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FIXED POINT PRINCIPLES FOR CONES OF A 
LINEAR NORMED SPACE 

GILLES FOURNIER 

0. Introduction. In [8] and [9], Krasnosel'skiï proved several funda­
mental fixed point principles for operators leaving invariant a cone in a 
Banach space. In [11], Nussbaum extended one of the results, the 
theorem about compression and expansion of a cone, to condensing maps 
and he applied this theorem to prove the existence of periodic solutions 
of nonlinear autonomous functional differential equations. 

Nussbaum's proof makes an essential use of the difficult Zabreiko and 
Krasnosel'skiï, and Steinlein (mod p)-theorem for the fixed point index 
[13-16]. In [6], Fournier and Peitgen proved two different versions of this 
theorem for completely continuous maps each one being sufficient for 
Nussbaum's applications. The proofs of these two theorems are much 
less involved and, although they are different, they make use of the same 
easier generalized Lefschetz number calculations (see [12] for (mod p) 
and [5] for compact attractor). The proofs are divided into two com­
plementary parts, the first one gives the following results. 

Let P be a cone in a Banach space and let T'.P —> P be a completely 
continuous map. Denote Sr = {x <E P'-IMI = r) and BT = [x (E -^-IWI 
<r}. 

THEOREM 0.1. Assume that 
(0.1.1) there exists m such that Tl (Sr) C Br whenever i ^ m; 
(0.1.2) there exists n such that Tn (Br) C_ Br. 
Then ind (P, T,Br) = 1. 

THEOREM 0.2. Assume that 
(0.2.1) there exists m such that Tm (Sr) C Br; 
(0.2.2) for any x Ç Br, there exists n = n(x) £ N such that Tl(x) G Br 

for i ^ n. 
Then ind (P, T,Br) = 1. 

Using Nussbaum's result, we would have a similar theorem. 

THEOREM 0.3. Assume that 
(0.3.1) there exists m — p{ (where p is a prime and t is an integer} such 

that Tm (Sr)C BT; 
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(0.3.2) Tm{%) = x Ç Br implies T(x) Ç BT. 
Then ind (P, T, J3r) = 1 (mod p). 

In all three cases, T has a fixed point in BT. 
Let us notice that Theorem 0.3 implies Theorem 0.1; conditions (0.2.1) 

and (0.2.2) imply condition (0.3.2); thus if, in (0.2.1), m is a power of a 
prime, the existence of a fixed point is implied by Theorem 0.3. 

Furthermore, if we delete one condition from any theorem above, that 
theorem is no longer true (see examples (2.7.1), (2.7.2), (2.7.3) of [6]). 

The objects of this paper are to give a common proof of Theorem 0.1 
and 0.2 and their complementary theorems, and to weaken, as much as 

possible, the conditions on T D and T n, -r, . Our answer to this prob-
r\bT 

lem is given in Propositions 4.1, 4.2 and 4.3. Let us notice that, in 
Proposition 4.1, condition (0.3.2) is no longer satisfied. 

1. Lefschetz number. In this paper, we shall make an essential use 
of the notion of the generalized Lefschetz number in the sense given by 
Leray [10] and of the fixed point index for metric ANR's developed in [7]. 

Let E be a graded vector space over the field of rational numbers, <j> an 
endomorphism of degree zero of E and 

N(ct>) = U {ker (4>n):n > 0}. 

Then <t> is said to be a Leray endomorphism if and only if E = E/N(<j>) is 
of finite type, that is (i) dim Eq < oo for all q, and (ii) Eq 9e 0 only for a 
finite number of q. In that case, one defines Tr(0) = trace (<£), where 
</>:£—•£ is the induced endomorphism. 

Let H denote the singular homology functor with rational coefficients 
and/* denote H(f), where f'.X —• X is a continuous m a p ; / is said to be a 
Lefschetz map if and only if /* is a Leray endomorphism and, in that case, 
the generalized Lefschetz number of/ is defined to be 

A(/) = £( - l ) 'Tr( /„) . 
Q 

A topological space X is acyclic if dim H0(X) = 1 and for all q > 0 
Hq(X) = 0. Notice that if X is acyclic, it follows that A(f:X —• X) = 1. 
Any contractible space is acyclic (X is contractible if lx is homotopic to a 
constant map). 

The reason for using singular homology is that it has compact support. 
We use this essential fact in the following lemma. 

LEMMA 1.1. Letf:X—*X be a map and Y C X be a subset of X such that 
(i) Hq(Y) = Ofor all q > m and (ii) dim (Hq(Y)) < oo for all q. Assume 
that, for any compact subset K of X, there exists a map g\X —> X and an 
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integer n such that g is homotopic to fn and g(K) C Y; thenf is a Lefschetz 
map and 

m 

A(/) = E ( - l ) * T r (/*,). 
«7=0 

Furthermore, if f*q(i*q(Hq(Y))) C i+q(HQ(Y)) for all q g m, where 
i: Y —» X is the inclusion, it follows that 

A(/) = E ( - l ) ? T r ( / „ | 
q=0 

i%q(Hq(Y)) )• 

Proof. It suffices to prove that 

tr(/, f f) = t r ^ : ! , - ^ ^ ) 

where 4̂ is the smallest /-invariant subspace of H(X) containing 
i*H(Y) whenever this last map is defined. (Notice that if q > m, the 
latter is 0.) 

Consider the following commutative diagram 

0- + A0 +Hq{xy + HQ(X), -*o 

*<7 ?" 

0- + AC + Hg(X)- + Hq(X)t + o 
A, 

where/*/ a n d / » / ' are contractions of/#ff. (This diagram is obtained from 
the similar diagram without the ^ ' s ) . By a property of the ordinary 
trace, we obtain that 

trtfW) = tr(JV) + tr(/„") 
if the last two traces are defined. If tr (/*«/') = 0 and dim Aq < oo, the 
lemma is proved. Thus it remains to show that 

N(Uq")=Hq{X)l 
I Aq 

and dim Aq < oo . 
Let a Ç Hq(X). There exist a compact subset i£ of X and 6 G Hq(X) 

such that j*q{b) = a, where j:K —» X is the inclusion. Since the following 
diagram is commutative 

i 
Y- •+X 

2£ >X 

where gf is a contraction of g, it follows that 

/ * / ( « ) = £*<» = g*Q°j*q(b) = i*q°g*qQ>) Ç i*qHq(Y) CAq. 
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Thus a + Aq £ N(f*Q") and if Se is a basis of i*qHQ(Y) there exists an 
integer n such that U {/#ff'(«â?):l S i è n} generates AQ. 

2. Fixed point index. A map f:X —> F is locally compact provided 
that for any x ^ I , there exists a neighbourhood ^ of x such tha.tf(%) 
is contained in a compact subset of F. Consider the m a p / : ^ —> X where 
^ is an open subset of X. Denote by Fix (/) the set of fixed points of/ 
(that is Fix (/) = {*£ X:/(x) = *}). 

A m a p / : ^ —> X is called admissible provided (i) °il is an open subset 
of X and (ii) Fix (/) is compact. A homotopy h\°lt X I -* X is called 
admissible provided (i) tfl is an open subset of X and (ii) 

Fix (A) = \J {Fix (A,):/ € /} 

is compact. 
Let X be an ANR (cf. [1]) and let f:^ - ^ I b e a locally compact, 

admissible map. Then the number ind (X,f, °W) is defined ([2], [7]) and 
is called the fixed point index of the map j\°U —» X. 

This index satisfies a number of properties among which are the 
following: 

Additivity: Assume that f = f i U f 2 and that 

Fix (/) n °u1 c\ °tii = 0. 
Then 

ind (X,f, °tt) = ind (X,f, <%x) + ind (X,f, °U<L). 

Excision'. Let <%' C ^ and Fix (/) C ^ ' . Then 

f = f\ :<%'-> X 

is admissible and ind (X,f, °ti) = ind (X', / ' , ^f ' ) . 
Fixed /ww/s: If ind (X,/ , ^ ) ^ 0, it follows that Fix (/) ^ 0. 
Homotopy: Let / r . ^ X / —> X be an admissible homotopy; then 

ind (X, ho, °U) = ind (X, hu <%). 

Normality: Let °U = X a n d / be a compact map; then ind (X,f, X) = 
A(/). 

Let M be a compact subset of X; M is said to be a compact attractor for 
the m a p / : X —> X provided the closure of the set {fn(x)}m^ intersects M, 
for any x £ X. 

Assume f:X —» X is a map with a compact attractor if; then ([4], [5]) 
i f has an/-invariant open neighbourhood V such t h a t / ( F ) is relatively 
compact in V and A(/: V —* F) = A(/). Since/ has no fixed points in 
X\M, we obtain the following property of the fixed point index: 
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Normality: Assume that °tt = X and t h a t / has a compact attractor. 
Thenind (X,f,X) = A(/). 

3. Main results. 
Notations 3.1. Let A be a set. Denote by À, the interior of A, àA the 

boundary of A, and Â the closure of A. 

Definition 3.2. r\X —» F is a retraction if F C ^ and r oi = 1F, where 
i: F —> X is the inclusion. 

In this section, we shall prove the following theorem. 

THEOREM 3.3. Let f:X —> X be a locally compact map where X is an 
ANR. Let A be a closed acyclic subset of X such that f(àA) is relatively 
compact and there exists a retracting r onto àA which is homotopic to \A. 
Furthermore assume that the following conditions are satisfied: 

(3.3.1) for any a £ A, there exists an integer n{a) ^ 1 such that 
fnw(a) 6 Â 

(3.3.2) there exists an integer n such that fn( à A) C A 
(3.3.3) for any a £ àA and for any integer 1 ^ i ^ n (where n is the 

same as in condition (ii)) there exists an integer m and V a neighbourhood 
of a such that 

fm{V C\ àA) C A and m = i (mod n). 

Then ind (X,fop,A) = 1, where p:X —> X is defined by p A = r 

and p Y\ Â — ^X\A> If furthermore f(A) is relatively compact, then 

mà{XJ,A) = 1. 

Notice that condition (3.3.3) can be replaced by the following simpler 
but less general condition. 

(3.3.3a) for any a £ àA and for any integer 1 ^ i ^ n, there exists 
an integer m such that 

fm(a) G Â and m = i (mod n). 

In order to prove this theorem, we shall need the following lemmas. 
But first let us introduce some definitions used in these lemmas: 

W = VJ {f-*(Â):i è 1} 

p\X —» X such that p 

g : X —-• X such that g = / o p . 

. = r and p 
A X\A = lx\ A 

LEMMA 3.4. Under the assumptions of condition (i) of Theorem 3.3, 
f(W) C W, p(W) C W, g(W) C W, p~ lwandg~f:W->W. 
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Proof. This is evident from the fact that A is in W. 

LEMMA 3.5. Under the assumptions of condition (3.3.1) of Theorem 3.3, 

W = U { r " * ' ( i ) : i ^ 11-

Proof. If a 6 W, it follows that p(a) £ W. Thus there exists an integer 
n ^ 1, minimal with respect to the property fn(p(a)) Ç Â; hence 

gn(a) £ 4̂ since g 
X\A ~ f\X\A' 

LEMMA 3.6. If f(àA) is relatively compact and àA C ^Jin f~l(A), then 
g:W —» W has a compact attractor. 

Proof. Consider the compact set M = f(àA). First, M C W: In fact, 
by (ii) , /(di4) C yJnt=if-i+l(A) hence 

f(àA) C U r+\A) C U ri+\W) C W. 

Finally M is a compact attractor; iî a £ W there exists n such that 
gn(a) e A thus ^ + 1 («) G ÏÔ4) = M. 

LEMMA 3.7. Under the assumptions of Theorem 3.3, A(g: W—> W) = 1. 

Proof. We shall apply Lemma 1.1 with Y = A. 
(A) Let us show that for any compact subset K of W, there exists an 

integer k and a map h'.W —* W such that /̂  is homotopic to gk and 
h(K) CA. 

By Lemma 3.5, there exists j such that K C.^J {g~i(A)\i = 1, . . ., 
j — 1). Hence if x Ç X, there exists d ^ j such that gd(x) £ 4̂ and 
gl{x) $ 4̂ for all d < i ^ j . Let b = p Q gd(x) 6 dyl ; we have that 
gi(x) = f-^b) for all d < i Sj hence n > j - d} since /"(&) G / n ( àA) 
C ^4- Consequently 

£>(#) = U ( / W , * = 0 . . . « - 1} 

where i£* = pogi-^K) Pi dv4 is compact. Since /woP ( ,4) C -4 and 
fn o p ̂  gn: W —» H7 it is sufficient to prove that for every Ku there exists 
^ such that 

(ropy(f(Kt))CA. 

Let x G i£*. By condition (iii), let m = i (mod w) and let V be an open 
neighbourhood of x such that fm(V C\ àA) d A. Denote by t the integer 
such that m = tn + i. Then 

f o f (VC\ àA) = / r a ( F H d4) C^4 

and since ( f o p ) (̂ 4 ) C ^4, it follows that 
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Finally since V and t depend on x, which is arbitrary, we can cover Kt by 
a finite number of such F's; and if 5 is the maximum of the corresponding 
t's, we have that 

since (fnoP)(A) C A. 
(B) Let us show that A(g: W-* W) = 1. 
Since dim H0(A) = 1, the homology class [x] of the constant map x 

generates H0(A) for any x 6 A. It is sufficient to prove tha t /* 0 (M) = 
[x]: because, since g ~ f and so g# = /*, we have that 

g*o°j*o(H0(A)) Cj*o(H0(A)); 

hence by Lemma 1.1 and by (A), we obtain that 

A (g) - Tr[ë*0\MHo(A))) 

Let us now prove our assertion. Notice that [x] = [y] for any x, y £ A. 
Take x £ àA; we have that /*ow(M) = Lfw(x)] = [x] since /n(x) G A. 
Furthermore, take m = 1 (mod n) such tha t / m (x) G A\ thus/*ow(M) = 
[fm(x)] = [x]. Take & such that m = kn + 1\ then 

/•oM = /((/•ow)*M) = /£s+1M = /*omM = M. 
Proof of Theorem 3.3. By Lemmas 3.6 and 3.7 and the normality 

property of the index, 

ind (W,g,W) = A(g:W-*W) = 1 

(g is locally compact since g = f ° p a n d / i s locally compact). By Lemma 
3.5, g has no fixed points in W\A, thus by excision, 

ind (X, g,Â) = ind (W, g,Â) = ind (W, g, W) = 1. 

This proves our first assertion. 
Finally let us show the homotopy property of the index, 

md(X,g,A) = ind(X,f,Â), 

provided that / ( .4) is relatively compact. 
In fact, the homotopy h(x, t) = tf(x) + (1 — t)g(x) is a homotopy 

between/ and g, which is compact since g (A) = / ( àA) C f(A) are com­
pact. Furthermore h(x, t) = f(x) for any x Ç 5̂ 4 and / Ç [0, 1]; thus ht 

has no fixed points on àA, and 

Fix (h:Â X I-+X) = Fix (h:A X I-* X) 

which is a closed subset of the compact A P> h (A X I). 
This concludes the proof of Theorem 3.3. 
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4. App l i ca t ions . We shall t ry to apply the preceding theorem in 
order to obtain certain fixed point principles of the Krasnosel'skiï type 
([8], [9]) for mappings of cones in a linear normed space. Our results 
al though similar to those of ([11]), are independent of these last results. 
However, they will generalize Theorems 2.5 and 2.6 of [6]. 

We shall call a wedge a subset P of a linear normed space E which is a 
convex subset of E and satisfies the following conditions: 

(i) a 6 P implies tha t ta G P for all t è 0 
(ii) there exists y (z P such tha t —y G P. 
Notice tha t P is an A N R (cf. [3]). 

PROPOSITION 4.1. Let P be a wedge of E and let f:P —> P be a com­

pletely continuous map {i.e., a map which is compact on bounded subsets). 
Assume that there exists r > 0 such that 

(4.1.1) for all a G Br there exists na > 0 such that fna(a) G Br 

(4.1.2) there exists n > 0 such that (i) fn(Sr) C Br, and (ii) for any 
a G Sr and i G N, there exists m G N and e > 0 such that m = i (mod n) 
and 

r(N((a)nSr) CBr. 

Then ind {P,f,Br) = 1. 

Proof. I t is sufficient to verify the conditions of Theorem 3.3 for A = Br. 
Since Br is convex, it is contractible, hence acyclic. Since Br is bounded, 
f(Br) is relatively compact. Notice t ha t the retraction from Br onto Sr is 
homotopic to the identity. Finally the conditions (i)-(iii) of Theorem 3.3 
are immediate from conditions (i) and (ii) of the Proposition. 

PROPOSITION 4.2. Let P be a wedge of E and letf'.P —> P be a completely 
continuous map. Assume that there exists r > 0 such that 

(4.2.1) for all a £ P\Br, there exists na such that 

r«(a) e P\Br 

(4.2.2) there exists n > 0 such that (i) fn(Sr) C P\Br and (ii) for any 
a G Sr and i G N, there exists m G N and e > 0 such that m = i (mod n) 
and fm(Ne(a) Pi Sr) C P\Br. 
Then ind (PJ,Br) = 0. 

Proof. We apply Theorem 3.3 with A = P V ^ . 
First there exists the radial retraction of P\Br onto Sr. Since P\Br is 

contractible (cf. [6]), P\Br is acyclic. Fur thermore g(P\Br) C / (5V) 
which is relatively compact. Hence by Theorem 3.3, 

ind (P, g, P\Br) = 1. 

Moreover ind (P,g,P) = 1: I n f a c t , g ( P ) = f(Br) is a compact subset 
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of P , hence g is compact. Therefore 

i n d ( P , g , P ) = A ( g : P - > P ) . 

Furthermore A(g:P —> P) = 1 since P is acyclic. 
It follows that 

ind (P , / , B r) = ind (P, g, P r ) = ind (P, g, P) - ind (P, g, P \ P r ) 

= 1 - 1 = 0 

since / 
BT 

ô has no fixed points on Sr. 
3T 

PROPOSITION 4.3. Let P be a wedge of E and letf:P —» P be a completely 
continuous map. Assume that conditions (4.1.1) and (4.1.2) are satisfied 
for r and that conditions (4.2.1) and (4.2.2) are satisfied for R. Let 

°ti = \x g P : min {r, P} < ||x|| < max {r, P}}. 

ind (P f <%) = | " " 1 ' ^ ' r < R (exPansion) 
\ + l,ifr>R (compression); 

thusj f has a fixed point in °U. 

Notice that we can replace, in Propositions 4.1, 4.2 and 4.3, the sphere 
5 by a closed convex subset. 

Remark 4.4. Let H be a hyperplane such that H (~\ P = {0} and let 
y (z P such that —ydP and Sr = (ry + H) P\ P is bounded for all 
r > 0. Call 

P r = (co(Sr\J{0}))\ST; 

then S r, P r and P\Br are convex subsets and the boundary of Br and 
P\Br, i n P , is S r: in fact, 

Br = ^ s ^ r S * and P = U ^ 0 Ss. 

Since S r is an ANR, the two retractions from BT and P\Br, respectively, 
onto Sr exist and Propositions 4.1, 4.2 and 4.3 are still valid for these new 
definitions of S r, BT and P\Br. 
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