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Abstract We study hypersurfaces of constant mean curvature immersed into warped product spaces of
the form R×� P

n, where P
n is a complete Riemannian manifold. In particular, our study includes that of

constant mean curvature hypersurfaces in product ambient spaces, which have recently been extensively
studied. It also includes constant mean curvature hypersurfaces in the so-called pseudo-hyperbolic spaces.
If the hypersurface is compact, we show that the immersion must be a leaf of the trivial totally umbilical
foliation t ∈ R �→ {t} × P

n, generalizing previous results by Montiel. We also extend a result of Guan
and Spruck from hyperbolic ambient space to the general situation of warped products. This extension
allows us to give a slightly more general version of a result by Montiel and to derive height estimates for
compact constant mean curvature hypersurfaces with boundary in a leaf.
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1. Introduction

It is a classical result that a compact hypersurface embedded in Euclidean space with
constant mean curvature must be a round sphere. Alexandrov [1] gave a proof of this
fact by making a clever use of the maximum principle for elliptic partial differential
equations. The so-called Alexandrov reflection method also works for hypersurfaces in
Euclidean sphere and hyperbolic space, since its main requirement of having a large
number of isometric reflections is satisfied in such ambient spaces.

An attempt to extend the above result from constant sectional curvature manifolds
to a larger class of Riemannian spaces should consider manifolds with an abundance
of complete embedded constant mean curvature hypersurfaces. Such hypersurfaces play
the role of the umbilical hypersurfaces in spaces of constant sectional curvature. Then,
one looks for geometric conditions on an immersed complete constant mean curvature
hypersurface that force it to be one of those already classified. In space forms, one proves
such classification results by using the abundance of isometries of the space. Since here
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we consider more general ambient manifolds, we need to develop an appropriate method
of proof.

Montiel [12] observed that a natural class of manifolds to consider is that of warped
products Mn+1 = R ×� Pn, where Pn is a complete n-dimensional Riemannian manifold,
� : R → R+ is a smooth function and the product manifold R × Pn is endowed with the
complete Riemannian metric

〈· , ·〉 = π∗
R
(dt2) + �2(πR)π∗

P
(〈· , ·〉P).

Here πR and πP denote the projections onto the corresponding factor and 〈· , ·〉P is the
Riemannian metric on Pn. Each leaf Pt = {t} × Pn (called here a slice) of the foliation
t ∈ R �→ Pt of Mn+1 by complete hypersurfaces has constant mean curvature. Its mean
curvature vector field is

Ht = −H(t)T,

where H(t) = �′(t)/�(t) and T = ∂/∂t ∈ TM . For further geometric interpretation,
observe that T = �T is a closed conformal vector field on Mn+1, that is, it satisfies

∇̄V T = �′V for any V ∈ TM. (1.1)

Here and elsewhere ∇̄ denotes the Levi-Civita connection in Mn+1 and, by abuse of
notation, we denote in the same way functions on R and their lift to Mn+1. In [12,
§ 3] it is carefully shown that any Riemannian manifold Mn+1 with a closed conformal
vector field is locally isometric to a warped product manifold with one-dimensional factor.
Furthermore, the isometry is global if Mn+1 is complete and simply connected.

Extending the well-known Mercator projection, used in cartography to conformally
project the two-dimensional sphere into the Euclidean plane [17, p. 173] (see [14] for
the hyperbolic case), we conformally transform the warped product space R×� Pn into a
product space with factor Pn. In fact, let τ : R×Pn → J×Pn be given by τ(t, x) = (s(t), x),
where J = s(R) and

s(t) = s0 −
∫ t

0

1
�(u)

du.

Then τ is a reversing orientation isometry between Mn+1 and J × Pn endowed with the
conformal metric

〈· , ·〉 = λ2(s)(ds2 + 〈· , ·〉Pn), (1.2)

where the conformal factor is λ(s) = �(t(s)). Suppose that �(t) satisfies
∫ +∞

0

1
�

< +∞ and
∫ 0

−∞

1
�

= +∞, (1.3)

and take s0 =
∫ +∞
0 1/�. Then, we have that J = R+ and, therefore, Pn acts as a boundary

at infinity of R ×� Pn, as does {0} × Rn in Hn+1, and the leaves Pt can be thought of as
horospheres in a fixed direction of Hn+1.

There are two cases (after normalization) in which all slices have the same constant
mean curvature H. The first one is when H(t) = 0 (�(t) = 1), and the ambient space is just
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a Riemannian product Mn+1 = R×Pn. Constant mean curvature hypersurfaces in these
spaces have been extensively studied in recent years. The second case is when H(t) = 1
(�(t) = et), and then Mn+1 belongs to the class of pseudo-hyperbolic manifolds defined
in [18]. In this case, the conformal factor in (1.2) is λ(s) = 1/s and (1.3) is satisfied.
Moreover, if Pn is Ricci flat, then Mn+1 is Einstein with negative Ricci curvature, and if
Pn is flat then Mn+1 is a negatively curved space form. Thus, for �(t) = et we deal with
ambient spaces that have many resemblances with hyperbolic space Hn+1.

Montiel’s method of proof in [12] combines the use of two Minkowski-type formulae.
In his Corollary 7 he gives the following.

Theorem 1.1 (Montiel’s first result). Let Pn be a compact manifold satisfying
RicP > sup

R
{−�2H′(t)}. Then any compact orientable immersed constant mean curva-

ture hypersurface in R ×� Pn that is locally a graph over Pn must be a slice.

This result has the following consequences (see [12, Corollary 8]) for the class of pseudo-
hyperbolic ambient spaces.

Theorem 1.2 (Montiel’s second result).

(a) Let Pn be compact with non-negative Ricci curvature. Then any compact constant
mean curvature hypersurface in R ×et Pn that is locally a graph on Pn must be a
slice.

(b) Let Pn be compact with Ricci curvature satisfying RicP � −1. Then any compact
constant mean curvature hypersurface in R ×cosh t Pn that is locally a graph on Pn

must be a slice.

In § 2 we compute the Laplacian of σ ◦ h ∈ C∞(Σ), where h is the height function of
an immersed hypersurface Σn �→ R ×� Pn and σ ∈ C∞(R) satisfies σ′(t) = �(t). This
yields a rather simple differential equation that has several applications for compact
hypersurfaces. In particular, it allows a generalization of Montiel’s second result, for
instance, by removing the assumption about the Ricci curvature. We also consider the
case of complete hypersurfaces via the Omori–Yau maximum principle.

In § 3 we extend a result of Guan and Spruck [7] from hyperbolic ambient space to the
general situation studied in this paper. Such an extension allows a slight generalization
of Montiel’s first result. Then we use our result to provide height estimates for compact
constant mean curvature hypersurfaces with boundary contained in a slice of either a
product or a pseudo-hyperbolic ambient space, thus extending results in [7,10]. Further
applications for graphs with boundary are given in [2].

Note added in proof

Reference [2] uses some of the results proved in this paper. As the systems used to number
the results in this paper and [2] are different, for each result below, the numbering system
used in [2] is also given in parentheses.
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2. The first equation

In this section we compute a basic partial differential equation whose strength is based
on its independence of the curvature tensor of the ambient space. We then derive several
consequences, in particular a generalization of Montiel’s first result.

Let f : Σn → R ×� Pn be an isometric immersion of an n-dimensional Riemannian
manifold Σn; its height function h ∈ C∞(Σ) is defined as h = πR ◦ f , where πR denotes
the projections onto the first factor.

Proposition 2.1. Let f : Σn → Mn+1 = R ×� Pn be an isometric immersion with
mean curvature vector field H. If

σ(t) =
∫ t

t0

�(r) dr,

then
∆σ(h) = n�(h)(H(h) + 〈H, T 〉), (2.1)

where H(t) = �′(t)/�(t) and T = ∂/∂t ∈ TM .

Proof. The gradient of πR ∈ C∞(M) is ∇̄πR = T , and thus the gradient of h is

∇h = (∇̄πR)� = T − 〈T, N〉N, (2.2)

where by (·)� denotes the tangential component of a vector field along f and N is a (local)
smooth unit normal vector field. It is a standard fact that the Levi-Civita connection of
a warped product satisfies

∇̄V T = H(V − 〈V, T 〉T ) for any V ∈ TM. (2.3)

It follows from (2.2) and (2.3) that

∇̄X∇h = H(h)(X − 〈X, T 〉T ) − X(〈T, N〉)N + 〈T, N〉AX (2.4)

for any X ∈ TΣ. Here AX = −∇̄XN denotes the second fundamental form of f with
respect to N . Then, we get

∇X∇h = (∇̄X∇h)� = H(h)(X − 〈X, ∇h〉∇h) + 〈T, N〉AX, (2.5)

where ∇ denotes the Levi-Civita connection in Σn. It follows from here that the Laplacian
of h is given by

∆h = H(h)(n − ‖∇h‖2) + n〈H, T 〉. (2.6)

Since ∇σ(h) = �(h)∇h, we have

∆σ(h) = �(h)∆h + �′(h)‖∇h‖2 = n�(h)(H(h) + 〈H, T 〉),

and this concludes the proof. �
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We first analyse the case of compact hypersurfaces (without boundary). Our first result
is mostly technical because of the assumption on the immersion itself.

Proposition 2.2. Let f : Σn → R ×� Pn be a compact hypersurface such that either

‖H‖ � H ◦h or ‖H‖ � −H ◦h (2.7)

holds along Σn. Then Pn is compact and f(Σn) is a slice.

Proof. At any point of Σn we have by the Cauchy–Schwarz inequality that

H(h) − ‖H‖ � H(h) + 〈H, T 〉 � H(h) + ‖H‖.

By assumption the function H(h)+〈H, T 〉 does not change sign. It follows from (2.1) that
∆σ(h) does not change sign either. But Σn being compact, the divergence theorem gives
∆σ(h) = 0, and hence σ(h) must be constant (that is, any subharmonic or superharmonic
function on a compact Riemannian manifold without boundary must be constant; this
property is used several times in the paper). Since σ′(t) = �(t) > 0, we conclude that h

itself must be constant. �

Notice that (2.7) implies that the function H ◦h ∈ C∞(Σn) does not change sign,
and means just that in the minimal case. It is thus natural (and convenient) to assume
that H ∈ C∞(R) does not change sign, instead of involving the immersion f in the
hypothesis. Geometrically, the fact that H does not change sign means that the mean
curvature vectors of all slices Pt point in the same direction.

The next corollary of Proposition 2.2 states the analogue in R ×� Pn of the non-
existence of compact hypersurfaces either that are minimal in Rn+1 and R × Hn or with
mean curvature function 0 � H � 1 in Hn+1. The case when H(t) � 0 can be reduced
to that when H(t) � 0 by changing the orientation of the factor R.

Proposition 2.3. Assume that H(t) � 0 and set H0 = infR H(t). A compact hyper-
surface in R ×� Pn with mean curvature function 0 � H � H0 occurs only if Pn is
compact and, then, it is any slice Pt0 in which H(t0) = H0.

Proof. Proposition 2.2 yields that Pn must be compact and that H = H(t0) for some
t0 ∈ R. Thus, H = H0 by assumption. �

A submanifold f : Σn → R ×� Pn is called two sided if its normal bundle is trivial,
i.e. there is a globally defined unit normal vector field. For instance, every hypersurface
with non-zero constant mean curvature is trivially two sided. We then define the smooth
angle function Θ : Σn → [−1, 1] by

Θ(p) = 〈N(p), T 〉,

where N denotes the global normal field.
If f is locally a graph over Pn (i.e. transversal to T ), then either Θ < 0 or Θ > 0

along Σn. Thus, requiring Θ not to change sign is a weaker assumption than requiring
it to be a local graph. Notice that Θ2 = 1 if and only if Σn is a slice (see (2.8), below).
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From now on, every time the angle function of a two-sided hypersurface does not
change sign, the orientation N is chosen so that Θ � 0, and then the mean curvature
function is H = 〈H, N〉.

Montiel observed that if Pn is compact and if the mean curvature of the slices is non-
decreasing (H′(t) � 0), then any compact constant mean curvature graph over Pn must
be a slice (see [12, Remark 6]). To see this, he compares the hypersurface with slices and
then invokes the maximum principle. The following theorem generalizes such results as
well as [12, Corollary 8] (Montiel’s second result).

Theorem 2.4. Let f : Σn → R×�Pn be a compact two-sided hypersurface of constant
mean curvature H. Assume that H′(t) � 0 and that the angle function Θ does not change
sign. Then Pn is compact and f(Σn) is a slice.

Proof. Let pmin, pmax ∈ Σn be such that

h(pmin) = h
¯

:= min
Σ

h and h(pmax) = h̄ := max
Σ

h.

Therefore, ∇h(pmin) = 0 and ∇h(pmax) = 0. From (2.2) we have that

‖∇h‖2 = 1 − Θ2, (2.8)

and therefore
Θ(pmin) = ±1 and Θ(pmax) = ±1. (2.9)

Moreover, (2.6) gives

∆h(pmin) = n(H(h
¯
) + 〈H(pmin), T 〉) � 0,

∆h(pmax) = n(H(h̄) + 〈H(pmax), T 〉) � 0.

Hence,
−〈H(pmin), T 〉 � H(h

¯
) and H(h̄) � −〈H(pmax), T 〉. (2.10)

Before we proceed, for later use note that the proof of (2.10) uses only the fact that
Σn is compact. From (2.9), (2.10) and H′ � 0, we obtain

−Θ(pmin)H(pmin) � H(h
¯
) � H(h̄) � −Θ(pmax)H(pmax).

By assumption Θ(pmin) = Θ(pmax) = sgn Θ, and hence

−H sgn Θ � H(h
¯
) � H(h̄) � −H sgn Θ.

It follows that H ◦h = −H sgn Θ. We obtain from (2.1) that

∆σ(h) = n�(h)H(Θ − sgn Θ),

and thus ∆(σ ◦ h) does not change sign. Therefore, σ ◦ h and hence h itself must be
constant. �
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We have two useful corollaries of the proof of Theorem 2.4. For instance, dropping the
assumption that H′ � 0, we still have the following result.

Proposition 2.5. Let f : Σn → R ×� Pn be a compact two-sided hypersurface such
that Θ does not change sign. We then have

min
Σ

H � H
(

min
Σ

h
)

and max
Σ

H � H
(

max
Σ

h
)
.

Proof. We find that Θ(pmin) = Θ(pmax) = −1, since we have agreed always to choose
Θ � 0. It follows from (2.10) that

min
Σ

H � H(pmin) � H
(

min
Σ

h
)

and H
(

max
Σ

h
)

� H(pmax) � max
Σ

H,

and this concludes the proof. �

Our second result is for minimal immersions.

Proposition 2.6. Assume that �′′(t) � 0. A compact minimal hypersurface in R×�Pn

occurs only if Pn is compact and then it is any slice Pt0 where H(t0) = 0.

Proof. From (2.10) we have �′(h̄) � 0 � �′(h
¯
). Then �′′(t) � 0 yields �′ ◦ h = 0, and

hence H ◦h = 0. The proof follows from Proposition 2.2. �

To extend the preceding results from compact to complete submanifolds we use the
following well-known Omori–Yau maximum principle [19].

Lemma 2.7. Let M be a complete Riemannian manifold with Ricci curvature bounded
from below. If u ∈ C∞(M) is bounded from below, then there exists a sequence of points
{pj} ∈ M such that

lim
j→∞

u(pj) = inf
M

u, ‖∇u(pj)‖ <
1
j

and ∆u(pj) > −1
j
.

Remark 2.8. The Omori–Yau maximum principle (and thus our next result) holds
under the weaker assumption [3]

RicM � −C(1 + r2 log2(r + 2)),

where r is the distance function in M to a fixed point and C is a positive constant.

The next theorem is analogous to Theorem 2.4 for complete hypersurfaces contained
in a slab.

Theorem 2.9. Let f : Σn → R×�Pn be a two-sided complete hypersurface of constant
mean curvature H, with Ricci curvature bounded from below and

f(Σn) ⊂ [t1, t2] × P
n,

where t1, t2 ∈ R are finite. Assume that H′(t) > 0 almost everywhere and that the angle
function Θ does not change sign. Then f(Σn) is a slice.
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Proof. By Lemma 2.7 using (2.6) and (2.8), there exists a sequence {pj} ∈ Σn such
that

lim
j→∞

h(pj) = h
¯

:= inf h > −∞, (2.11)

‖∇h(pj)‖2 = 1 − Θ2(pj) <

(
1
j

)2

(2.12)

and

∆h(pj) = H(h(pj))(n − ‖∇h(pj)‖2) + nH(pj)Θ(pj) > −1
j
. (2.13)

Equation (2.13) gives

−nH(pj)Θ(pj) <
1
j

+ H(h(pj))(n − ‖∇h(pj)‖2).

Since limj→∞ Θ(pj) = sgn Θ by (2.12), it follows that

− sgn Θ lim
j→+∞

H(pj) � H(h
¯
). (2.14)

Similarly, applying Lemma 2.7 to −h yields a sequence {qj} ∈ Σn such that

H(h̄) � − sgn Θ lim
j→+∞

H(qj), (2.15)

where h̄ := suph < ∞. We obtain from (2.14), (2.15) and our assumptions that

− sgn ΘH � H(h
¯
) � H(h̄) � − sgn ΘH,

and, since H′(t) > 0 almost everywhere, we conclude that h
¯

= h̄. �

For complete hypersurfaces we have the following version of Proposition 2.5.

Proposition 2.10. Let f : Σn → R ×� Pn be a two-sided complete hypersurface with
Ricci curvature bounded from below and contained in a slab. Assume that the angle
function Θ does not change sign. Then

inf
Σ

H � H
(

inf
Σ

h
)

and sup
Σ

H � H
(

sup
Σ

h
)
.

Proof. Since sgn Θ = −1, from (2.14) and (2.15) we obtain

inf
Σ

H � lim
j→+∞

H(pj) � H
(

inf
Σ

h
)

and H
(

sup
Σ

h
)

� lim
j→+∞

H(qj) � sup
Σ

H,

and this concludes the proof. �
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Any function u ∈ C∞(P) determines an entire graph Γ (u) over Pn by the map fu :
Pn → R×Pn defined as fu(q) = (u(q), q). A straightforward computation shows that the
equation for the mean curvature function H of Γ (u) is

div
Du√

1 + ‖Du‖2
= −nH, (2.16)

where Du denotes the gradient of u ∈ C∞(P) and ‘div’ the divergence on Pn. If Pn

is compact, it follows easily from (2.16) that any entire graph in R × Pn whose mean
curvature H does not change sign is necessarily minimal. As H = 0, from (2.6) it follows
that the height function u is harmonic on the compact Γ (u), and thus the graph must
be a slice.

Extending a result due to Heinz [9] (n = 2), it was proved independently by Chern [4]
and Flanders [5] that any entire graph in Euclidean space Rn+1 with constant mean
curvature must be minimal. A beautiful argument by Salavessa [16] shows that, for a
complete non-compact Pn, an entire graph in R × Pn with constant mean curvature H is
minimal, provided that the Cheeger constant h(P) of Pn vanishes. To see this, recall that

h(P) = inf
D

area(∂D)
area(D)

,

where D ⊂ Pn is any compact domain with smooth boundary. Integrating (2.16) over D

and using the divergence theorem, we obtain

n area(D) min
D

H � n

∫
D

H dAP =
∮

∂D

〈Du, ν〉√
1 + ‖Du‖2

ds � area(∂D)

and, similarly, n area(D) maxD � − area(∂D). We thus have

inf
P

H � 1
n

area(∂D)
area(D)

and sup
P

H � − 1
n

area(∂D)
area(D)

,

and hence
inf
P

H � 1
n

h(P) and sup
P

H � − 1
n

h(P).

In particular, when h(P) = 0 we obtain infP H � 0 � sup
P
H. Then, if H is constant, it

must vanish.
As a consequence of Proposition 2.10 we have the following result for graphs in Rie-

mannian products.

Corollary 2.11. Let Γ (u) be an entire graph over Pn determined by u ∈ C∞(P). If
u is bounded and if the Ricci curvature of Γ (u) is bounded from below, then the mean
curvature function of the graph satisfies

inf
Γ

H � 0 � sup
Γ

H.

In particular, if H is constant then the graph must be minimal.
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For other results of this type see the corollary in [15, p. 445] and [8, Theorem 2].
Examples of entire graphs in the product space R × H2 of constant mean curvature
H ∈ (0, 1

2 ] with u bounded only on one side where given in [13].
To conclude this section, we consider the case of parabolic submanifold, where by

parabolic we mean that any subharmonic function on the submanifold, bounded from
above, must be constant.

Proposition 2.12. Let f : Σn → R ×� Pn be an isometric immersion. Assume that
Σn is parabolic and that either

(i) h � h̄ < +∞ and ‖H‖ � H ◦h, or

(ii) h � h
¯

> −∞ and ‖H‖ � −H ◦h.

Then f(Σn) is a slice.

Proof. For case (i), using (2.1), we have ∆σ(h) � 0, and the proof follows since Σn

is parabolic and σ(h) � σ(h̄). Case (ii) is analogous using −σ. �

3. The second equation

We have already reached several conclusions for hypersurfaces whose mean curvature
is smaller than that of slices. To remove this restriction, we assume a bound on the
normalized Ricci curvature of Pn and introduce a partial differential equation coming
from the Codazzi equation.

The following result extends Theorems 1.2 and 2.2 in [7], which were proved for hyper-
surfaces in hyperbolic space (we will explain in which sense in Remark 3.3).

Given a two-sided hypersurface f : Σn → R ×� Pn, we fix an orientation N and define
φ ∈ C∞(Σn) by

φ = σ(h)H + �(h)Θ. (3.1)

Theorem 3.1 (cited as Theorem 13 in [2]). Let f : Σn → R×� Pn be a two-sided
hypersurface of constant mean curvature. If the angle function Θ does not change sign
and the Ricci curvature of Pn satisfies

RicP � sup
R

{−�2H′(t)}, (3.2)

then φ is subharmonic.

Proof. The Codazzi equation of f : Σn → R ×� Pn is

(R̄(X, Y )N)� = (∇Y A)X − (∇XA)Y, (3.3)

where R̄ denotes the curvature tensor of R ×� Pn. It follows from (1.1) that

∇〈N, T 〉 = −A(T �) = −�(h)A(∇h), (3.4)
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where T = �T . Therefore, using (2.5) and (3.3), we conclude from (3.4) that

∇X∇〈N, T 〉 = −�′(h)〈X, ∇h〉A∇h − �(h)(∇XA)(∇h) − �(h)A(∇X∇h)

= −�(h)(∇∇hA)X − �(h)(R̄(∇h, X)N)� − �′(h)AX − 〈N, T 〉A2X.

Let Ric be the Ricci tensor of Mn+1 = R×� Pn. Using tr(∇ZA) = 〈∇ trA, Z〉, we obtain

∆〈N, T 〉 = −n�(h)〈∇H, ∇h〉 + �(h)Ric(N, ∇h) − n�′(h)H − 〈N, T 〉‖A‖2. (3.5)

The curvature tensor of Mn+1 expressed in terms of the curvature tensor of Pn is

R̄(U, V )W = RP(Û , V̂ )Ŵ − H2(〈V, W 〉U − 〈U, W 〉V )

+ H′〈W, T 〉(〈U, T 〉V − 〈V, T 〉U) − H′(〈V, W 〉〈U, T 〉 − 〈U, W 〉〈V, T 〉)T,

where Û = πP∗U . Then, the Ricci tensor of Mn+1 can be given in terms of the Ricci
tensor of Pn, namely,

Ric(V, W ) = RicP(V̂ , Ŵ ) − (nH2 + H′)〈V, W 〉 − (n − 1)H′〈V, T 〉〈W, T 〉. (3.6)

Thus,
Ric(N, X) = RicP(N̂ , X̂) − (n − 1)H′(h)Θ〈X, ∇h〉

for any X ∈ TΣ. Since T = ∇h + ΘN , we get (∇h)∗ = −ΘN∗, where (·)∗ means taking
the Pn-component of a vector field in TM . Thus,

Ric(N, ∇h) = −(n − 1)Θ(RicP(N̂) + H′(h)‖∇h‖2), (3.7)

where, as usual, (n − 1) RicP(·) = RicP(· , ·). Since the mean curvature H is constant, we
conclude from (2.1), (3.5), (3.7) and �(h)Θ = 〈N, T 〉 that

∆φ = −�(h)Θ{‖A‖2 − nH2 + (n − 1)(RicP(N̂) + H′(h)‖∇h‖2)}. (3.8)

From (3.2) and ‖N̂‖2
P

= �−2(h)‖∇h‖2 we obtain

RicP(N̂) + H′(h)‖∇h‖2 � 0, (3.9)

and the proof follows by using ‖A‖2 � nH2. �

Remark 3.2. It follows easily from (3.6) that (3.2) is equivalent to

Ric(X) � Ric(T ) for all X ∈ TM.

In other words, the direction T must be of least Ricci curvature.

Remark 3.3. Given a vertical graph over Rn in Hn+1 with constant mean curvature,
the result in [7, § 2] asserts that the mean curvature function computed with respect to
the underlying Euclidean metric is subharmonic. To see that the preceding result extends
the one in [7], we consider the case of pseudo-hyperbolic ambient spaces R ×et Pn. Then
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(3.2) reduces to RicP � 0 (this holds for Hn+1 since Pn = Rn) and the subharmonic
function φ takes the simple form

φ = eh(H + Θ). (3.10)

It turns out that φ is also the mean curvature of the hypersurface when computed in the
product metric of R+ × Pn. In fact, a straightforward computation yields that the mean
curvature function Ĥ of f̂ = τ ◦ f : Σn → J × Pn is Ĥ = �(h)H + �′(h)Θ. Then observe
that Ĥ = φ if and only if �(t) = et.

Montiel’s first result [12, Corollary 7] in our case is an easy consequence of Theorem 3.1.

Theorem 3.4. Let f : Σn → Mn+1 = R ×� Pn be a compact two-sided hypersurface
of constant mean curvature. Assume that (3.2) holds and that the angle function Θ does
not change sign. Then either f(Σn) is a slice over a compact Pn or Mn+1 has constant
sectional curvature and Σn is a geodesic hypersphere. The latter case cannot occur if we
assume that the inequality in (3.2) is strict.

Proof. We know by Theorem 3.1 that φ is a subharmonic function on Σn, but being
Σn compact implies that φ is constant. Then (3.8) gives

Θ(‖A‖2 − nH2 + (n − 1)(RicP(N̂) + H′(h)‖∇h‖2)) = 0. (3.11)

We claim that U = {p ∈ Σn : Θ(p) = 0} has an empty interior. To see this, assume
on the contrary that U contains a non-empty open subset V of Σn. On V the function
σ(h)H = φ is constant and, if H �= 0, then σ(h) and, equivalently, h is constant. But
this is not possible, since ‖∇h‖2 = 1 − Θ2 = 1 on V. Therefore, we must have H = 0,
and then �(h)Θ = φ is constant on Σn. Since φ = �(h)Θ vanishes on V, it must vanish
on all of Σn. Hence, U = Σn, but this is not possible because Θ2 = 1 at least where h

attains its extrema. Summing up, U has an empty interior. Then (3.11) implies that

‖A‖2 − nH2 + (n − 1)(RicP(N̂) + H′(h)‖∇h‖2) = 0,

that is,

‖A‖2 − nH2 = 0 (3.12)

and

RicP(N̂) + H′(h)‖∇h‖2 = 0. (3.13)

Equality (3.12) means that f is totally umbilical. Moreover, we observe that Montiel’s
reasoning in his proof of [12, Corollary 7] also applies here, and allows us to conclude
that the case in which f is totally umbilical (but not a slice) can only occur if Mn+1 has
constant sectional curvature and Σn is a geodesic hypersphere.

Finally, when inequality in (3.2) is strict, (3.13) is equivalent to N̂(p) = 0 at any
p ∈ Σn, that is, ∇h = 0 on Σn, and hence f(Σn) is a slice over a compact Pn. �
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One can use Theorem 3.1 to obtain height estimates for constant mean curvature
hypersurfaces with (non-empty) boundary contained in a slice. The next result is an
extension of the height estimates for vertical graphs in R × P2 in [10].

Theorem 3.5. Let f : Σn → R × Pn be a compact hypersurface of constant mean
curvature H > 0 and non-empty boundary ∂Σn ⊂ P0. Assume that

RicP � n

n − 1
α for some α � 0,

Θ � 0 and H2 � |α|. Then, we have

f(Σn) ⊂
[
0,

H

H2 − |α|

]
× P

n.

Proof. By assumption, (n − 1) RicP(N̂) � nα‖N̂‖2
P

� nα because of α � 0 and
‖N̂‖2

P
= ‖∇h‖2 � 1. Consider ψ ∈ C∞(Σn) defined as

ψ = φ +
α

H
h =

H2 − |α|
H

h + Θ.

Using (2.6) and (3.8), we have

∆ψ = −Θ(‖A‖2 − nH2 + (n − 1) RicP(N̂) − nα)

� −Θ((n − 1) RicP(N̂) − nα),

and thus ψ is subharmonic on Σn. The maximum principle yields

H2 − |α|
H

h − 1 � H2 − |α|
H

h + Θ = ψ � max
∂Σ

ψ = max
∂Σ

Θ � 0,

and hence 0 � h � H/(H2 − |α|). �

For our next result we first recall a well-known tangency principle. Let Σn
1 and Σn

2
be two hypersurfaces in an arbitrary Riemannian manifold Nn+1 that are tangent at a
common point p0. Fix a normal vector η0 at p0 and locally parametrize both hypersurfaces
in a neighbourhood U of zero in Tp0Σ1 = Tp0Σ2 by means of the exponential map of Nn+1

as follows:
ϕj(x) = expp0

(x + µj(x)η0), j = 1, 2,

where µj ∈ C∞(U) are well-determined functions satisfying µj(0) = 0. One says that Σn
1

lies above Σn
2 in a neighbourhood of p0 if µ1(x) � µ2(x) in a neighbourhood of zero.

This is equivalent to requiring that the geodesics of Nn+1 normal to the hypersurface
expp0

(U) in a neighbourhood of p0 in the orientation determined by η0 intercept Σn
2

before Σn
1 . The following fact is well known [6].

Theorem 3.6 (Fontenele and Silva [6]). Let Σn
1 and Σn

2 be hypersurfaces as above
with constant mean curvature satisfying HΣ1 � HΣ2 with respect to η0. Then Σn

1 and
Σn

2 coincide in a neighbourhood of p0.

The following general result involves no assumption on the curvature of Pn and is of
independent interest.
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524 L. J. Aĺıas and M. Dajczer

Proposition 3.7 (cited as Proposition 18 in [2]). Let f : Σn → R ×� Pn be
a compact two-sided constant mean curvature hypersurface with non-empty boundary
f(∂Σ) ⊂ Pτ , and whose angle function Θ does not change sign. We then have the
following conditions.

(i) If H � inf [τ,+∞) H, then f(Σn) ⊂ (−∞, τ ] × Pn.

(ii) If H � sup(−∞,τ ] H, then f(Σn) ⊂ [τ, +∞) × Pn.

In particular, if H′(t) � 0 and H = H(τ) then f(Σn) ⊂ Pτ .

Proof. Assume that H � inf [τ,+∞) H but that h � τ does not hold. Hence, we obtain

max
Σ

h = h(p0) = τ0 > τ

at some interior point p0 of Σn. Take Σ1 = Σn, Σ2 = Pτ0 , and hence Σ1 �= Σ2. Observe
that Σ1 and Σ2 are tangent at the common point p0, and that Σ1 lies above Σ2 with
respect to the common normal η0 = −T at p0. Since

HΣ1 = H � inf
[τ,+∞)

H � H(τ0) = HΣ2 ,

by the tangency principle we may find that Σ1 and Σ2 coincide in some open neighbour-
hood of p0. This is in contradiction to Σ1 �= Σ2. The proof for the case H � sup(−∞,τ ] H
is similar. �

The following consequence of Proposition 3.7 extends [11, Proposition 2.3].

Corollary 3.8. Let f : Σn → R ×et Pn be a compact two-sided hypersurface of con-
stant mean curvature with non-empty boundary f(∂Σ) ⊂ Pτ , and whose angle function
Θ does not change sign. Then, we have

(1) H � 1 if and only if h � τ ,

(2) H � 1 if and only if h � τ on Σn.

In particular, H = 1 if and only if f(Σn) ⊂ Pτ .

To conclude we extend [11, Theorem 3.3], which holds for graphs in hyperbolic space
Hn+1, to the following results, which hold for graphs in pseudo-hyperbolic manifolds. For
the case of pseudo-hyperbolic space with �(t) = et we have the following.

Theorem 3.9. Let f : Σn → R ×et Pn be a compact hypersurface of constant mean
curvature H �∈ [0, 1) and non-empty boundary f(∂Σn) ⊂ Pτ . Assume that RicP � 0 and
that the angle function Θ does not change sign. Set C = log(H/H − 1). Then

(i) if H < 0, then f(Σn) ⊂ [τ + C, τ ] × Pn,

(ii) if H > 1, then f(Σn) ⊂ [τ, τ + C] × Pn,

(iii) if H = 1 then f(Σn) ⊂ Pτ .
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Proof. By the preceding result, we observe that f(Σn) ⊂ (−∞, τ ]×Pn if H < 0, that
f(Σn) ⊂ [τ, +∞) × Pn if H > 1, and that f(Σn) ⊂ Pτ if H = 1. From the maximum
principle applied to the subharmonic function φ given by (3.10), we obtain

eh(H − 1) � eh(H + Θ) � max
∂Σ

eh(H + Θ) = eτ
(
H + max

∂Σ
Θ

)
� eτH,

and the proof follows easily. �

Finally, for the case of pseudo-hyperbolic space with �(t) = cosh t, we obtain the
following.

Theorem 3.10. Let f : Σn → R ×cosh t Pn be a compact hypersurface of constant
mean curvature H and non-empty boundary f(∂Σn) ⊂ P0. Assume that RicP � −1 and
that the angle function Θ does not change sign. Set tanhC = 1/H. Then

(i) if H < −1, then f(Σn) ⊂ [C, 0] × Pn,

(ii) if H > 1, then f(Σn) ⊂ [0, C] × Pn,

(iii) if H = 0, then f(Σn) ⊂ P0.

Proof. By Proposition 3.7, we observe that f(Σn) ⊂ (−∞, 0] × Pn if H < 0, that
f(Σn) ⊂ [0, +∞) × Pn if H > 0 and that f(Σn) ⊂ P0 if H = 0. Now σ(t) = sinh t, and
from the maximum principle applied to the subharmonic function φ given by (3.1), we
obtain

H sinhh − cosh h � φ � max
∂Σ

φ = max
∂Σ

Θ � 0,

that is, H tanhh � 1. Then, when H < −1, this gives tanhh � 1/H, and when H > 1
this yields tanhh � 1/H. �
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