. A maximal lemma. The main result of this section is Lemma 2. The 
following preliminary lemma is useful. 

LEMMA 1. Let T be a linear operator on a vector space V. Letf, hk, gkJ k = 0 , 1 , 
. . . , n, and dk, k = 1, . . . , n, be elements of V such that: 

(2.1) / = ho + go, 

(2.2) Tgk = gk+i + 4+i , h+i = h + dk+1, k = 0, 1, . . . , n — 1. 

Then 

(2.3) / + Tf + . . . + r» / = hn + 77*a_! + . . . + r»ft0 + go + • • • + gn, 

and 

(2.4) Tnf = :P/*O + 4 + T 4 - i + . . . + r * - ^ + g„. 

The proof of Lemma 1 is immediate by induction. 

We now define a truncation operation for complex numbers. 

Definition 1. For any complex numbers a and b and any y > 0 such that 
|a| ^ 7, define 

(2.5) C7(a, 6) = a + \(b - a), where 0 ^ X ̂  1 

and X is the largest number between 0 and 1 such that \a + \(b — a)\ ^ y. 

It is a straightforward matter to verify that for fixed 7, Cy is a continuous 
function of the two variables a and b. 

LEMMA 2. Le/ (X, &~, \x) be a measure space. Let T be a linear contraction on 
^v = &p(X, ^ , /*)» such that 

(2.6) Hr/iu g H/L /or «"*/ G S£vc\<£„ 
Let f be in££v, H a set of positive, finite measure, and let /3 > 0 a number such 

that /3 ^ l/l on if. L ^ R be a measurable function on H, \R\ ^ 3/3 on iJ, and let 
N be a positive integer such that for each x £ H there exists an integer j , 0 ^ j ^ 
N, such that 

(2.7) R(x) = 7 ^ - É Tlfix). 

r&ew ^ere exist functions du . . . , d^, g on X such that: 

(2.8) dk = 0onX - Hand\d! + ...+dk\ ^ 2/3 
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on H, k = 1, . . . , N; 

(2.9) \\g\\PS\\f-Ce(0,f)\\P, 

(2.10) TNf = TNCp(0,f) +dN+ TdN-! + . . . + TN-H, + g, 

(2.11) C*(/, R) = / + di + . . . + dN on H. 

Proof. Let h0 = Cp(0,f) and let go = f — h0. Having denned ht and gt for 
i = 0, 1, . . . , h, and having defined dt for i — 1, . . . , k, 0 ^ k ^ N — 1, let 
a function £/*_!-1 be defined as follows: 

(2.12) Uk+i(x) = the projection as a two-dimensional vector of Tgk{x) along 
C0(f,R)(x) - hk(x) if x G # a n d !&(*) • [Cfi(f,R)(x) - hk(x)] > 0 
(Here " • " denotes scalar product.) ; in all other cases let Uk+i = 0. 

Let 

(2.13) hk+1 = C0(hk,hk + Uk+1). 

(By an obvious induction we have \hk\ ^ (3 on X.) Let 

(2.14) dk+i = hk+1 - hk, 

(2.15) gk+1 = Tgk - dk+1. 

This process defines go, . . . , &v, &o, . . . , hNl and d\, . . . , d^. Let g = g^. 
From (2.13), 

(2.16) dk+i(x) = \k+i(x) Uk+i(x), where 0 S \+i(x) ^ 1. 

Since Uk+\(x) is either 0 or a projection of Tgk(x) we see by (2.15) that 

(2.17) \gk+1{x)\ S \Tgk{x)\. 

Hence 

(2.18) \\gk+l\\p S \\gt\\P, 

and (2.9) follows. 
By (2.12) and (2.16) we havedk = O o n I - H. By (2 .14) ,^ + . . . + dk = 

hk — ho, so by (2.13) we see that (2.8) holds. 
Equation (2.10) is merely a rewritten version of (2.3). Thus only (2.11) 

remains to be proved. We can rewrite (2.11) as 

(2.19) C$(f9R) = hNonH. 

Suppose for some point x £ Hsaidsomek ^ N — 1 that/^(x) = C$(J,R)(x). 
It follows at once from (2.12) and (2.13) that hk+1(x) = Cp(f,R)(x) also. 
Thus, if at some point x G H we have C/s(/, R)(x) 9e hN(x), we also have 

(2.20) Cp(f, R)(x) 9* hk(x) k = 0, 1, . . . , N. 

Again, suppose for some point x G H and some k ^ N — 1 that dk+1(x) 9e 

Uk+i(x). Then clearly hk+1(x) ^ hk(x) + Uk+i(x). That is, Cp{hk(x), hk(x) + 
Uk+i(x)) 9* hk(x) + Uk+i(x), so that \hk(x) + Uk+1(x)\ > 0. Also, since 
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Uk+i(x) 9^ 0, we must have hk(x) ^ Cp(f,R)(x), by (2.12). Uk+i(x) has the 
same direction as Cp(f,R)(x) — hk(x), by (2.12). Thus Cp(f, R)(x) is a point 
on the line joining hk(x) and hk(x) + Uk+i(x). We have |/^(x)| S 0, ^ ( ^ ) ^ 
Cfi(f,R)(x), \Cp(f,R)\ = 0, and |^(x) + Uk+1(x)\ > /3. From these facts it 
follows by definition that Cp(hk(x)y hk(x) + Uk+i(x)) = Cp(f, R)(x). Thus we 
have shown that if for some x £ H and some k g iV — 1 we have ^ + i ( x ) =̂  
Uk+i(x), then 

(2.21) /*,+1(x) = Cp(f,R)(x). 

Now let x G H be a point for which C&(f, R) (x) ^ hN(x). We will obtain a 
contradiction. Using (2.20) and (2.21) we see that 

(2.22) dk+1(x) = Uk+i(x) for & = 0, 1, . . . , N - 1. 

Hence, by (2.12), 

(2.23) gk+1(x) • [Cp(f,R)(x) - hk(x)] g O , fe = 0, 1, . . . , N - 1. 

By induction, it is easy to show that Cp(f,R)(x) — hk(x) is a positive 
multiple of R(x) - f(x), k = 0, 1, . . . , N. 

Thus 

(2.24) gk+1(x) • [R(x) - /(*)] g 0, k = 0, . . . , iV - 1. 

Since go(#) = 0, 

(2.25) gk(x) • [i?(x) - / ( * ) ] g 0, & = 0, . . . , N. 

Choose j , 0 g j g N, such that 

(2.26) ( j + l ) i ? ( x ) = £ r ' / (x ) . 

By (2.4), 

(2.27) (j + l )#(x) = *,(*) + Th^(x) + . . . + T'ho(x) + go(x) + . . . 

+ gj(x). 
By (2.25), 

(2.28) (j + l)R(x) • [R(x) -f(x)] ^ (h,(x) + Th^x) + ...+ 

T%0(x)) • [R(x) - / ( * ) ] . 

Since \Tkh}-k(x)\ S P for each k, by (2.6), we have 

(2.29) (j + l)( |i?(x)|2 - 0|£(*)|) ^ (j + 1M|2?(*)| + /3] ^ 0' + 1) 

X /3(4/3)|i?(x)|, 
or 

(2.30) \R(x)\ è (7/3)0, 

a contradiction. This completes the proof of Lemma 2. 
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3. Proof of Theorem 1. We are given a complete, ^-finite measure space 
(X, Ĵ "", /x), and a set {Tt], t ^ 0, of bounded linear operators on<^fp (1 ^ p < 
oo ) satisfying: 

(3.1) Tt+S = TtTs for all * ^ 0, * è 0, 

(3.2) To = J, 

(3.3) II7X ^ 1, for every t ^ 0, 

(3.4) lim Ttf = TJ for every/ Ç i f„ , s è 0. 

We also assume that 

(3.5) H7VIL ^ H/IL for e v e r y / € i f , H i f „ , / £ ( ) . 

We wish to prove that (1.1) holds for a n y / £ «êf̂ . Before proceeding, we 
establish some well-known facts about 

J Tsf(x)ds. 
o 

Fix a ^ 0 , / e ~â?*(X, J^ , M). Define 

(3.6) £*(*,*) = Tka/nf(x) for *a/w ^ / < (* + l)a/nf 

x Ç. X, k = 0, . . . , n — 1. Thus g7* is defined on [0, a) X X. Since the map 
t —» 7 \ / is a continuous map mto J£v{dn), it is easy to see that there exists a 
function g on [0, a) XX such that 

(3.7) gn->g m&v(dt X d/i) as » - > o o . 

For a subsequence ŵ  we have gnj(t, x) —-» g(/, x) a s / —* oo , for almost every 
(/, x). Thus for almost every /, gn]'(t, x) —» g{t, x) as j —» oo , for almost every x. 
However, considered as a function in <ifp(d/z)> it is clear that gni(t, • ) —• Ttf 
in J*f v (dp) as / —-> oo , for every /. Hence 

(3.8) g{t,x) = Ttf(x) for almost every (/, x). 

Thus g does not depend on our interval [0, a) , and we can define g on [0, co ) 
XX. 

Returning to a finite interval [0, a) , we can choose our subsequence tij such 
that gnj(t, x) —> g(t, x) as j —* oo for almost every (/, x), and such that 
T,j\\gni - g\\v < oo. Let r = |g| + ]C,|g»/ - g|. Then ||H|„ < oo and \r\ è | f l 
for all / . For almost every x, r( • , x) will have finite .if^d/)-norm, and hence 
finite <if i(^)-norm. Also, for almost every x, gn'*(£, x) —> g(t} x) as j —> oo for 
almost every £. Hence, by Lebesgue's dominated convergence theorem, 

(3.9) I gnj(/, x)dt -> I g(t,x)dt a s / -> co , 
• / 0 " 0 
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for almost every x. But clearly 

(3.10) f* gnj(f,.)dt-+ faTtfdt inifp(dM) 
Jo Jo 

as j —* oo . Thus 

(3.11) J g(t, x)dt = J Ttfdt(x) 

for almost every x. We define 

Ttf(x)dt= I g{t,x)dt, 
0 «/ 0 

for any a ^ 0. The point of this definition is that the left hand integral is a 
continuous function of t> for almost every x. 

For future use we note that the sequence tij appearing in (3.9) can clearly 
be chosen to be divisible by any fixed integer, and the proof of (3.9) shows 
that for almost every x 

/

•& /»& 

gnj(t,x)dt-> I Ttf(x)dt 
o Jo 

for all b ^ a. 
LEMMA 3. For any f G ££v, 

1 f ' 
(3.14) limsup 7 I Tsf(x)ds 

t-^0 \ t J 0 

for almost every x. 

=§5|/(x) | 

Proof. Let E be a set of finite positive measure, and fi a positive number 
such that 

I 1 f 
(3.15) lim sup - I Tsf(x)ds 

t->o \ t J o *->o 

We must show that 

^ 5/8 on E. 

(3.16) \f(x)\ ^ 0 for almost all x G £ . 

Clearly we may assume that 

(3.17) | / (*) | ^ /3 for a l l* in E. 

Define 

(3.18) S,(x) = C6fl(/(*), y J 7V(*)<fcJ for* G £ . 

By the continuity of Csp we see that S*(x) is measurable on [0, oo ) X E 
and St(x) is a continuous function of / for almost every x G E. 
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It is easy to see that we can find a measurable function 5 defined on E, such 
that 

(3.19) ISO)| = 5/3 forx G E, 

and such that for almost every x G E there exists a sequence tj} tj —» 0 as 
j ~-> oo , with 

(3.20) S(x) = lim Stj(x). 

Let e > 0 be given. We will now introduce some notation to clarify the 
remainder of the proof. Let h stand for a function in ^£ v, appearing in this 
proof. In general there will be many ways of choosing the function for which 
h stands. It may, for example, depend on the choice of e, or on subsequent 
choices. Let us regard all choices made in the proof prior to the choosing of e 
as fixed. Then if hi and h2 stand for functions appearing in this proof, we will 
write 

(3.21) hi = h2, 

if there exists one function a(e) such that 

(3.22) \\h! - h2\\p ^ *(e) 

for all possible choices of hi, h2, and e, and 

(3.23) (r(e)->0 a s 6 - > 0 . 

Let a positive integer I be chosen, with I > l/e. Let a positive number <5 
be chosen, such that for every t f± (I + 1)5 we have 

(3.24) ||(7 - r f ) / | | p < e, ||(7 - Tt)Cfi(P,f)\\p < e, 

and ||(7 — T t)h\\p < e, where h(x) = Cp(f,S)(x) —fix) for x G E, h(x) = 0 
for x G E. We note that (3.24) can be rewritten as 

(3.25) TJ^f, TtCfi(0,f) = C,(0,f), Tth = h, 

for/ ^ (/ + 1)0. 
Since St(x) is a continuous function of / for almost every x G E, we can find 

a set Ei Ç E with n(E — Ei) < e, and a positive integer n such that for any 
x G Ei, an integer k exists, 1 ^ k ^ n, with 

(3.26) |S*5M(x)| > 4/3 

and 

(3.27) |Q( / (x) ,S(*) ) - Q(J(x),SkS/n(x))\ < «. 

By (3.18) we see that for each x £ £1, an integer k exists, 1 ^ & 5S w, with 

(3'28) | W/n) ST T'f(x)dt I > ̂  
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and 

By (3.13) we can choose a sequence nj —> co such that each nj is a multiple 
of n, and such that for almost every x £ Ei 

< 2e. 

nkh In f*kh/n 

(3.30) J gwy (/, x)dt -> J Ttf(x)dt, 

for fc = 1, . . . , w. Here gWi(/, x) is defined to be Tmnj{x) for iô/w^ ^ / < 
(i + 1)8/rij, i = 0, . . . , tij — 1. 

It follows that for some ŵ  = N that there exists a set H Ç £x , /x (£x — i7) < e, 
such that for each x Ç H an integer & exists, 1 ^ & ̂  n, with 

(3.31) 

and 

i/w) Jo (*ô/«) 
r(/, x ) ^ > 3/? 

Q(f{x), S(x)) - C0(f(x)), ^ y J o gN(t, x)dt (3.32) 

For each x d H, let 

< 3e 

R(x 
-i fkh/n 

x)dt, 

where k is chosen as in (3.31) and (3.32). 
Let T = T§ln. Since N is a multiple of n, it is easy to see that for each 

x G H there exists an integer j , 0 ^ j ^ N, with 

(3.33) U(*) = r ^ - r É T4/(x). 
J T -l i=o 

We now apply Lemma 2 from section 2 to obtain functions d±, . . . , <î v, 
g on X such that (2.8)-(2.11) hold. 

Define the operator W by 

IN—l 

(3-34) I f ^ g n 

Z as denned just before (3.24). Using (2.8), it follows easily that 

(3.35) \\w(z TN-ldt- f ) dt)\ ^~^m(E)1/p. 
II \ t= l i=l / Up * 

Thus 

(3.36) W E î ^ " ^ < = W £ <** 
AT 

E 
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By (2.10) 

(3.37) WT,d, + Wg= W(T»f - TNCe(0J )) ^ / - C,(0,/ ) by (3.25). 

By (2.11) 

N 

(3.38) 2 di = Ai. 

where Ai(x) = C${f(x), R{x)) — f(x) for # £ i f and &i(x) = 0 for # Ç? if. 
By (3.32), Ai = h, where A is defined as in (3.25). Thus 

N 

(3.39) Wj^di^Wh^h. 
2 = 1 

From (3.37) and (3.39) we obtain 

(3.40) Wg=f-Ce(0,f)-h. 

B u t / — Cp(0,f) and A have disjoint supports by the definition of h, while 
||Wg||„ ^ ||/— C^(0,/)||p by (2.10). Since h does not depend on e, we must 
have ||A||j, = 0. This proves (3.16) and completes the proof of Lemma 3. 

Proof of Theorem 1. Let V be the collection of elements/ in ££v such that 
(1.1) holds. V is obviously a linear space. It follows easily from Lemma 3 
that V is closed in the norm topology. For a n y / Ç jSfp, we can find a sequence 
L —> 0 such that 

W o 
7 V ( x ) ^ G F 

for each n. (This is Lemma 1 in [4], a generalization of Lemma 2 in [2].) Hence 
V is dense inifp , and hence V = ££v. This proves Theorem 1. 

4. Proof of Theorem 2. Let F = [0, oo) X X. Let ^ be the usual product 
cr-algebra, and let dv = dt X d/i. For any bounded operator T on J^P(X, ^ , JU), 
define T o n i ? p ( F , ^ , „) for a n y / in i f „ ( F , ^ , n) by 

(4.1) Tf(t,x) = r/,(x), 

where /*(x) is the function on X defined by ft(x) = f(t, x). This defines 
Tf(t, x) for almost every (t, x). It is a straightforward matter to show that 
Tf G i f p ( F , â^, i0, and that ||7*||p S \\T\\P. Given a strongly continuous one-
parameter semi-group {Tt} (i.e., {Tt} satisfying (3.1)-(3.4)) it is easy to 
see that {Tt] is also a strongly continuous one-parameter semi-group of 
contractions o n i f p ( F , & ,v). 

Define the shift operator A t for / in i f p ( F , ^ , y) by 

(A 2) A*f(s> x) = / ( 5 ~~ *» x ) f o r 5 = * » 
^ ; 4 </(*,*) = 0 for 5 < /. 
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{At} is clearly a strongly continuous one-parameter semi-group. Clearly 
A tTs = TSA t for all /, s. 

Now let h be a measurable function on F satisfying (i) and (ii) of Theorem 2. 
Define the operator Ut onJ£p(Y, &, hvdv) as follows: 

(4.3) Utg = (l/h)A tTthg for any g Ç i f p ( F , ^ , * ^ ) . 

It is easy to verify that { Ut} is a semi-group, since A t and Tt commute. Let 0 
be the map from Jfv(Y,&,v) onto &P(Y,&, hpdv) defined by Of = f/h. 
Since 0 is an isometry, and Ut = M tTfi~l, it follows that {£/*} is a strongly 
continuous one-parameter semi-group of contractions on<j£fp(F, ^ , hvdv). 

Finally we see that because of condition (ii) of Theorem 2 we have 

(4.4) \\Utg\\œ ^ \\g\\œ for each g i n i ? , ( F , S?, ft*<fo) n^œ(Y, &, h*dv). 

By Theorem 1, we have 

1 f " 
(4.5) lim - I Usg(t, x)ds = g(t, x) 

«_>0 Où J 0 

for almost all (£, x) in F. 
Fixfm^p(X, #~, M). Define g i n ^ p ( F , ^ , hpdv) by the equation 

(4.6) g(t, x) = j ^ y / ( * ) . 0 ̂  / < 6, 

g(/, x) = 0, / ̂  b, for some fr > 0. 
Then for a fixed (/,#), 0 ^ £ < 6, and any s ^ t, we have 

i/*g(*» x) = h,t ,AsTshg(t, x) 

(4.7) =-L-TM-s,x) 

= ZW. 
h(t,x) ' 

Hence 

(4.8) I Usg(t,x)ds = — ' - r I Tsf(x)ds Îor0^t<b,a^t. 
Jo flytj X) J o 

For almost every x, (4.5) holds for almost every t. For such an x and such a 
/, 0 < t < by we have 

This is (1.1), so Theorem 2 is proved. 
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