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PROJECTIVE VARIETIES AND RINGS OF THETANULLWERTE
RICCARDO SALVATI MANNI

Introduction

Let r denote an even positive integer, m an element of Q% such that
r-m=0mod1 and 9, the holomorphic function on the Siegel upper-half
space H, defined by

» 9,.(2) =peZZJge((1/2) ‘(o + mHc(p +m) + (p + mHm"),

in which e(f) stands for exp (2r+/—1¢) and m’ and m” are the first and
the second entry vector of m. Let ©,(r) denote the graded ring generated
over C by such Thetanullwerte; then it is a well known fact that the
integral closure of O,(r) is the ring of all modular forms relative to
Igusa’s congruence subgroup I.(r? 2r®) cf. [6]. We shall denote this ring
by A(I(r% 2r%).

At the present the following results are known

@) 0,(r) = A(I",(r*, 2r%))

if and only if g =1,2 and r = 2 cf. [7], [8], [10]. In particular we have
that 0,(2) & A(I'\(4.8)).
Despite of this fact in [13] it has been proved that

3 Al < 042).

In view of these results we try to investigate this inclusion in higher
genus, but we found that for any g > 5 certain Eisenstein series are not
expressible as polynomials in the Thetanullwerte in 0,(2) cf. [11].

We have to recall another results of [8]. Let a be the morphism
between Proj A(I",(r?, 2r*)) and Proj ©,(r); then « is bijective if and only
if r = 2. Moreover « is not an isomorphism if g > 6. Let I', denote the
full modular group and I",(2) the main congruence subgroup; then we
put B,(2) = 0,2) N A(I"(2)), B, = B,(2) N A(I',). Clearly from a geometric
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point of view the projective varieties associated to these two rings are
very important and it would be very nice if the bijective morphisms were
isomorphisms.

But the result that we shall obtain in the first part of this paper
will contradict this. More precisely we shall get

@ a,: Proj A(I"(2)) —> Proj B,(2)
is not an isomorphism if g > 22 and
5) a,: Proj A(I",) —> Proj B,

is not an isomorphism if g > 47.

In particular we have that there exists a modular form of arbitrarily
high weight relative to I', or relative to I",(2) that is not in 6,(2). This
gives a negative answer to our final consideration in [12]. Let n be a
positive integer we denote by C,(n) the graded ring generated over C by
all polynomials in the Thetanullwerte 9,, such that 2n*-m = O mod 1 for
some k positive and integral, that are modular forms relative to I',; then
in the last section we shall prove that the projective variety associated
to Cy(n) is isomorphic to Proj A(I",), more precisely we prove that any
modular form relative to I, of even weight & with 2> 2g is in C,(n).

We wish to thank Prof. E. Freitag and Dr. S. Boécherer for helpful
and friendly discussions about these topics.

§1.

In this section we shall recall some facts about lattices. For details
we refer to [3]. First let us recall the definition of laminated lattice A,.
Let 4, be the one-point lattice. For n > 1 we take all n-dimensional
lattices with minimal norm 4 that have at least one sublattice A4,.,, and
select those of minimal determinant. All 4, for n < 25 are known and
they are integral lattices if and only if n < 24. 4, is the Leech lattice.
Also in [3] p. 180 we have the following values for the determinants of
Ay, Ay, Assy Aoy 32, 12, 4, 1.

In general by a k-dimensional section of a lattice L, & R* we mean
a k-dimensional lattice M, < R* < R" such that M, = L, N R*. With these

notations let us recall the following.

ProrosiTION 1.
(1) Each of Ay -+, Ay, Ay, - - -, A3 has the smallest determinant of any
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section of the Leech lattice in its dimensions;
(il) For n < 23, A, has the smallest determinant of any n dimensional
section of A,.;.

A proof of this proposition can be found in [3].
A similar statement holds for the 48-dimensional integral lattice P,,
that has minimal norm 6.

ProrositioN 2. In dimension 48 — n the lattice P, has a section of
determinant d = 3"D where D is given by the following table:

(6) n=0 12 3 4 5 6 7
D=1 2 3 4 4 4 4 4

Moreover in dimensions 43 and above, these lattice have the smallest pos-
sible determinant of any section of any even unimodular 48-dimensional
lattice with minimal norm 6.

Even in this case for details we refer to [3].

Let L,, L,, denote the matrices associated to the laminated lattices
A, and 4,, with respect to a fixed basis, and P,;,, P, the matrices asso-
ciated to the 47th and 46th dimensional section of the lattice P,, having
the above mentioned properties; then with these notations we have the
following

LEmMa 1.
a) There is no & 0 in Z% such that 2L, — &'¢ > 0.
b) There is no &€ =0 in Z" such that 4P,, — £'¢ > 0.

Remark. Before proving the lemma we have mention that the similar
statement for £ — £’ > 0 has been proved by Igusa in [8], using the
matrix of Cartan integers associated with the Dynkin diagram of type
E,

Moreover even the proof of the two above statemente is similar to
that of [8].

Proof. In view of the remark we shall prove only the first statement.
Assume that such a & exists and is primitive. Since GL(22, Z) acts
transitively on the set of primitive vectors, there exists an integral
invertible matrix A such that £ = ‘A-%e,. In general we well denote by
e, the i-th unit vector in R¢. Therefore we have
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2'ALyA — e,'e, > 0.

Let B denote the square matrix of degree 21 obtained by crossing out
the first row and the first column to ‘AL, A, then we have

det(2‘AL, A — e, 'e)) > 2712 — 2" det B> 0.

This implies det B < 24, but this and det B > det L,, = 32 bring a con-
tradiction.

§2.

Let H, denote the Siegel upper half-space, i.e. the set of complex g
by g matrices r such that Im r is positive definite, and Sp(g, R) the sym-
plectic group with real coefficients. We know that the group of complex
analytic automorphisms of H, is given by Sp(g, R)/+1,, and if

=10 dl

then the complex analytic automorphism determinated by =+o¢ is
g-t = (ar + b)(ct + d)~*.

Let ', denote the integral symplectic group. If [ is a positive integer we
shall denote by /",(l, 2I) the subgroup of I', defined by ¢ = 1,, mod / and
diag (a'b) = diag (c¢'d) = 0 mod 2I.

If we drop the last condition we get the principal congruence sub-
group I',(]) of level I. Let I" be any of these groups; then for every non
negative integer k£ we consider the vector space [[, k] over C of Siegel
modular forms of weight £, i.e. holomorphic functions {» on H, satisfying
the functional equation

Yo -7) = det (cr + d) Fy(z)
for every ¢ in I'. The graded ring

AD = @ (K

is an integrally closed domain of finite type over C. We recall from the
introduction that

04(2) = AI',(4, 8))

and the morphism
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a: Proj A(I",(4, 8)) —> Proj 6,(2)
is bijective.
We want to analyze the maps
a,: Proj A(I' (2)) —> Proj B(2)
and
a,: Proj A(I';) —> Proj B, .

We shall apply the same method of Igusa in [8], therefore we need to
recall the structure of the holomorphic local ring of Proj A(I") at a point
P. We take as P the unique special point defined by a sequence in H,
such that the imaginary part of a general terms tends to oco. Moreover
we put a(P) =@, i = 1, 2.

We know that holomorphic local ring at P consists of all convergent
series of the form

6) f= ; const @,

in which S runs over a complete set of representatives of SL(g, Z)(l)
equivalence classes in the set of even semi-positive definite matrices,
! =1 and 2. Here we denoted by SL(g, Z)(I) the normal subgroup of
SL(g, Z) that is the kernel of the morphism

¢: SI(g, Z) —> SL(g, Z/IZ).

Moreover we have

) O, = 1 o (Sur ‘u));

e(
u€SL(g,Z) (1) 21

really the summation is over the set of distinct ‘uSu.
From now on, to avoid confusion, we develop only one computation
since they are similar, therefore we shall consider only the map

a,: Proj A(I',) —> Proj B, .

Let z,; denote the (i, j)-th coefficient of a point r in H,; then we define
the following g(g + 1)/2 analytically independent holomorphic functions
on H,

a0)=e() 1<i<j<sg.
Let O, and O, be the local ring at P and @ = «,(P); it is a well known
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fact that O, and the holomorphic local ring have the same completion.
Let us denote by C[q] the ring of formal power series in g,; then we
have

® 0, € 0, S C[4q]
and passing to the completion we have
9 0§ < O0f = C[q],

since even Proj B, is an analytically irreducible variety. Let us assume
g > 47; then we denote by P, the matrix obtained by P,, adding g — 47
rows and columns of zero then we have;

THEOREM 1. Suppose that g > 47. Then Q)Pg is in O% but not in Of.
Therefore the bijective morphism «, is not an isomorphism.

Proof. As pointed in [8] we have that an element of O, is of the
form

f = > const. O

in which 4S=£% + »‘p 4+ --- for some &, 7 in Z*¢ and an element of O}
also has the same form. This clearly is not the case for @, by Lemma 1.
Clearly we have;

THEOREM 2. Suppose that g > 22. Then a, is not an isomorphism.
Consequently we have

THEOREM 3. If g > 47 (or 22) there exists a modular form of arbitrarily
high weight relative to I', (or I’ (2)) which can not be expressed as a
polynomial in the Thetanullwerte with half integral characteristics.

§3.

In this section we shall recall some basic facts about Thetanullwerte
and Hecke operators.

For any associative ring R with unity we shall denote by M, (R)
the R-module of p X ¢ matrices with coefficients in R. We shall write
M/(R) for M, (R). If A is in M, (R) we shall denote by diag.(A) the
element of M, ,(R) defined by diag,(A),; = A, for all i and j, we shall
omit & if it is 1.

We know that I', acts on the set M,, (Q/Z) via
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P diag,(c ‘d)>
10 M =0 M + 1/2 ( »
a0 ’ 1 diag,(a ‘b)
for M in M, (Q), more explicitly if we put
v

with M’, M” in M, (Q), we have

o G S (O R e}

If M is half integral, i.e., 2M = O0mod 1, we can describe the orbits of
the I', action. Let m, m,, m,, m; be half integral vectors in @, we put

e(m) = e(2'm'm”), e(m,, m,, my) = e(m)e(my)e(mye(m, + m, + my).

Let M = (m,, m,, --- m,) be a sequence of half integral vectors in @Q%*;
we say that it is essentially independent if for any choice of 1 < i, <1,
<y < p, k>1 we have

m;, +m;+ - +my F0mod1l.

With these notations we have: two sequence of half integral vectors in
Q% M= (m,, m,, ---m,) and N = (n,, n,, - - -, n,) are conjugate under the
action of I', if and only if essentially independent subsequences correspond
to each other, and further

e(m;)) = e(n;) and e(m, m, m,) = e(n, n,, n,)

forall1<i<pand 1<i<j<k<p.
We take M = (m, - - - m,) arbitrarily from M,, (Q) and put

(12) P(M) =8y, -+ S,

For such monomials in the Thetanullwerte we recall the transformation
formula

(13) P(g-M)(o-7) = k(a)? det(cc + d)*e(D(a))P(M) ()

for all ¢ in I',.
We know that k(¢s)* depends only on ¢ and

(14) k(o) = e(% tr (‘bc)) ,
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while

(15)  Dylo) = —1/2txr (M’ *'bdM’ + ‘M ‘acM” — 2'M’ ‘bcM"’
— ‘diag,(a‘b)(dM’ — cM"))

Finally for k even positive, we recall that
Bg(z)k = [Fg(2)9 k] n Bg(z)

is the C-span of all monomials P(M) with M in M,,,(Q) half integral
satisfying the following congruences;

(16) 4M'M =0mod 2 and diag(M‘M) = 0mod 1, cf. [6]

and the elements of [I',, k] N B, = B,,, are symmetrizations of the ele-
ments of B,(2),, i.e., they are linear combinations of functions of the form

17 fulo) = 2, det(cc + d)"*P(M)(o-7)

c€SP(&; D) Tg(®
= 2, ko))" e(@,-.y(0)Plo' M)(z).

7€8p(g,B)/Tg(2)

Since we have
I a(t) = e (‘m’ n')9,(z) .

for every n in Z?¢, we can assume the coefficients of M equal to 0 or
1/2 and if we denote by ¢7'o M the unique element congruent to ¢~!'-M
mod 1 with 0 and 1/2 as coefficients, then we can write

(18)  fulz) = 2 k(a)" e(D,-1.x(0)) e(tr((a™' o M) (¢7- M — o7' o M)"))
0€8p(g,2Z)/T'g(2)
X P(e o M) (7).

With these notations we have the following

LeEmMMA. Assume that k> g + 1 is even. Then B, , == 0.

Proof. First let us recall that any f in A(I',) has a Fourier expan-
sion, namely

(19) =3 a(T)e(% tr(Tt)) .

We are summing over the set of even semipositive definite matrices. Now
let M, be such that 2M, = 0 and
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2M;/=(eh ez""’egw vg’ ey, €, "',eg’ vgy 0 O)
2k-2g~2
times
10-0110.-010.0
01.0101-010-0

0-0110-0110-0

Here we denoted by v, the sum of the g unit vectors.
We shall compute the Fourier coefficient a(0) of f,(zr). We have

(20) a(0) = 2. k(0)" e(D,-1.1,(a))
where the summation .is over ¢ € Sp(g, Z)/I"(2) such that
(21) (67'o M)y = 0.

First we analyze the condition (¢ 'oM,) = 0. From (11) we get
(6o M) ="'cM” — 1/2 diag,,(‘ca)
= (‘c, ‘cvy, ‘c, 'cv,, 0) — 1/2 diag,,(‘ca) mod 1.

Now the condition (21) implies diag,.(‘ca) =0mod2 and ¢ = 0mod 2;
therefore if we put

I',2 ={oel',|c =0mod2}

we get

(22) a(0) = > k(o)™ e($,-1.1,(0))

0€ g, 0@ /Tg(2)

From (14) and (15) we get k(¢0)* = 1 and

Go-1a0,(0) = —1/2tr ((M{d — 1/2 diag,,(‘db)) ‘ac(‘*dM{ — 1/2 diag,,(‘db)))
= —1/2tr CM{d‘actd M) — 1/2*diag,,(‘db) ‘ac'd M7
—1/2*M{d‘ac diag,,(‘db)) mod 1

Since the vectors of M, are essentially dependent and

diag,,(*db) ‘diag,,(‘db) = 0 mod 4,
we have
bo-1.0(0) = —tr (1/2d ‘ac'd M7 ‘M) mod 1,

but 1/2d‘ac’d is an integral symmetric matrix and M, satisfies (16),
therefore ¢,-1.,,(¢) = 1 for any ¢ in ', (2) and we have
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a(0) = 0.

We recall some basic facts about Hecke operators. We know that for
every prime p the Hecke operator T(p) on the space [I',, k] defined by

23) T(p)f = flrn(®
= preeer S det(er + d) (@ + ber + )7
oerg/rg('g P‘]’g)rg
is well defined and maps [I',, k] to itself.

Moreover if we restrict to modular forms that can be expressed as
polynomials in the Thetanullwerte we learned from Bocherer that the
Hecke operator T(p) maps [I',, k] N O (r) in [I',, k] N O,(pr). Therefore
the graded ring ©,(r) are not stable under the action of Hecke operators.
Nevertheless we obtain that C,(n) is stable under Hecke operators 7'(p)
when p divides n. Let us recall that the Eisenstein series

E(r) = Z/r det(ct + d)* k> g+ leven
4

a€lg,0

belongs to [[',, k] and it is an eigenform for all Hecke operator. Here
we denoted by I',, the subgroup of I', defined by ¢ = 0. Moreover it is,
up to a constant, the unique element of [I',, k] that is an eigenform for
T(p) for at least one prime p and has the Fourier coefficient a(0) different
from O cf [4] and [5]. Moreover let us recall from [5] the following.

THEOREM 4. Let V be a subgroup of [[",, k] which is stable under the
action of a certain subset of Hecke operators, then V has a basis of simul-
taneous eigenfunctions for those operators.

THEOREM 5. Let V be as and assume that in V there is a modular
form with the Fourier coefficient a(0) different from zero, then there exists
an eigenform with the same property.

As immediate consequence of the above Theorems we have

CoroLLARY. The Eisenstein series E,(c) (k> g + 1) are contained in
the graded ring C(n) for all positive n.

At this point we can do the same reasoning of Bocherer in [1] to get
the final results. We repeat it sketchly. First, let us recall two elementary
properties of Thetanullwerte. Assume g =r +s. Then for any A in
M, (Q) we shall denote by A* the matrix obtained from A taking the
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first r rows and A** the matrix obtained from the remaining s rows. For
any M in M,, (Q) we shall write, by an abuse of notation,

(24) M*:(M/*), M**=(M/**>,
M"* M5

Let 7/, ¢ be arbitrary point of H, and H, then it is immediate to verify
(25) POD( ,) = PAIYEPAL)E);
T

moreover for all - in H, we have
(26) P(M)(—7) = P(M)(z).

Using the two above properties of Thetanullwerte and the result of the
previous corollary we can apply Bocherer’s method. From these we have

THEOREM 6. Assume that k> 2g is even. Then any [ in [[',, k] can
be expressed as a homogeneous polynomial belonging to C.(n).

For details we refer to [1] and [2].
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