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A CONSTRUCTION IN GENERAL RADICAL THEORY 

AUGUSTO H. ORTIZ 

1. Introduction. Given an arbitrary associative ring R we consider the 
ring R[x] of polynomials over R in the commutative indeterminate x. For each 
radical property 5 we define the function S* which assigns to each ring R 
the ideal 

S*(R) =S(R[x]) HR 

of R. I t is shown that the property SA (that a ring R be equal to S*(R)) is a 
radical property. If S is semiprime, then SA is semiprime also. If 5 is a special 
radical, then SA is a special radical. SA is always contained in 5. A necessary 
and sufficient condition that 5 and SA coincide is given. 

The results are generalized in the last section to include extensions of R other 
than R[x], One such extension is the semigroup ring i?[4], where A is a semi­
group with an identity adjoined. Hence one may consider polynomial rings 
in several indeterminates which need not commute with each other. 

This work was motivated by the papers of Amitsur [2] and McCoy [4; 5]. 
For the terminology used the reader may refer to [3]. 

2. Preliminaries. A radical property S will be said to be inherited by ideals 
{subrings) if every ideal (subring) of an ,S-ring is itself an 5-ideal (5-ring). 
By a subring of invariants of R we shall mean a set {a Ç R\ ah = a], where h 
is some endomorphism of R. Correspondingly, there are properties which are 
inherited by subrings of invariants ; e.g., quasi-regularity. 

We will say that a radical property 5 is semiprime [6] (or a Z-property [1]) if 
for all rings R, S(R) is a semiprime ideal of R. 

We shall make use of some results of McCoy [4; 5]. If P is an ideal of R, 
then there exists an ideal P' of R[x] such that R[x\/P' ^ R/P, P' C\ R = P, 
and P[x] C Pf. Clearly if P is prime, then P' is prime. If P is primitive, then 
P' is primitive. If Q is any prime ideal of R[x], then Q H R is a prime ideal 
of R. We cannot have a similar result for primitive ideals, for then we would 
have J(R) C J(R[x]) r\ R, where J is the Jacobson radical property. But 
J(R[x])nR is contained in the nil radical N(R) of R. (See [2, p. 357, 
Lemma 3J].) Thus we would have J = N, a. contradiction. 

3. Main results. 
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THEOREM 1. If S is a radical property, then the property SA (that a ring R be 
equal to S*(R)) is a radical property. For all rings R, SA(R) (ZS*(R). If 
S*(S*(R)) = S*(R), then SA(R) = S*(R). 

Proof. If h is a homomorphism of R such that ker h C S* (R), then h may 
be extended to a homomorphism h' of R[x] such that 

ker V = (ker h)[x] C 5*(P)M = S*(R) • R'[x] C S(R[x]) • R'[x] = S(R[x]), 

where Rl is the usual ring with identity in which R is embedded as an ideal. 
Since S is a radical property, S(R[x]h') = (S (R[x]))h'. Intersecting with Rh 
we obtain S*(Rh) = S*(R)h. In particular, every homomorphic image of an 
SA-ring is an 5A-ring. 

If I is an ideal of any ring R, then S(I[x]) C 5(P|Y]) [3, p. 125, Corollary 1] 
and we have S*(I) C S*(R). Hence, if R is not an SA-ring, then R/S*(R) is 
a non-zero homomorphic image of R without non-zero ^- ideals . For if I/S* (R) 
is an SA-ideal of R/S*(R), then 7/5*(R) = S*(I/S*(R)) C ^ W 5 * ( i ^ ) ) = 0. 

Therefore SA is a radical property [3]. Since S*(R) contains all 5^-ideals of 
R, SA (R) C S*(R). The rest is clear. 

THEOREM 2. SA ^ S for all radical properties S. 

P/oof. By the results of McCoy stated above, there exists an ideal P' of 
R[x] such that R[x]/Pr

 9ÉR/S(R) and P' C\ R = S(R). Hence R[x]/Pf is 
5-semisimple and P' D S(R[x]). Intersecting with R, S(R) D S*(R). There­
fore SA ^ vS. 

THEOREM 3. If S is a semiprime radical property, then SA is again a semiprime 
radical property. 

Proof. If R is a zero ring, then R[x] is a zero ring. Hence S(i?[x]) = R[x] 
and S*(R) = R. Therefore R is an SA-nng. 

THEOREM 4. If S is a radical property which is inherited by ideals (subrings, 
subrings of invariants), then SA is also inherited by ideals (subrings, subrings of 
invariants). 

Proof. If S is as described and T is an ideal (subring, subring of invariants), 
then 5* (R) C\ T CS*(T). 

LEMMA 5. If Pf is a semiprime ideal of R[x] such that R[x]/Pf is S-semisimple, 
thenS*(R/(Pf C\R)) - 0. 

Proof. Let P = P' C\ R. Then P[x] • R[x] C P' and since P' is semiprime, 
P[x] C P'- If h is the natural homomorphism of (R/P)[x\ onto R[x]/Pr and 
if a + P G S*(R/P) C S((R/P)[x\), then 

a + Pr = (a + P)A G SCRM/P') = 0. 

Hence a ê P and S*(R/P) = 0. 

THEOREM 6 . 7 / 5 w special, then SA is special. 
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Proof. If T is the intersection of all ideals P of P for which R/P is prime 
and 5A-semisimple, then SA(R) C T. On the other hand, if P' is an ideal of 
R[x] such that R[x]/Pf is prime and S-semisimple, then S*(R/{P' C\ P ) ) = 0. 
Hence R/ (P' D R) is prime and SA-semisimple. Therefore 

S*(R) = n{Pf H R\ R[x]/P' is prime and 5-semisimple} D T. 

Since r is an ideal, S*(R) HT C S*(T). Hence T C S*(P) and T is an 
SA-ideal. 

Amitsur has shown [2, Lemma 2J] that if S is a semiprime radical property 
which is inherited by subrings of invariants, then S(P[x]) = S*(P)[x]. In 
this case, 5*(2?) C S(R[x]) = S(S(R[x])) = S(S*(P)[x]). Hence S*(P) is an 
5A-ideal and S*(R) = SA(R). He has also shown that if 5 is such that R[x] 
is an 5-ring whenever R is an 5-ring, then S = SA. Conversely, suppose that 
S = SA. If R is an 5-ring, then R[x] = S(R)[x] = 5*(i?)M C S(22[*]). Hence 
R[x] is an 5-ring. 

4. Generalizations. Let ' denote a function from the class of all rings into 
itself such that for each ring R, R is a subring of R' and suppose t h a t ; satisfies 
the following condition for all rings R: 

(P.l) Every homomorphism h of R may be extended to a homomorphism hf 

of R' such that R'h' = (i?A)' and 

ker A' = (ker/^)r C (ker A) • (i?1)'-

If 5 is a radical property and if one defines 

S*(R) = S(R')nR, 

then Theorem 1 is valid. If P* is a semiprime ideal of Rf and if P is an ideal 
of R such that P C P*, then P r C P*. If 5 is hereditary, then 

5 * ( P ) n / C 5 * ( / ) 

for any ideal loi P , and hence5A is hereditary. If ' satisfies the further property: 
(P.2) If P* is a prime ideal of R', then P* H P is a prime ideal of P , 

then Lemma 5 (modified) holds, and SA is special whenever S is special. SA is 
semiprime when 5 is semiprime if the following property is satisfied (indepen­
dently of (P.2)): 

(P.3) If P is a zero ring, then P ' is a zero ring. 
In particular, one may take P ' to be the semigroup ring P[^4], where A is 

a semigroup with an identity adjoined; i.e., ab = 1 if and only if a = b = 1. 
It is easy to see that R[A] satisfies conditions (P.l) , (P.2), and (P.3). 
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