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ABSTRACT. A numerical simula tion of th e now of the cold glacier of Dome du 
Gother (4304 m, Mont Blanc, France) is presented. Owing to the la rge thickness of the firn 
layer, the simulation was done by using a rheological model for porous ice derived from a 
model for ceramic sintering and adapted to fit available data on in situ measured density 
profiles and firn mechanical behaviour. The fl ow calculation was m ade under the assump­
tions of axisymmetric geometry and stationa ry conditions, by solving a coupled p robl em. 
For a given density fi eld, the velocities were obtained by the finite-element method. Then 
the integration of the m ass-conservation equation along the streamlines derived from thi s 
velocity field gave the corresponding stationa ry densities. The results of the numerical 
simul ation, besides the velocity and density fi elds, a re the age of the ice along the stream­
lines. They a re compa red with observation and fi eld data . 

INTRODUCTION tered in glacier flow. The fl ow simulation procedure con­
sisted then in solving a coupled problem, the solution of 
which is the velocit y fi eld and the density fi eld (a priori un­
known ). 

Foll owing the two ice-core drillings a t Dome du Gouter 
(4304 m, Mont Blanc, France) performed inJune 1994, and 
the associated glaciological studies sta rted inJune 1993, a 
numerical simulation of the flow o[ this glacier was under­

taken. 
Any very detailed description o[ the fl ow of a glacier 

may be questionable, since in situ actual conditions are 
a lways known within a relatively la rge range of uncertainty 
and since it often suffices to obtain global results such as 

mass balance. In the present case, as the Dome du Gouter 

glacier has a very thick firn cover compared to its total 
thickness, an accurate fl ow modelling makes sense onl y if 
the rheological behaviour of firn is taken into acco un t. 
Apart from the purely glaciological point of view, it seemed 
interesting to simulate the densification of a porous medium 
under complex multiaxia l conditions such as those encoun-
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Before describing the model adapted for firn from a 
model used for simulating metallic-powder and ceramic sin­
tering, and the computation procedure, we briefl y se t the 
framework of the simulation, tha t is the main assumptions 
made, based on the analysis of fi eld data obtained by M . 
Funk a nd S. Suter (ETH-Zurich), L. Reynaud, C. Vincent, 
M. Pourchet and F. Pinglot (LGGE-G renoble). 

FRAMEWORK OF THE SIMULATION 

Field data 

A contour map of the surface elevation a round the summi t 
of Dome du Gouter was drawn by C. Vincent (personal 
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Fig. 1. Radial cross-section if the axisymmetric model showing the streamlines computedJrom the surface down to borehole 2 
vertical and the velocity prifile at this location (scaled jor B = 20 MPa -3 a - j. The shaded area is the region occupied by ice 
( D > 0 . .9.9). Samples if the mesh used Jorfinite-element computations are shown close to the symmetry axis and in fictitious zone 
A- B. 
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communication, 1996). The elevation contours can be rea­
sonably approximated by concentric a rcs, centred on the 

dome summit, inside a quadrant symmetricall y placed on 
both sides of the line joining the summit to the borehole 
locations. Bedrock topography around the Dome, resulting 
from radio-echo sounding, was provided by M . Funk and S. 
Suter (personal communication, 1996). The slopes a re rela­
tively gentle inside a 200 m circle around the summit, then 
the bedrock relief becomes more uneven. The ice thickness 
is measured within ± 10 m . It increases from 40 m at the 
summit to 140 m at the deepest borehole. A longitudinal 
cross-section of the glacier along the line between the sum­
mit and this borehole is shown in Figure 1. 

Many accumulation measurements were made prior to 
the drilling operation. A network of stakes was imple­
mented in order to measure the accumulation as well as the 
surface velociti es (personal communication from C. Vin­
cent, 1996). The abla tion is negligible at thi s a ltitude, and 
the accumulation pattern shows a very large va ri ability, 
with values ranging from 0.3 m a- I w. e. a t the summit, to 
3 m a- I at the drilling site, owing to the drift efTects of very 
strong winds. Another striking feature is that there is practi­
cally no seasonal variation (persona l communication from 
L. Reynaud, 1996). 

In addition to these topographic measurements, a den­
sity profile was obtained by studying the two ice cores ex­
tracted from the boreholes (personal communication from 
L. Arnaud and]. M. Barnola, 1996); the ice level is reached 
at a depth of80 m, for a tota l thickness of 140 m. 

Another very useful observation is the accura te dating of 
two firn and ice layers at 38 and 91 m depth, rela ted to the 
1986 (Chernobyl) and 1963 (atmospheric thermo-nuclear 
tests) events, respectively (personal communication from 
C. Vincent, 1996). 

The temperature measured in the boreholes decreases 
from - 9°C at 10 m depth to - 11 °C at 60 m, then remains con­
sta nt down to the bedrock. 

Main as sUlnptions 

With thi s data in hand, three main assumptions were m ade 
for simulating the glacier fl ow: 

(i) Axisymmetry: this simplifies the numerical treatment 
of the model and remains acceptable and justifi ed by 
the bedrock a nd surface topographies. The rotation 
symmetry axis of the model is the dome summit verti­
cal, and its radial cross-section corresponds to the line 
from the dome summit to the two boreholes (see Fig. I). 

(ii ) Stationary fl ow: the high spatial vari ability of the ac­
cumulation and the limited number of surface velocity 
measurements (over 2 years) do not allow a more ela­
borate approach. 

(iii ) Isotherm al (cold ) regime: the measured temperature 
variation is oly 2°C in the upper half-l ayer of the 
glacier; this assumption is acceptable in a first step. 

The most important feature of the glacier is the very 
large firn thickness compared to its total thickness (100% of 
the total glacier thickness in some places ). In order to keep 

the measured surface velocities as meaningful controls for 
the model, we needed to take into account the mechanical 
behaviour of the firn. 
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RHEOLOGICAL MODEL FOR POROUS ICE 

Duva and Crow's IIlodel 

Duva and C row (1994) have proposed a model for the beha­
viour of porous power-l aw creeping materi als which ta kes 
into account the stress concentrations caused by voids and 
small contact areas between grains. Noting (Jij the compo­
nents of the stress tensor a , the isotropic pressure is defined 
by 

p = (Jkk/ 3, (1) 

and the deviatoric components of a by 

(2) 

In the same way, f.ij being the strain-rate components, the 
trace of the strai n-rate tenso r € is noted 

(3) 

a nd the deviatoric components a re 

(4) 

Duva and Crow's model involves a viscoplastic potential 
which, at a fixed density, depends on a single invariant Eo 
of the strain rates given by 

. 2 . 2 
. 2 'Ye Em 
EO =~+-b- ' (5) 

where 'Ye 2 is the second invariant of the deviatoric strain 
rates defined as 

. 2 2' . 'Ye = e i j e i j, (6) 

and a and b a re functions of the materi al density only. With 
this notation, the stresses are expressed in terms of strain 
rates by the foll owing relations: 

2 B - I / n ' {l -n) / n . 
Si j = ;; EO eij , 

_ ~ B - 1/n ' {1-n)/n· 
P - b EO Em, 

the inversion of which gives 

. a B 11- 1 
e i j ="2 (J o Sij, 

a nd 

where (Jo is the stress invari ant defined by 

0"0
2 = 9: ss + bp2. 2 'J j,J 

From Equations (8) and (10) we obtain 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

The behaviour of an incompressible m aterial is obtained for 
a = 1 a nd b = O. In this case f.m = 0, e i j = f.ij, Equation (12) 
is the usual Glen's law (with Eo = 'Ye = 'Y and (Jo = T ), and 
Equations (7) and (9) reduce to orton- HofT power law 
which is the multiaxial extension of G len's law, generally 
used to describe the behaviour of isotropic glacier ice. 
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Fig 2. Model parameters a (a) and b (b) vs relative density 
D. Solid lines show Duva and Crow's (1994) originalfunc­
tions (ao, bo), andfunctions (aI, bIJ, (a2, b2) used in this 
study. Symbols show the values corresponding to Site 2 data 
and to Landauer's (1957) creep tests (u, uniaxial compres­
sion; C, confined compression; 1, isotropic compression). 

Application t o f irn a nd ice 

Duva and Crow's (1994) expressions for the density depen­
dence offunctions a and b are a = aa and b = bo with: 

1 + ~ (1- D) a - __ --"'-3 ~---,-"""":'" a - D2n/(n+l ) (13) 

and 

3 { (1 _ D)I/n }2n/ (n+l) 

ba = 4" n [1 _ (1 _ D)I/n] , (14) 

where D is the relative density (or solid volume fraction ) of 
the materiaL For porous ice D = p/ Pice where P is the actual 
firn density, and Pice = 0.917 Mg m - 3 is the density of pure ice. 

According to Duva and Crow (1994), Equation (14) leads 
to a densification rate, under isotropic pressure, equivalent 
to that given by Wilkinson and Ashby's (1975) spherical-pore 
modeL This latter model was shown by Pimienta (1987) to 
correctly reproduce the densification of polar ice for 
D > 0.785. According to Duval (1985), cold firn densification 
at lower densities is driven by grain rearrangement, com­
paction and diffusion for D < 0.6, then by dislocation creep 
in the contact areas until pore close-off occurs. Within this 
density range, Equations (13) and (14) are not valid. 

244 

To obtain an estimate of functions a and b which can be 
relevant for our study (0.4 < D < 1), we used the data of Site 
2, Greenland (Langway, 1967) where the horizontal velocity 
can be neglected (unlike at Dome du Gouter). Assuming 
that densification occurs under vertical compression with­

out lateral displacement (i.e. Ex = Ey = 0, and (Jz resulting 
from the superimposed-ice column), it was possible to com­
pute the values of a and b which allow reproduction of the 
measured densities corresponding to the observed surface 
accumulation rate, under the condition that a/b remains 
equal to ao/bo. The discrete values of a and b obtained by 
solving this inverse problem are shown in Figure 2a and b. 
A continuous representation, noted al and bl , suitable for 
numerical computations, was obtained as: 

al = (aa/bo)bl, for 0 < D < 1, 

b] = ba, for D > 0.785, 

bl = exp (-17.15D + 12.42), for 0.5 < D < 0.785, 

bl = exp (451.63D2 - 474.34D + 128.12), for D < 0.5, 

(15) 

where aa and ba are given by Equations (13) and (14). The 
corresponding curves are drawn in Figure 2a and b. 

In order to assess the influence of a and b on the simula­
tion, another set of functions, noted a2 and b2, was obtained 
by analysing the experimental results of Landauer (1957) 
through Duva and Crow's (1994) modeL Landauer per­
formed a number of creep tests on snow, under isotropic 
compression, uniaxial compression and compression with 
lateral confinement, and found that for relative densities D 
between 0.39 and 0.69, and loads between 0.027 and 
0.27 MPa, the appropriate value of exponent n was 3. The 
corresponding values of a and b are shown in Figure 2a 
and b, as well as the continuous set of functions which fit 
these values, given by: 

a2 = ao, b2 = ba , for D > 0.785, 

a2 = exp (-19.67 D + 15 .94), 

b2 = exp (-27.65D + 20.37), for D < 0.785, (16) 

where ao and bo are given by Equations (13) and (14). 
Other experimental studies (Bader and others, 1955; 

Melior and Hendrickson, 1965; Kojima, 1974; Desrues and 
others, (980) could not be used, sometimes because of miss­
ing test conditions, and generally owing to the big changes 
in density during the tests. 

NUMERICAL SIMULATION 

Va r iational forIllulat ion of t h e flow probleIll 

For a given field of relative density, with D strictly less than 1 
everywhere, (i.e. b > 0), the solution of the flow problem in 
domain V minimizes, among all admissible velocity fields 
(Hill's minimum principle): 

Ju = le!>, - DPice9iUi) dV - i ~iUi dr, (17) 

where the dissipation potential <T>, is given by 

<r> = __ n __ B-I/ni. (n+I)/n 
< n+l D , 

(18) 

Ui,9i are the velocity and gravity forces components, and r 
denotes the boundary of V where the stress vector, of com­
ponents ~'i , is prescribed. 

This formu lation, used by Duva and Crow (1994), is not 
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suited for our problem since we have to deal with both com­
pressible firn and incompressible ice. To overcome this diffi­
culty we adopted a mixed (velocity- pressure) formulation, 
based on the application of the virtual work principle, in 
which compressibility Equation (8) is enforced by using the 
pressure as a Lagrange multiplier. Among all admissible 
velocity fields, the solution of the flow problem is such that 

Iv ( SijOEij + pOEm + 6p (Em - ;) - D Pice9i 6U i) d V 

-t L.iOUi df = 0, (19) 

where 

(20) 

When the relative density is equal to 1 (b = 0, 1/ K = 0), 
this formulation is fully equivalent to that employed to 

simulate the flow of incompressible ice (Meyssonnier, 1989). 
From a technical point of view, the solution of the func­

tional Equation (19) was achieved by the finite-element 
method, using six-node triangular elements with a quadra­
tic interpolation of the velocities and a linear interpolation 
of the pressure (see Meyssonnier, 1989). The relative densi­
ties were given as quadratic functions of the coordinates as 
well. The computation was done under the assumption of 
axisymmetric flow. 

Formulation of the densification problem 

For a given velocity field, and under the assumption of sta­
tionarity, the Eulerian description of the densification pro­
blem is given by the equation aD/at = 0, that is: 

. aD 
D=Ui~ . 

UXi 
(21) 

Following a given mass of porous ice along its traj ectory, its 
density variation is induced by the change in volume so that 

(22) 

The solution of the densification problem is then obtained 
by solving the equation 

D. aD 
Em+Ui ~=O. 

UXi 
(23) 

In order to keep some homogeneity in the treatment of 
the model by using finite-element technique, we attempted 
to solve Equation (23) by Galerkin's method (Agrawal and 
Dawson, 1985; Chenot and others, 1990) and by a least­
squares procedure (Kanarachos, 1982). The former turned 
out to be very unstable (owing to the large variation in D 
from surface to bedrock), and the latter resulted in a too effi­
cient smoothing of the relative density. 

The efficient, but computation-time consuming, proce­
dure which was adopted consists in solving Equation (23) 
along the flow streamlines. Denoting by s the curvilinear 
coordinate along a streamline (not to be confused with the 
deviatoric stress tensor s ), and by Us the velocity tangent to 
this streamline, Equation (23) transforms into: 

D
. aD 
Em+Us a;=O. (24) 

The relative density at each node M of the finite-element 
mesh was computed in the following manner: the stream­
line arriving at M was computed from M to the glacier sur­
face (using the previous velocity field obtained by finite-
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element computation) by solving the set of equations 
dxi/ dt = -Ui (upstream procedure); in parallel, Equation 
(24) was solved by a Runge-Kutta method. 

Boundary conditions 

The only boundary condition needed for the densification 
problem is the surface density P which was set to 0.4 Mg 
m - 3, independently of the position. For the flow problem, 
the simple boundary conditions adopted were no sliding at 
the glacier/bedrock interface (the ice temperature is - ll CC) 
and a stress-free surface (doing so, the computed surface 
velocities serve as control for the simulation). The condition 
to be prescribed at the downstream (fictitious) boundary of 
the flow domain is not obvious since the topographic mea­
surements ended about 100 m downstream from the bore­
hole locations. To minimize the effects of this condition on 
the glacier flow in the vicinity of the boreholes, the studied 

domain was extended downstream by a lOO m (fictitious) 
outer ring (see marks A and B in Figure 1). Thus the lateral 
boundary of the axisymmetric model is placed at 
r = 500 m, r being the radial coordinate. Two types of 
boundary condition, noted BCl and BC2, were tried: BC1 
assumes that the lateral boundary is stress-free; BC2 is a 
kinematic condition which assumes that the vertical velo­
city wand the relative density D are independent of r, and 
that the horizontal velocity U verifies mass conservation, 
that is 6w/6r = 0 and 6(ur)/6r = o. 

Problem coupling 

The simulation was processed by solving the non-linear flow 
problem (Equations (19), (7) and (20)) for a given density 
field, then the densification problem (Equation (24)) for a 
given velocity field . The initial density field was derived 
from Herron and Langway's (1980) model. Special attention 
was needed to solve the densification problem, in order to 
prevent instabilities and unphysical results (i.e. relative den­
sities greater than 1), which could arise during intermediate 
steps of the computation. To avoid problems with stream­
lines possibly intersecting the bedrock (a situation that can 
be encountered when the overall density is too low), the den­
sity was set to D = 1 at the first layer of nodes close to the 
bedrock, allowing a possible discontinuity of D at the top of 
this layer. As regards the axis of symmetry (r = 0), which is 
a particular streamline, the densities were left at their initial 
value. To ensure a smooth convergence of the coupled 
problem, a relaxation factor was introduced to limit the 
density variations from step to step. D* being the density 
solution of Equation (24), corresponding to the velocities 
computed at step i with Di , the density at step i + 1 was 
taken (at each node) as: 

Di+l = Di + k(D* - D i
), (25) 

with 0 < k < 0.1. If a nodal density D* was found to be 
greater than I, it was replaced with 1 in Equation (25). 

The procedure was repeated until convergence was 
achieved for both velocity and density fields. 

RESULTS AND DISCUSSION 

All the computations were done using the same regular 
mesh (part of which is shown in Figure 1). Exponent n in 
Equations (7)-(14) was given the standard value of3. Taking 
into account the nature of the boundary conditions pre-
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Fig. 3. Age if the ice vs depth in borehole 2. Radioactive levels 
are shown by circles. For tests 1 and 2 curves were computed 
with B = 20 MPa - 3 a - I. Test 3 curve for B = 20 MPa-3 

a - 1 is shown for comparison. (Test 3 curve for B = 
31 MPa - 3 a -I, not shown, is superposed on test 1 and 2 curves). 

scribed, Glen's law parameter B only plays the role of a scal­
ing parameter for the velocities (relative densities are not 

affected by the value of B ). Its value was set arbitrarily at 
5 MPa - 3 a- I in order to perform the computations with a 
reasonable order of magnitude of the velocities. 

Three sets of results, tests 1, 2 and 3, are presented. They 
were achieved by using expressions (al ,b1) or (a2 ,b2), given 
by Equations (15) and (16), respectively, for functions a and 
b, and by prescribing the lateral boundary condition as BCI 

or BC2, namely: 

Test 1: a = aI, b = b1 , BCl 

Test 2: a = a2 , b = b2 , BCl 

Test 3: a = al, b = bl , BC2. 

Glen's law paraDleter B 

The final value of B was adjusted for each test so that the 
age of the ice particle which reaches the 1963 radioactive 
level, in borehole 2, was correct. The computed velocity fi eld 

was scaled consequently. The corresponding values for tests 
1 and 2 were B=20 MPa - 3 a-I, while for test 3 the correct 
age of the ice was obtained with B = 31 MPa - 3 a- I. 
Meyssonnier and Goubert's (1994) experiments lead to a 
value of B close to 17 MPa - 3 a- I at - 100C, corresponding to 

the minimum creep rate (secondary creep). Lliboutry and 
Duval (1985) adopt the values B = 19 MPa- 3a- 1 for sec­
ondary creep at - lOoC, with an activation energy 
Q = 76.5 KJ moC I Following these authors, the corre­
sponding temperatures would be -9.5°C for tests 1 and 2, 
a nd - 6°C for test 3. Then, as the in situ measured temper­
ature varies between - 90 and - 11 DC, the values of B found 

in our simulations are not unreali stic. However, owing to 
the fact that a volume of ice travelling from the glacier sur­
face to the bedrock experiences transient, then secondary 
and possibly tertiary creep, which is not taken into account 
by the rheological model used in this study, the values of B 
derived from the simulation are only mean values. Since the 
value of B for tertiary creep is about 250 MPa - 3 a- I at O°C 

(Lliboutry and Duval, 1985; Meyssonnier, 1989), which gives 
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B = 70 MPa- 3 a- I at - lOoC, the differences found in the 
three tests do not allow one of them to be selected as the 
most relevant. 

The age of the ice vs depth along the borehole 2 vertical, 
computed with the same value B = 20 MPa - 3 a- I for the 
three tests, is shown in Figure 3. The test 3 curve computed 
with B = 31 MPa - 3 a - \ not shown in the fig ure, is super­
posed on the test I and 2 curves. Thus the age of the ice 
seems to be independent of the test conditions. 

Velocities 

Velocity profiles along a vertical resulting from the three 
tests exhibit the same shape, an example of which is shown 

in Figure I. For the same value of B, the magnitude of the 

velocity is greater in tests I and 2 than in test 3, owing to 
the stress-free lateral boundary condition. As a consequence 
of this condition, the velocity fields achieved in tests 1 and 2 
are quite unrealistic in the region near the border of the flow 
domain (r >400 m; section A- B on Figure I). The com­

puted streamlines (test I) are shown on Figure I. Note that, 
except the symmetry axis of the model, none of them inter-
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Fig. 4. Horizontal (a) and vertical (b) surface velocities 
computed with B = 20 MPa - 3 a - 1 for tests 1 and 2, and 
B = 31 MPa - 3 a - 1 for test 3. The measured velocities are 

shown by circles. 
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Fig. 5. Relative density profile along the borehole 2 ice core. 
The computed profiles are shown by solid and dashed lines. 
Measured values are shown by circles. 

sect the bedrock. This is quite a reasonable result , which is 
an indication that the computed density field is consistent 
with the assumption of stationary flow. 

The horizontal and vertical velocities along the glacier 
surface are shown in Figure 4a and b. These curves were 
drawn with B = 20 MPa- 3 a- I for tests I and 2, and 
B = 31 MPa- 3 a-I for test 3. In tests 1 and 3, vertical veloci­
ties (Fig. 4b) are almost identical, while test 2 exhibits high­

er values. This is explained by the higher value of b for this 
test, and by the fact that snow compaction has a major influ­
ence on the vertical velocity at the glacier surface. On the 
contrary, the surface horizontal velocity is mainly influ­
enced by the value of a which control s the shear strain rate. 
Test 2 horizontal velocities are smaller than those of test 1 
(see Fig. 4a) because a2 is smaller than aI at the surface den­
si ty D ::::: 0.45 (see Fig. 2a). In general, the magnitude of the 
surface velocity is higher (by a factor of about 2) than the 
accumulation rate and than the measured velocity, in all 
tests. This may be caused by too high values of both a and b 
at low densities, or by the fact that the Dome du C auter is 
not in a stationary state. 

Densities 

The computed density contours look very similar in the 
three tests, except near the lateral boundary where the 
stress-free condition of tests 1 and 2 generates higher vertical 
velocities. They give the image of a layered medium, as ex­
pected. The region D > 0.99 (nearly the same for all tests) 
is shown in Figure I (shaded area). 

The computed density profile along the borehole 2 ver­
tical is shown in Figure 5, together with the density mea­
sured along the ice core. In the range 0.4 < D < 0.785, 
test 2 results in a density gradient higher than that obtained 
in test 1, owing to the fact that b2 is greater than bI , giving a 
higher compaction rate. This influence is only noticeable in 
the 30 m below the surface, past which the density profiles 
are identical. The difference in the lateral boundary condi­
tion (see Fig. 5, tests I and 3) has no effect near the glacier 
surface, and a very small one for D > 0.7. The measured 
density profile is generally well represented by the simula­
tions, with a slight advantage for tests I and 3. Note that 
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the simulated density profiles do not depend on the value 
of Cl en's law parameter B. 

CONCLUSION 

A flow simulation of the cold glacier of Do me du Couter has 

been presented. We made use of a special rheological model 
to describe the behaviour of firn and ice, adapted from the 
literature on the basis of polar fi rn-den si fi cation data and of 
creep-test results on snow, that is irres pective of the Dome 
du Couter available data. The finite- element formu lation 
adopted to solve the flow problem allows passage from firn 
to ice in a continuous manner. The use of this model for 
glacier-flow simulation with this formulation constitutes 
the main interest and originality orthe study. 

The simulation was based on the assumption of stat ion­
ary state, but the computed surface velocities were found to 

be much higher than that observed. On the other hand, the 

measured density profile is very well reproduced by the 
model. No straightforward conclusion can be drawn as re­
gards the stationarity of the glacier, as surface velocities are 
extremely sensitive to the values of rheological parameters a 
and b at low densiti es. As these pa rameters certainly do not 
depend only on the density but also on the actual structure 
of snow, a more detailed study of snow behaviour at the 
glacier surface should be done in order to check their order 
of magnitude. 

The ages of the ice along the ice-core, computed with 
difTerent se ts of functions a and band difTerent lateral 
boundary conditions, are in accordance. An age of 120 a is 
found at 120 m depth, past which the asymptotic shape of 
the date curve renders any prediction meaningless. 
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