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SUMMARY

As influenza vaccination is now widely recommended, randomized clinical trials are no longer
ethical in many populations. Therefore, observational studies on patients seeking medical care
for acute respiratory illnesses (ARIs) are a popular option for estimating influenza vaccine
effectiveness (VE). We developed a probability model for evaluating and comparing bias

and precision of estimates of VE against symptomatic influenza from two commonly used
case-control study designs: the test-negative design and the traditional case-control design.

We show that when vaccination does not affect the probability of developing non-influenza ARI
then VE estimates from test-negative design studies are unbiased even if vaccinees and non-vaccinees
have different probabilities of seeking medical care against ARI, as long as the ratio of these
probabilities is the same for illnesses resulting from influenza and non-influenza infections. Our
numerical results suggest that in general, estimates from the test-negative design have smaller bias
compared to estimates from the traditional case-control design as long as the probability of
non-influenza ARI is similar among vaccinated and unvaccinated individuals. We did not find
consistent differences between the standard errors of the estimates from the two study designs.
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INTRODUCTION

Estimation of influenza vaccination effectiveness
(VE) is challenging for the following reasons: (a)
Predominant influenza virus types, subtypes and pheno-
types change from one season to the next, necessitating
a new vaccine targeting different strains in most sea-
sons. As a result, VE has to be re-estimated in every
season. (b) Influenza vaccination is now recommended
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for every person aged >6 months in the USA and
many other countries have broad recommendations,
making randomized, placebo-controlled clinical trials
unethical. Observational studies therefore often be-
come the only option. (¢) Confounding and bias are
often present in these observational VE studies. (d)
It is not easy to find all or most influenza patients in
a given community, as symptoms are usually not
severe and many patients do not seek medical care
to alleviate them. (e) Symptoms of influenza are non-
specific; hence many patients who develop an acute
respiratory illness (ARI) are not infected with an
influenza virus. (f) Special laboratory tests are
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required to confirm influenza infection, and these tests
are not 100% sensitive and specific, causing misclas-
sification bias. Vaccination status may also be misclas-
sified. For all these reasons, observational studies to
estimate influenza VE have to be designed very care-
fully to avoid, or at least to minimize, the various
sources of bias.

In this article we evaluate and compare two com-
monly used case-control study designs for estimating
VE against seasonal or pandemic influenza illness. In
both study designs, individuals who report to a
clinic, or to a member of a network of clinics, be-
cause of an ARI and test positive for an influenza
virus are considered cases. In the (ordinary) case-
control design (CCD), a control is an asymptomatic
person randomly selected from the source population
when a case is identified. In the fest-negative design
(TND), ARI patients who test negative for an
influenza virus serve as controls. The TND [1, 2] is
relatively new and has become very popular because
(a) it is more convenient and (b) it accounts for bias
resulting from differences in the propensity of seeking
medical care. However, the accuracy of influenza VE
estimates resulting from this study design has not
been evaluated while accounting for all potential
sources of bias. In addition, we are not aware of
any study comparing these two case-control designs
side by side.

Below we present a summary of the main sources of
bias in influenza VE estimates from case-control
studies.

(a) Ascertainment of cases (selection bias). A person
who develops an ARI may or may not seek medical
care. In both CCD and TND studies, only persons
seeking medical care for ARI can be tested and be con-
sidered cases. This subset of cases who seek care for
ARI may not be a representative sample of all cases.

(b) Confounding by propensity of seeking medical care.
The likelihood of seeking medical care may be related
to a person’s vaccination status, as vaccinated indivi-
duals may be more health conscious so that their
probability of seeking care for ARI may be different
from that of unvaccinated persons. In CCD studies,
only persons seeking medical care for ARI can be con-
sidered cases, while controls are selected from the entire
population. This may confound the association be-
tween vaccination status and being considered a case
and result in underestimation of VE. This source of
confounding bias is avoided in TND studies, as both
cases and controls are persons seeking care for ARIL
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(¢) Probabilities of non-influenza ARI may depend on
vaccination status. In TND studies, individuals with
non-influenza ARI serve as controls. Therefore, the
TND may produce biased estimates of VE unless vac-
cinees and non-vaccinees are equally likely to develop
non-influenza ARI. The validity of this assumption
has not yet been confirmed. On one hand, De Serres
et al. [3] used data from randomized clinical trials
(RCTs) to argue that this assumption is usually
satisfied. On the other hand, a recent randomized
influenza vaccine trial [4] found that vaccinees had a
significantly increased risk of virologically confirmed
non-influenza infection (that may lead to ARI) com-
pared to those who received placebo.

(d) Other confounders. Confounders such as health
status, age, exposure, education, socioeconomic sta-
tus, may be associated with both the likelihood of
being vaccinated and the likelihood of becoming
infected, developing ARI and seeking medical care.

(e) Misclassification bias. As already mentioned, even
the best diagnostic tests for influenza viruses are not
100% sensitive and specific. Vaccination status may
also be misclassified.

The goal of this article is to evaluate and compare the
bias and precision of VE estimates resulting from
TND and CCD studies when the outcome of interest
is symptomatic influenza. Specifically, we will (@)
evaluate the bias of each of the VE estimates by com-
paring the expected value of the estimate with the true
VE, and (b) evaluate the standard errors of the VE
estimates as functions of the total sample size. To con-
duct these evaluations and comparisons we developed
a detailed stepwise probability model of the process
involved in collecting data in these studies and obtain-
ing VE estimates. The model will allow us to derive
both general and numerical results under different
scenarios.

METHODS

We first describe the real-life process involved in con-
ducting the two types of studies and obtaining the esti-
mates of VE. We then describe the model we develop
to mimic this process.

The study population

The source population for both types of case-control
studies consists of all individuals receiving most of
their medical care at a single clinic or at a specific
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network of clinics. Since influenza VE varies by age,
we can assume that the model pertains to a subpopu-
lation corresponding to a single age group.

The study designs

When a member of the study population develops an
ARI, s/he may decide to report to a clinic for treat-
ment. At the clinic, the healthcare provider may ask
the person to be tested for influenza viruses. If the per-
son agrees then a swab is taken and sent to a labora-
tory for testing. In both study designs, a person who
tests positive is eligible to be considered a case. In a
TND study, an individual who tests negative is eligible
to be considered a control. In a traditional CCD
study, controls are individuals who have not devel-
oped ARI prior to their inclusion in the study.
Usually, one or more controls are selected immedi-
ately after a case is identified. In both study designs,
the vaccination status of every case or control was de-
termined from manual or electronic records.

Outcome of interest and true VE

In this work we evaluate estimates of VE against
symptomatic  influenza, sometimes also called
‘influenza illness’. A person is considered a true case
of symptomatic influenza if s/he has ARI and is
infected by an influenza virus. The true VE is
defined as 1 minus the ratio of the probability of
this outcome in vaccinees and non-vaccinees.

Estimation of VE and bias of VE estimates

We only consider estimates of VE that are not
adjusted for possible confounders. In case-control stu-
dies, VE is usually estimated as 1 minus the odds ratio
(OR) of being vaccinated in cases vs. controls. The
bias of the estimate is defined as the difference be-
tween the expectation of the estimated VE and the
true VE.

The model

The model we developed for comparing the estimates
from the two study designs follows the scheme de-
scribed above with a few simplifications. We assumed
that (a) when a person seeks medical care for ARI
then her/his probability of being tested for influenza
viruses does not depend on vaccination status or on
the actual cause of ARI (influenza/non-influenza),
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(b) given a person’s symptoms and influenza infection
status, the sensitivity and specificity of the test do not
depend on the tested person’s vaccination status or on
the probability that s/he seeks medical care for ARI,
(¢) a person’s vaccination status is determined without
error, and (d) controls in a CCD study are selected at
random from all asymptomatic individuals who re-
ceive their medical care at the facilities enrolling cases.
Our model consists of four steps, where the value of a
single variable is determined at each step. The distri-
bution of this variable may depend on the values of
the variables from the previous steps. Below we define
the four steps, the associated variables and the prob-
abilities determining each variable’s distribution.

Step 1: Vaccination. A person may be vaccinated against
influenza. We define a binary variable V, where V=1 for
a vaccinated person, and denote a = P(V'=1).

Step 2: Infection and ARI. During the influenza season,
a person may become infected with an influenza virus.
Both influenza infected and uninfected individuals
may develop an ARI. Since our outcome of interest
only involves symptomatic individuals, we ignore the
influenza infection status of asymptomatic persons.
We therefore define a variable E for the illness/infec-
tion status with three categories as follows: £ =0 indi-
cating no ARI, E=1 for ARI without influenza
infection (i.e. an ARI resulting from a different patho-
gen), and E = 2 for ARI and influenza infection (symp-
tomatic influenza). Since the distribution of £ depends
on the vaccination status, V, we denote 5, = P(E= 1|V
=v), v, = P(E=2|V=v) for v=0, 1 with g, + y, < 1.
Here we assume the ‘leaky vaccine’ model [5], where
a vaccinee has a lower probability of becoming
infected than a non-vaccinee. We also developed an
alternative model assuming that the vaccine has an
‘all-or-none’ effect [5], i.e. some of the vaccinees are
completely protected against infection while the vac-
cine does not reduce the susceptibility of the remaining
vaccinees.

Step 3: Seeking medical care for ARI. A person with
ARI may seek medical care and in this case s/he is
tested for influenza viruses. We define a binary vari-
able M, with M =1 for a person seeking medical
care for her/his ARI. The probability of this event
depends on E (only individuals with an ARI seek
medical care), and it may be different for ARI patients
with and without an influenza infection. In addition,
the conditional distribution of M given E may depend
on V to allow confounding due to the fact that a
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vaccinated person may be more or less likely to seek
medical care compared to an unvaccinated person.
We therefore define

Oow=PM=1|E=e, V=v) fore=1,2 and v=0, 1,

(note that P(M =1|E=0)=0.)

Step 4: Testing for influenza viruses. Although only
individuals who seek medical care for ARI are tested
for influenza viruses, it will be convenient to define a
binary variable 7 as the (possibly unobserved) test re-
sult for any person with an ARI, regardless of whether
or not s/he is actually tested. Therefore we define 7= 1
(T'=0) if a person would test positive (negative) for
influenza if tested. Because of assumption (b) above,
the probability of testing positive given the person’s
influenza infection status does not depend on J and
M. We therefore denote 7,= P(T=1|E=¢) for e=1, 2.
Note that 7; is 1 minus the test’s specificity and 7, is
the test’s sensitivity in persons with ARI.

Our model has a total of 11 parameters (Table 1),
which specify the conditional distribution of each
variable in terms of the values of the variables deter-
mined in the previous steps. The true VE against
symptomatic influenza is VEr=1 — RRy, where

RRy = P(E =2|V = 1)/P(E = 2|V = 0) = y, /5.

Estimates of VE in our model

As stated earlier, the estimate of VE from a case-
control study is 1 — OR in the CX V' table corre-
sponding to the individuals included in the study,
where C is a binary indicator of case/control status
with C=1 for a case. For convenience, the TND
and CCD studies will be represented by the letters
A and B, respectively.

In a TND study, the case/control variable is denoted
Cy, where {C,=1}={M=1,T=1} and {C,=0} =
{M=1, T=0}. Then the estimate of VE is: VE, =
1 — OR 4, where

OR,
_P(Cy=1,V=1M=1)-P(Cy=0, V=0[M=1)
T P(Cy=1,V=0M=1)-P(Cy=0, V=1M=1)

Note that all the probabilities are conditional upon
M =1 as only individuals who seek medical care for
ARI can be included in the TND study.

In a CCD study, the case/control variable is denoted
Cp. Cases are defined in the same way as in the
TND study, i.e. {Cpg=1}={M=1,T=1}={C,=1}.
Controls are individuals included in a random sample
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drawn from all the asymptomatic individuals. In other
words {Cp =0} isarandom subset of { £ = 0}. In addition
we define a binary variable B indicating whether or not
a person is included in the CCD study, ie. {B=1}=
{Cg=1 or Cp=0}. The VE estimate is based on the
odds ratio in the Cp X V' table when all the probabilities
are conditional upon B=1: VEz=1 — ORp, where

OR,
_P(Cg=1, V=1|B=1)-P(Cy=0, V=0[B=1)
T P(Cp=1, V=0B=1)-P(Cs=0, V=1|B=1)’

Note that in a real-life study, the odds ratios are esti-
mated from the relative frequencies of the corre-
sponding events, rather than from their (unknown)
probabilities. Therefore the model-based estimates
of VE defined above are actually the expected values
of the observed estimates. For convenience we will
continue to refer to them as ‘the VE estimates’. As
stated earlier, the bias of an estimate is the difference
between the expected value of the estimate and the
true VE. In Supplementary Appendix 1 we derive
general expressions for the bias of the VE estimates
from each study designs in terms of the model’s
parameters.

Standard errors of the estimates

In Supplementary Appendix 3 we use approximations
based on the ‘Delta method’ to the standard errors of
odds ratios [6] to derive expressions for the standard
errors of both VE estimates in terms of the parameters
and the corresponding sample size(s). For evaluating
the standard errors we consider the observed odds
ratios, where the probabilities are replaced by the
observed relative frequencies.

Determining the values of the parameters

We distinguish between biological and non-biological
parameters. The biological parameters are the prob-
abilities of non-influenza and influenza ARIs in non-
vaccinees and vaccinees, i.e. By, B1, 7o, 71. We used
data from RCTs from a recent review paper [7] and
other sources. We found five publications where the
numbers of vaccinated and unvaccinated RCT partici-
pants who developed ARI with and without influenza
infection could be determined. In all these RCTs,
influenza infection was confirmed via culture or RT-
PCR. From these publications we identified a total
of 14 comparisons of an active influenza vaccine and
a placebo in a specific influenza season, as some of
the publications included RCT data from more than
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Table 1. Notation used in this paper

Symbol Definition Values
14 Vaccination status 0 —unvaccinated
1 — vaccinated
E ARI and influenza infection status 0—-no ARI
1 — ARI, not infected
2 — ARI, infected
M Seeking medical care for ARI 0-no
1—yes
T Result of test for influenza infection 0 — negative
1 — positive
Cy Case/control status in TND study 0 — control
1 —case
Cp Case/control status in CCD study 0 — control
1 —case
B Participating in CCD study 0-no
1 —yes
a Probability of being vaccinated (vaccine coverage) 0-3-0-7
By Probability of non-influenza ARI for a person of See Table Al in the Supplementary
vaccination status v Appendix
P =B/ Ratio comparing vaccinees and non-vaccinees w.r.t.
probability of non-influenza acute respiratory
disease (ARI)
Yy Probability of influenza ARI for a person of See Table Al in the Supplementary
vaccination status v Appendix
Py =11/% Ratio comparing vaccinees and non-vaccinees w.r.t.
probability of influenza ARI
ny=1—=FB+p) Probability of not having ARI for a person of
vaccination status v
Py = M1/Mo Ratio comparing vaccinees and non-vaccinees w.r.t.
probability of no ARI
Oey Probability of seeking medical care for ARI for a 0-2-0-5
person of illness/infection status e and vaccination
status v
Ps, = 011/010 Ratio comparing vaccinees and non-vaccinees w.r.t.

Ps, = 021/020

05 = ps,/ps,

Te

probability of seeking care for non-influenza ARI
Ratio comparing vaccinees and non-vaccinees w.r.t.
probability of seeking care for influenza ARI
Ratio of the two ratios defined above
Probability that a person of illness/infection status e
tests positive for influenza viruses

0.00 < 7; £0.05,095 <7, <1.00

ARI, Acute respiratory illness; TND, test-negative design; CCD, case-control design; w.r.t., with respect to.

one season or RCTs with more than one active
vaccine. For each of the comparisons we obtained
estimates of the four biological parameters from the
numbers of influenza and non-influenza cases of
ARI in vaccinees and non-vaccinees. A list of these
comparisons and the corresponding observed frequen-
cies and estimates of the biological parameters is pre-
sented in Supplementary Appendix 2.

Regarding the non-biological parameters, the pro-
portion of vaccinees («) does not affect the bias of
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any of the VE estimates; however it affects their stan-
dard errors. According to the most recent Centers for
Disease Control and Prevention (CDC) publication
[8], influenza vaccine coverage in the USA in the
2011-2012 season ranged between 30% and 70%.
The probability of seeking medical care for ARI has
been estimated to be between 0-20 and 0-50 [9]. We
used 0-30 as the baseline value of this probability for
unvaccinated non-influenza ARI cases. We then allowed
the probability of seeking medical care to be higher or
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lower for vaccinated cases and for influenza-infected
ARI cases. The sensitivity and specificity of the test
for influenza viruses were assumed to range from 95%
to 100% (J. M. Ferdinands, unpublished data). A list
of all the model’s parameters, their values and other no-
tation is provided in Table 1.

RESULTS

The results under the leaky vaccine model and the
all-or-none model were identical. We now introduce
additional notations that will be helpful for the pres-
entation of the results (see Table 1 for a full list of
the notations used in this paper). First, we define
a few probability ratios comparing vaccinees and
non-vaccinees: pg = f1/Bo, p, = 1/Y0s Ps, = 011/010,
ps, = 021/02. In addition we denote the probability of
not having ARI by n,=1— (8, +7,)=P(E=0|V=yv),
v=0, 1, and define p, = 5,/n,. Finally, we define the
cross-product ratio 05 = 610021/011620 = ps,/ps, -

Next, we introduce three assumptions that will sim-
plify the interpretation of both the algebraic and the
numerical results:

Assumption 1 (Al). The influenza test has perfect sen-
sitivity and specificity, i.e. 71 =0, 7, = 1.

Assumption 2 (A2 ). The probability of non-influenza
ARI is independent of vaccination status, i.e. f§,=
P(E = 1|V =v) does not depend on v, or o = f5;. As we
stated in the Introduction, this assumption is essential
for the validity of VE estimates from TND studies as
persons with non-influenza ARI serve as controls in
these studies.

Assumption 3 (A3). The vaccine-related relative
increases or decreases in the probability of seek-
ing medical care for ARI are the same for ARI
patients with and without influenza infection, i.e.
011/610 = 021/d20, Wwhich is equivalent to ps =ps,.
While this assumption allows the probability of seek-
ing medical care for ARI to depend on vaccination
status and type of infection (influenza or non-
influenza), the ratio of these probabilities between vac-
cinees and non-vaccinees does not depend on the type
of infection leading to ARI. We will refer to this as-
sumption as ‘homogeneity of the probability ratios’
of seeking medical care for ARL

Table 2 presents algebraic expressions for the bias
of the VE estimates from the two study designs
under three combinations of the above assumptions.
These expressions for the bias can be easily derived
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Table 2. Bias of vaccine effectiveness estimates under
various assumptions*®

Assumptions*  Test-negative design Case-control design
AlLA2,A3 0 pl1-22
P
Al, A2 py[l—pﬁ] p| 122
pﬁ] L pl]

| -

Al Py Lo »y Lo
pﬁ pél L p)]

* See text for definitions of the assumptions.

from the general expressions given in Supplementary
Appendix 1. From the results in Table 2 we learn
that the VE estimate from a TND study is unbiased
when all three assumptions are satisfied. Note that
in this case, the probability of seeking medical care
may depend on vaccination status as long as the
homogeneity assumption holds. On the other hand,
in order for the VE estimate from a CCD study to
be unbiased one must make the additional assumption
that the vaccine does not affect the likelihood of de-
veloping ARI (p, = 1). The assumption is unlikely to
hold as long as the vaccine protects against influenza
infection which is usually associated with an increased
risk of ARI.

Numerical assessments of the bias of VE estimates

Numerical values of the bias of VE estimates based on
TND and CCD studies are presented in Tables 36 for
all the 14 comparisons of RCT participants who
received an influenza vaccine or a placebo (see
Methods section and Supplementary Appendix 2).
The bias is defined as the difference between the esti-
mated and true VE. For example, if the true VE is
0-6 (60%) and the estimated VE is 0-68 (68%) then
the bias is 0-08.

In Table 3 we consider the scenario where all three
assumption (A1-A3) are met, i.e. perfect sensitivity
and specificity, f; =fo and p;s = ps, (homogeneity of
ratios of probabilities of seeking medical care for
ARI), and we consider the bias for different values
of the common value ps of ps and ps, (ps is the
ratio, comparing vaccinees and non-vaccinees with re-
spect to the probability of seeking medical care for
ARI; under A3 this ratio does not depend on whether
the ARI resulted from an influenza or a non-influenza
infection). As expected from our general considerations
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Table 3. Bias of vaccine effectiveness (VE)
estimates under assumptions Al, A2, A3 for various
values of ps*

p(5=0'67 Ps= 1-0 Ps= 1-5
Comparison VE, VEz VE, VEz VE, VE;
1 0-00 0-08 000 001 000 -0-10
2 0-00 0-08 0-00 001 000 —0-10
3 0-00 0-15 0:00 001 000 —0-20
4 0-00 0-11 000 001 000 -0-15
5 0-00 0-03 000 000 0-00 -—0-04
6 0-00 0-09 000 001 000 -0-12
7 0-00 0-15 000 000 000 —0-22
8 0-00 008 000 000 000 -—0-11
9 0-00 026 0-00 0-00 000 -—0-39
10 0-00 0-11 0:00 001 000 —0-14
11 0-00 0-13 0-00 0-:01 000 —0-17
12 0-00 0-17 000 001 000 -—0-24
13 0-00 0-17 000 000 000 -—0-25
14 0-00 009 000 001 000 -0-11
Average bias 0-00 0-12 0-00 001 000 —0-17

Avg absolute 0-00 0-12 0-00 0:01 0:00 0-17
bias
Max abs bias 0-00 026 0-00 0-01 0-00 0-39

* We assume that the diagnostic test has perfect sensitivity
and specificity, the probability of non-influenza acute respir-
atory illness (ARI) does not depend on vaccination status
and the ratio, comparing vaccinees and non-vaccinees with
respect to the probability of seeking medical care for an
ARI does not depend on whether the ARI resulted from
an influenza or a non-influenza infection. This ratio is
denoted ps. VE, and VEjp are the VE estimates from test-
negative design and case-control design studies, respectively.
The table’s rows correspond to the comparisons of vacci-
nated and unvaccinated randomized clinical trial partici-
pants (see Table Al in the Supplementary Appendix).

above, the TND-based estimate is always unbiased
when the three assumptions are satisfied. The
CCD-based estimate has a positive (negative) bias
when vaccinees are less (more) likely than non-
vaccinees to seek medical care for ARI. Since one
would expect vaccinees to be more health conscious
than non-vaccinees, they may also be more likely to
seek care for ARI (i.e. ps > 1), hence the CCD-based es-
timate is likely to underestimate the true VE.

In Table 4 we still assume perfect sensitivity and
specificity and f; =5y but we omit the homogeneity
assumption ps = ps,. Thus, we explore the impact of
the deviation from the homogeneity assumption
(A3). As we mentioned earlier, the ps values measure
the excess ‘risk’ of seeking medical care for ARI in

vaccinees vs. non-vaccinees. Hence 05 = p; /ps,
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Table 4. Bias of vaccine effectiveness (VE) estimates
under assumptions Al, A2 for various values of 0s5*

0()‘:0'67 0(5:1'0 9(5:1'5

Comparison VE, VEz VE, VEz VE, VEg

1 0-07 001 000 —-0-10 —0-11 —0-26
2 0-07 001 000 —-0-10 —0-11 —0-25
3 0-14 001 000 —-020 —-0-21 —0-52
4 0-10 0-01 000 -0-15 -—-0-16 —-0-37
5 0-03 000 000 —-0-04 —-005 —-0-11
6 0-08 001 000 —-0-12 —-0-12 —0-30
7 0-15 000 000 —022 —023 —0-55
8 0-07 000 0-:00 —0-11 =011 —0-27
9 0-26 0-00 0-:00 —-039 —-039 -097
10 0-10 001 000 —0-14 —0-15 —-0-36
11 0-12 001 000 —-0-17 —0-18 —0-44
12 0-17 001 000 —-024 —-025 -0-62
13 0-17 000 000 —-025 -—-025 —0-63
14 0-08 0-01 000 —-011 —-0-12 —0-28
Average bias  0-12 0-01 000 —-0-17 —-0-18 —0-42

Avg absolute 0-12 0-01 0-00 0-17 0-18 0-42
bias
Max abs bias  0-26 0-01 0-00 0-39 0-39 0-97

* We assume that the diagnostic test has perfect sensitivity
and specificity and the probability of non-influenza acute
respiratory illness (ARI) does not depend on vaccination
status. 65 = p;,/p;, Where psis the ratio, comparing vacci-
nees and non-vaccinees with respect to the probability of
seeking medical care for an ARI resulting from a non-
influenza infection, and p;, is similarly defined for an ARI
resulting from an influenza infection. VE, and VEjp are
the VE estimates from test-negative design and case-control
design studies, respectively. The table’s rows correspond to
the comparisons of vaccinated and unvaccinated rando-
mized clinical trial participants (see Table Al in the
Supplementary Appendix).

compares these excess risks when ARI results from
an influenza or a non-influenza infection. The bias
of the TND-based estimate is positive (negative)
when 0, is less than (greater than) 1. Regarding the
CCD-based estimate, the algebraic value of the bias
decreases as 05 increases.

In Table 5 we examine the effect of departure from
the assumption (A2) that the probability of developing
a non-influenza ART is independent of vaccination
status, i.e. £ = fo. We still assume perfect sensitivity
and specificity of the influenza test and homogeneity
of the probabilities of seeking medical care for ARI.
Comparing VE estimate based on a TND study across
the three values of p; = f,/f,, we observe that the al-
gebraic value of the bias decreases as py increases and
that the bias is positive when ps > 1. The absolute bias
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Table 5. Bias of vaccine effectiveness (VE) estimates
under assumptions Al, A3 for various values of pg*

pp=05 pp=10 pp=20
Comparison VE, VEpz VE, VEpz VE, VEg
1 —0-22 —0-09 000 —0-10 0-11 —0-13
2 —0-21 —0-09 0-00 —0-10 0-11 —0-13
3 —043 —0-17 000 —0-20 0-21 —0-27
4 —0-31 —0-12 0-00 —0-15 0-16 —0-20
5 —0-:09 —0-04 0-00 —0-04 0-05 —0-06
6 —0-25 —0-10 000 —0-12 0-12 —0-15
7 —045 —0-19 000 —0-22 0-23 —0-28
8 —0-22 —0-09 000 —0-11 0-11 —0-13
9 —0-78 —0-36 0-00 —0-39 0-39 —0-45
10 —0-31 —0-13 0-00 —0-14 0-15 —-0-17
11 —0-37 —0-16 0-00 —0-17 018 —0-21
12 —0-51 —0-20 0-00 —0-24 0-25 —0-35
13 —0-51 —022 000 —0-25 0-25 —0-33
14 —0-25 —0-07 000 —0-11 0-12 —0-21
Average bias —0-35 —0-14 0-00 —0-17 0-18 —0-22

Avg absolute bias 0-35  0-14 0-00 0-17 0-18  0-22
Max abs bias 078 036 000 0-39 039 045

*pg = P1/By, the ratio of the probabilities of a non-influenza
acute respiratory illness (ARI) in vaccinees and non-
vaccinees. We assume that the diagnostic test has perfect
sensitivity and specificity and that the vaccination-related
ratios of probabilities of seeking medical care for ARI are
homogeneous, i.e. ps =p;. VE, and VEg are the VE
estimates from test-negative design and case-control design
studies, respectively. The table’s rows correspond to the
comparisons of vaccinated and unvaccinated randomi-
zed clinical trial participants (see Table Al in the
Supplementary Appendix).

of a TND study-based VE estimate due to unequal
probabilities of non-influenza ARI may be quite sub-
stantial, especially when pz < 1. The effect of depar-
ture of pg from 1 on the bias of VE estimates from
CCD studies is much smaller than the effect on
TND study-based estimates. Departure of p; from 1
may be a result of viral interference.

In Table 6 we examine the effects of lack of 100%
sensitivity and specificity of the influenza test. We
still assume that the probability of a non-influenza
ARI does not depend on vaccination status (8; = /)
and that the ratios of the probabilities of seeking
medical care for ARI are homogeneous. We observe
that misclassification of the test results indeed
decreases the algebraic value of the bias. Reducing
the test’s specificity from 1-00 to 0-95 has a much
more pronounced effect on the bias than a similar re-
duction in the test’s sensitivity, thus confirming the
results of Orenstein et al. [2].
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Standard errors of VE estimates

As we can see from the results in Supplementary
Appendix Table A2, the standard errors of VE esti-
mates from TND and CCD studies are usually quite
similar, with no clear rule for predicting which study
design provides more precise estimates.

DISCUSSION

We developed a model describing the process that
generates data for an observational study aimed at
estimating VE against symptomatic influenza. The pro-
cess involves four steps: vaccination, developing infec-
tion and illness, seeking medical care for ARI and
testing for influenza viruses. The bias and standard
error of VE estimates based on ordinary case-control
studies and on test-negative studies can be written in
terms of the model’s parameters. Therefore this model
facilitates the evaluation and comparison of the two
study designs in terms of their accuracy and precision.

Several models and methods for evaluating the bias of
influenza VE estimates from TND studies have been
proposed in the past [2, 3, 9—11]. The current approach
has the following advantages compared to the previous
publications: («) it accounts for more sources of bias
than any of the earlier approaches (e.g. the recent paper
by De Serres et al. [3] evaluates the bias of TND-based
VE estimates but it does not account for bias related to
different health-seeking behaviours of vaccinated and
unvaccinated individuals), (b) our model can be used to
assess the bias of VE estimates from both TND and
CCD studies, and (c) it allows the evaluation and com-
parison of standard errors of the estimates.

We found that the TND study-based VE estimate is
unbiased under the following conditions: (A1) the diag-
nostic test has perfect sensitivity and specificity, (A2)
the probability of non-influenza ARI does not depend
on vaccination status, and (A3) the ratio, comparing vac-
cinees and non-vaccinees, of the probabilities of seeking
medical care is the same for influenza and non-influenza
ARI patients. The bias of the CCD study-based esti-
mates is very small if these three assumptions hold.
When assumptions A2 and A3 hold, but assumption
A3 is violated then it may be difficult to compare the
biases of the estimates as the comparison depends on
the odds ratio 65 which is usually unknown (Table 4).
When assumption A2 is violated, i.e. the probability of
non-influenza ARI depends on vaccination status, then
TND-based estimates may be severely biased. In this
case, the bias of VE estimates from CCD studies is less
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Table 6. Bias of vaccine effectiveness (VE) estimates under assumptions A2, A3 for various values of the sensitivity

and specificity of the diagnostic test*

Se=1-00 Se =1-00 Se =0-95 Se =0-95
Sp=1-00 Sp =095 Sp=1-00 Sp =095
Comparison VE 4 VEj3 VE 4 VEj; VE 4 VEj; VE 4 VE3
1 0-00 —0-10 —0-06 -0-19 0-00 —0-10 —0-07 —0-19
2 0-00 —0-10 —0-06 —-0-19 0-00 —0-10 —0-07 —0-19
3 0-00 —0-20 —0-06 —0-30 0-00 —0-20 —0-07 —0-30
4 0-00 —0-15 —0-08 —0-26 0-00 —0-15 —0-09 —0-26
5 0-00 —0-04 —0-08 —-0-17 0-00 —0-04 —0-09 —0-17
6 0-00 —0-12 —0-07 —-0-22 0-00 —0-12 —0-08 —-0-22
7 0-00 —-0-22 —0-07 —0-33 0-00 —0-22 —0-08 —0-33
8 0-00 —0-11 —0-11 —0-26 0-00 —0-11 —0-11 —0-27
9 0-00 —0-39 —0-04 —0-44 0-00 —0-39 —0-04 —0-45
10 0-00 —0-14 —0-04 -0-19 —-0-01 —0-14 —0-05 —0-20
11 0-00 —-0-17 —0-03 —-0-22 —-0-01 —-0-17 —0-05 —-0-22
12 0-00 —0-24 —0-08 —0-36 0-00 —0-24 —0-09 —0-37
13 0-00 —0-25 —0-11 —0-42 0-00 —0-25 —0-12 —0-42
14 0-00 —0-11 —0-09 —0-24 0-00 —0-11 —0-10 —0-25
Average bias 0-00 —0-17 —-0-07 —-0-27 0-00 —0-17 —0-08 —0-27
Avg absolute bias 0-00 0-17 0-07 0-27 0-00 0-17 0-08 0-27
Max absolute bias 0-00 0-39 0-11 0-44 0-01 0-39 0-12 0-45

Se, Sensitivity; Sp, specificity.

* We assume that the probability of a non-influenza acute respiratory illness (ARI) does not depend on vaccination status and
that the ratios of probabilities of seeking medical care for ARI are homogeneous, i.e. p5, = ps,. VE4 and VEp are the VE esti-
mates from test-negative design and case-control design studies, respectively. The table’s rows correspond to the comparisons
of vaccinated and unvaccinated randomized clinical trial participants (see Table Al in the Supplementary Appendix).

affected by the possible inequality of the probabilities of
non-influenza ARI, compared to the bias estimated from
TND studies (Table 5).

In this work we considered the bias of VE estimates
without adjusting for any covariates. Both estimates are
based on odds ratios and can be adjusted for known
covariates. As we have seen, a very important potential
confounder is the propensity of seeking medical care
for influenza and non-influenza ARI. Most influenza
VE studies do not collect the information that would
allow adjusting for this confounding effect.

In order to assess the bias in a real-life influenza VE
study one has to estimate the parameters underlying
the various sources of bias. Accurate estimates of
the biological parameters can only be obtained from
carefully designed randomized studies, which are
usually expensive and unethical. On the other hand,
behavioural parameters, such as probabilities of seek-
ing medical care for ARI, can be obtained from obser-
vational studies. As suggested by our results, a high
correlation between vaccination status and the pro-
pensity of seeking medical care (e.g. older persons
are more likely to be vaccinated and to seek medical
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care) may result in substantial bias. Estimation of
this correlation should not be too difficult.

Our study has some limitations: (¢) We assumed
that every person who seeks medical care for ARI
has the same probability of being tested for influenza
viruses, regardless of vaccination status. (b) We
assumed that the test’s sensitivity and specificity does
not depend on vaccination status or on the propensity
of seeking medical care. (¢) We assumed that vacci-
nation status is determined without an error. (d) We
considered ‘symptomatic influenza’ as the only out-
come of interest as we believe that this is the most im-
portant outcome from a public health perspective.
Using different outcomes, such as ‘influenza infection’
or ‘medically attended influenza’ would affect the
results of our study (Q. An, Ph.D. dissertation). (e)
Our model does not account for the infection trans-
mission process generating cases of influenza and non-
influenza ARI. (f) All the parameters in our model re-
main unchanged throughout the influenza season. We
could eliminate the first three limitations by including
additional parameters in the model, but it would be
very difficult to determine the values or reasonable
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ranges for these parameters. In addition, including
more parameters in the model would make interpret-
ation of results more difficult. Addressing limitations
(e) and () would involve assumptions about the con-
tact and the transmission processes and about tem-
poral trends in the values of the parameters. The
transmission dynamics could have an important effect
on our results, especially in the ‘leaky vaccine’ case, as
the ratio of the incidence rates of infection comparing
vaccinees and non-vaccinee would vary over time. In
the future we plan to use a detailed agent-based stoch-
astic simulation model to evaluate the bias and pre-
cision of influenza VE estimates while incorporating
these processes and additional real-life factors.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0950268814002179.
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