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A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’,
but cannot be found through today’s numerical simulations, which require substantial
viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo
equations. By using an alternative numerical technique, proposed by Taylor (Proc.
R. Soc. Lond. A, vol. 274, 1963, pp. 274–283), we recently obtained the first
magnetostrophic dynamo solutions ever derived (Wu & Roberts, Geophys. Astrophys.
Fluid Dyn., vol. 109, 2014, pp. 84–110). These were axisymmetric and of mean-field
type. In an earlier paper (Roberts & Wu, Geophys. Astrophys. Fluid Dyn., vol. 108,
2014, pp. 696–715), we proposed an extension of Taylor’s method. Here we explore
its numerical implications, comparing them to the consequences of Taylor’s original
proposal. One of the differences between the two approaches is that our modification
retains torsional waves but Taylor’s theory does not. A more important difference is
that our extension of Taylor’s method is, for reasons presented here, the most general
possible that does not suffer from the limitations imposed by viscosity on today’s
numerical simulations.
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1. Introduction
1.1. Brief history of mean-field models

This section gives our view of the history and development of mean-field dynamos,
and prepares the ground for new material presented later.

The mean-field dynamo was the invention of Parker (1955). By the late 70s, his idea
had blossomed into an entire subject, reviewed by Parker (1979) and by this special
issue of Journal of Plasma Physics. The mean-field dynamo depends on a modification
of Ohm’s law for the electric current density, which in pre-Maxwell theory is J =
σ(E+U × B), where B is the magnetic field, σ is the electrical conductivity of the
fluid and U is its velocity. Ampère’s law relates J and B by J=∇× (B/µ), where µ
is the magnetic permeability of the fluid, which is here taken to be that of free space:
µ= 4π× 10−7 H m−1. It follows that η∇ × B= E+U× B, where η= 1/µσ is the
magnetic diffusivity.

Parker argued that, if the conductor is in turbulent motion, Ohm’s law changes to
J = σ T(E + U × B + E), where σ T is the turbulent conductivity and E = u× b, the
overbar signifying the ensemble average of what is under it. Here j= J− J, e=E−E,
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u=U−U, b= B− B, etc. are the ‘fluctuating parts’ of J, E, U and B; see Moffatt
(1978, p. 148). In short, Parker (1957) posited that ηT∇×B=E+U×B+E , where
ηT
= 1/µσ T is the turbulent magnetic diffusivity, and ηT

� η. That σ T might be much
less than σ had already been anticipated by Sweet (1950).

In principle, E can be found by integrating the full MHD equations, and taking
the statistical average. This task is as difficult as any in theoretical physics. Therefore
approximations to E are sought, motivated by a qualitative understanding of the fluid
dynamics controlling U. The simplest proposal was that of Parker (1955): E ∝ B.
Because E represented a new way of Generating electric current, he denoted by Γ
the new constant of proportionality. Subsequently Max Steenbeck, Fritz Krause and
Karl-Heinz Rädler, referred to here as ‘SKR’, used α instead, and their choice has
been preferred. Parker’s Γ -effect is now universally called ‘the α-effect’:

E = αB, so that ηT
∇×B=E+U×B+ αB. (1.1a,b)

Comparing the last 2 terms in (1.1b), it is seen that α is a pseudoscalar, i.e. a
scalar that changes sign on coordinate reflection, x→ −x. After some simplifying
assumptions, Steenbeck, Krause & Rädler (1966) could evaluate α approximately.
SKR also proposed and motivated several alternatives to (1.1a) that are not examined
here. (See Krause & Rädler (1980), Rädler (1966) and other early papers by SKR
translated from German by Roberts & Stix (1971).)

The main significance of the α-effect is that it allows B to have a persistent
self-generated axisymmetric part, despite Cowling’s theorem (Cowling 1933). Soon
many axisymmetric dynamo models were constructed that made use of that fact, too
many models to be referenced here. Parker himself swiftly demonstrated the scientific
potential of his idea by using it plausibly to explain the magnetic polarity cycle of
the Sun and the progression of solar activity towards the equator during each polarity
cycle (Parker 1957).

As Parker (1955) recognized, linear axisymmetric α-models succeed because
the zonal current αBφ , created from the zonal magnetic field Bφ by the α-effect,
produces the meridional magnetic field, BM. This in turn creates zonal magnetic field
Bφ either by the α-effect or by zonal shearing of BM (often called ‘the ω-effect’
and sometimes ‘the Ω-effect’), or by both mechanisms working together. At one
extreme (|α| � ro|ω|), where production of Bφ by α is negligible and ignored, a
regenerative solution is called ‘an αω dynamo’. Then (1.1a)φ is replaced by r2B · ∇ω.
At the other extreme (|α| � ro|ω|), where the shearing of BM is so ineffective as
to be negligible, a regenerative solution is called ‘an α2 dynamo’. Between the
extremes, where |α| = O(ro|ω|), both mechanisms create zonal magnetic field, and
regenerative models are called α2ω dynamos; e.g. § 2 of Soward & Jones (1983). Wu
& Roberts (2014) and this paper provide examples of α2 and αω dynamos. Many
studies, including ours, assume that α and ω are specified and time independent. A
pole–equator temperature difference is often held responsible for creating the zonal
shearing from which the ω-effect got its name.

Parker (1955) argued that Coriolis forces would make α non-zero if the turbulence
were inhomogeneous as is the case, for example, if the density of the fluid, ρ(x),
depends on position x through gravitational compression, or through thermal expansion
in a temperature-varying environment. Alternatively, Steenbeck et al. (1966) showed
that the required inhomogeneity could be due to a gradient in the turbulent intensity,
√
(u2), as is appropriate when ρ is nearly uniform and the Boussinesq approximation

is adopted, as is done below. Krause (1966) reviewed the ongoing work of the
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Steenbeck–Krause–Rädler team. This paper contained on pages 161–163 a more
detailed description of helicity than that of Steenbeck & Krause (1966) but, as
Krause (1966) is a difficult paper to access, we shall refer below to Steenbeck &
Krause (1966). In this they continued the argument that led them to their approximate
α (see above), finding that α is proportional to another pseudoscalar H, defined from
U and the vorticity, ∇×U, of the flow by

H ≡U · (∇×U). (1.1c)

Steenbeck & Krause (1966) and Krause (1966, § 9) christened H ‘Schraubensinn’
(‘screwiness’) but later Moffatt (1969) proposed the name by which it is now
universally known: ‘helicity’. Even the translators of Steenbeck & Krause (1966)
chose ‘helicity’ in preference to ‘screwiness’!

As a historical note, we should add that Steenbeck & Krause (1966) do not average
U ·∇×U in their § 9. In fact, Braginsky (1965) had already shown that, if the motion
U+u were laminar with U being axisymmetric and much greater than the asymmetric
u, then an α-effect E = αBφ1φ would be created provided u had finite helicity H, the
average being over φ and not over a turbulent ensemble. Braginsky therefore did not
need to adopt an ansatz such as (1.1a) because he could evaluate his α explicitly in
terms of u. Soward (1972) discovered how Braginsky’s α is related to H; see also
Soward & Roberts (2014). Braginsky (1964) used his α to create kinematic dynamos
driven solely by U+ u, these being the first mean-field models ever constructed that
could be said to be mathematically complete.

1.2. Organization of this paper
Both spherical coordinates (r, θ , φ) and cylindrical coordinates (s, φ, z) are used
below, the north polar axis Oz being θ = 0 in the former and s= 0 for z > 0 in the
latter. Unit vectors are denoted by a bold unity with a suffix specifying the direction
in which the pertinent coordinate increases, e.g. 1φ and 1z above. The core boundary,
S, is axisymmetric with respect to the rotation axis Oz. The northern hemisphere of
S is labelled N , and the southern hemisphere S . The interior and the exterior of the
core are respectively v and v∗. Ensemble averages are no longer needed below; the
overbar will be for averages over φ. For our mean-field models, every scalar field Q
and the components of every vector field Q are independent of φ.

We use pre-Maxwell electromagnetic theory and simplify the fluid dynamics by
adopting the Boussinesq approximation. We use SI units and, except in §§ 1 and 4.1,
we employ the following dimensionless variables: For mass M, length L, time T and
magnetic field B

M 7→ ρr3
oM, L 7→ roL, T 7→ (η/r2

o)T, B 7→ (2Ωρµη)1/2B, (1.2a−d)

where the density ρ and the magnetic diffusivity η are each assumed to be the
spatially constant; the angular speed of our reference frame is Ω , and µ is the
magnetic permeability (assumed to be that of free space, µ = 4π × 10−7 H m−1).
Also, for velocity, electric current density, J, electric field and pressure Π (including
a part (ρΩ2r2

o)/2 from the centrifugal acceleration)

U 7→ (η/ro)U, J 7→ (2Ωρη/µr2
o)

1/2J, E 7→ (2Ωρµη3/r2
o)

1/2E, Π 7→ (2Ωρη)Π.
(1.3a−d)
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Finally, for kinetic and magnetic energies K and M, power P , α-effect and specific
body force, F

K,M 7→ (ρη2ro)(K,M), P 7→ (ρη3/ro)P, α 7→ (η/ro)α, F 7→ (2Ωρη/ro)F.
(1.4a−d)

Our reference frame rotates with the mantle, with angular velocity (2Eη)−11z, where

Eη ≡ η/2Ωr2
o, (1.5)

is the magnetic Ekman number.
This is a sequel to two of our recent papers, Roberts & Wu (2014) and Wu &

Roberts (2014), which will be referred to respectively as ‘paper 1’ and ‘paper 2’.
These are oriented towards the geodynamo but, as here, they ignore the existence of
Earth’s solid inner core, the core being assumed spherical and entirely fluid. The Earth
provides the estimates we make of relevant dimensionless parameters such as Eη. As
in paper 2, α, U and B are axisymmetric, i.e. they depend on s and z only; often
Q(s, z) is written Q(x). Equation X, § Y and figure Z of paper n are referred to as
(n: equation (X)), (n: § Y) and (n: figure Z).

2. The magnetostrophic approximation
Magnetostrophy (abbreviated MS) is a term we shall use to mean the absence of

viscous friction in Earth’s core. This approximation, used throughout this paper, is
suggested by the extreme smallness of the ratio of the viscous and Coriolis forces,
quantified by the Ekman number E = ν/2Ωr2

o, where ν is the core’s kinematic
viscosity, Ω (≈ 7.3 × 10−5 s−1) is the angular speed of Earth’s rotation and
ro (≈ 3.48× 106 m) is the radius of the core, assumed spherical. For ν≈ 10−6 m2 s−1,
a value widely believed to be realistic for Earth’s core, E≈ 10−15; e.g. de Wijs et al.
(1998), Voĉadlo et al. (2000).

It is generally recognized that core motions are turbulent and, lacking a proper
deductive theory of turbulence, several ad hoc representations of turbulent stresses
have been made, including ones that simply replace the kinematic viscosity ν by a
turbulent viscosity, νturb. Although this certainly oversimplifies turbulent dynamics (see
e.g. Roberts & King 2013, § 9.2), it has been used to make the estimates Eturb ≈ 6×
10−11 (Buffett 1992) and Eturb ≈ 2× 10−12 (Buffett & Christensen 2007). We believe
that these turbulent Ekman numbers are still so small that the MS approximation is
justified.

The fully three-dimensional MHD models that today dominate dynamo studies first
appeared in the mid-1990s. We shall call them ‘today’s models’. Their impact has
been so great that interest in the MS alternative has waned, even though demands for
numerical stability condemn investigators to limit themselves to E vastly greater than
the geophysically realistic 10−15. When E has to exceed ∼10−6 in simulations, Roberts
& King (2013) called them ‘viscously dominated’. They pointed out that, even if the
Earth’s core were made of honey, E would still be less than 10−11!

A main preoccupation of dynamo simulation over the past 2 decades has been
to reduce the gap between the E of today’s models and realistic E, using the
ever-increasing capability of computer hardware. Recently Schaeffer et al. (2017)
were able to reach E = 3 × 10−7 in buoyantly driven three-dimensional (3-D)
dynamos. Livermore, Jackson & Hollerbach (2013) reached E= 3× 10−9 in a limited
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simulation that tracked only the toroidal part of the magnetic field. Although it is
remarkable what has been achieved in 2 decades, the drive for smaller E becomes
increasingly difficult as E is decreased; see Davies, Gubbins & Jimack (2011). Using
Moore’s law, Roberts & King (2013, § 9.1) estimated that advances in computer
technology will be unable before AD 2038 to simulate buoyantly driven 3-D MHD
dynamos for E ≈ 10−15. The ever-increasing difficulty of attaining ever-smaller E is
caused principally by the need to resolve numerically the Ekman layers at the core
boundaries, whose thicknesses are dimensionally δE

∝ E1/2ro. For the numerically
attainable E = 10−6, δE is approximately 3 km; for the unattainable E = 10−15, δE is
about 10 cm. The rate Qν of energy dissipation through viscosity is (dimensionally)
the product of the volume of the boundary layer O(r2

oδ
E) and the dissipation rate

per unit volume O(ρν(U/δE)2), where U is the characteristic speed of core motions;
therefore Qν ∝ 2ΩρU 2r2

oδ
E. In other words, as E is reduced, the influence of the

boundary layers on the mainstream solution (the solution at distances greater than
δE from boundaries) diminishes until plausibly it is effectively non-existent. The
boundary layers themselves become vanishingly thin. Why then continually press
today’s models to deliver solutions for smaller and smaller E? Why not follow
the example of every other modeller in theoretical physics: if a physical process is
unimportant, exclude it from the model?! Although this may motivate magnetostrophic
modelling strongly, it is insufficient; more should be said about the limitations of
MS.

Today’s computer models have one significant attribute lacked by MS: they include
the inertial force in full. MS solutions must, however, approximate the inertial force
to avoid the large Ekman numbers that make today’s computer models irrelevant to
the geodynamo and to most cosmic dynamos. This subject is the main topic of § 4.1
below. The MS approximation is often viewed as the logical way to find solutions
when viscosity is unimportant, but in reality its success also depends indirectly on
the smallness of the inertial force, as measured by the Rossby number, Ro, defined in
§ 3.1 below.

It is not appropriate here to prolong discussion by including the inner core and the
shear layers that plausibly exist at the tangent cylinder, which is the cylinder parallel
to Oz that touches the inner core at its equator. There is an extensive literature on
these shear layers, going back to Proudman (1956) and Stewartson (1966); see Dormy
& Soward (2007). Most MS models, including ours, do not recognize the existence of
the inner core, but see Hollerbach (1994) and Livermore & Hollerbach (2012).

It is natural to hope that today’s dynamos for E . 10−6 will differ little from
those operating at E ≈ 10−15, but there are plausible reasons for thinking otherwise.
These doubts followed the analysis of Chandrasekhar (1954, 1956) of the marginal
stability of a rotating Bénard layer in a vertical magnetic field, and were first
articulated by Eltayeb & Roberts (1970) who argued that, when E is small enough,
any sufficiently strong magnetic field would facilitate (magneto-)convection so much
that magnetic field generation would even be possible at smaller Rayleigh numbers
Ra than when the magnetic field is smaller or absent, i.e. they postulated two types
of buoyantly driven dynamos, a weak-field, viscously dominated branch and a more
easily excited, strong-field, magnetically dominated branch. (The Rayleigh number is
a non-dimensional measure of the buoyancy force when temperature decreases with
increasing height. Chandrasekhar was the first to give it a name. In chapter VI of
his celebrated book (Chandrasekhar 1961), he defined Ra for a sphere of radius ro
uniformly heated by dissolved heat sources. Assuming a constant thermal diffusivity,
κ , the ambient temperature gradient is β =−βor/ro, where βo is the gradient at r= ro.
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For uniform fluid density, the gravitational force is g(x)=−gor/ro, where go is gravity
at r = ro. Chandrasekhar defined the Rayleigh number as Ra = goαTβor4

o/νκ , where
αT is the thermal expansion coefficient. For a highly rotating system, particularly in
the MS approximation, a more convenient definition is Ra= goαTβor2

o/Ωη.)
The speculation of Eltayeb & Roberts (1970) was soon supported by Soward

(1974), who derived weak-field solutions for magneto-convection in the Bénard layer
for E� 1. He found that, as the Rayleigh number is increased, these terminated in an
asymptote at finite B. It was conjectured that this joined to the strong-field branch; see
his figure 5. Dormy (2016) recently found that both branches exist when E= 3× 10−4;
see his figure 3. Although this encourages further study of MS magneto-convection,
our interest below is with mean-field dynamos driven by the α-effect alone. There is
no obvious physical reason why there should be two branches of α2 dynamos, and
neither this paper nor papers 1 and 2 indicate that two mean-field branches exist.

Because we ignore viscosity, U can satisfy only one condition on S. This is
Ur(1, θ, φ, t)= 0, which is applied separately on the two hemispheres of S:

UN
r (1, θ, t)= 0, US

r (1, θ, t)= 0. (2.1a,b)

Generally Uθ(1, θ, t) and Uφ(1, θ, t) are non-zero.
There is neither viscous coupling between core and mantle in the MS approximation

nor magnetic coupling, in the assumed absence of sources of magnetic field in the
mantle. We could easily include other coupling mechanisms (topographic, gravitational,
viscous, . . .; see e.g. Roberts & Aurnou 2012) but do not do so because we want
to avoid complicating further an already complicated message. Therefore Γ total

z , the
z-component of the total torque on v, is zero so that the angular momentum, mtotal

z ,
of core motion about Oz cannot change. Our reference frame is the rotating frame in
which

mtotal
z ≡

∫
v

sUφ d3x= 0. (2.2)

We start our numerical integrations from the state

B(x, 0)= B0[3sz1s + (5− 6s2
− 3z2)1z], U(x, 0)= 0, (2.3a,b)

where B0 is an arbitrary constant representing magnetic field strength. This magnetic
field is purely dipolar and is created by a zonal current density Jφ proportional to
s, so that the Lorentz force is J × B = ∇[(1/2)(3B0s)2(5 − 3r2)]. It is therefore in
hydrostatic balance with constant Π + (1/2)(3B0s)2(5− 3r2), making it what in § 3.1
will be called a ‘Taylor state’. Clearly (2.1a,b) are satisfied by (2.3b), which also
implies mtotal

z = 0.
A short digression on equatorial symmetry may be welcome here. Although zero

in (2.3a), a non-zero Bφ(s, z, t) is generated in the evolution of B and U that we
study below. This, like Bs(s, z, t), is antisymmetric in z: i.e. Bφ(s,−z, t)≡−Bφ(s, z, t).
The antisymmetry of Bs and Bφ is preserved as B evolves, as is the z-symmetry of
Bz: Bz(s, −z, t) ≡ Bz(s, z, t). This type of z-symmetry is termed ‘dipole symmetry’.
Also, starting from (2.3b), U becomes non-zero and quadrupolar, with z-symmetric s-
and φ-components and a z-antisymmetric z-component. In addition to this family of
solutions in which B is permanently dipolar and U permanently quadrupolar, there
is another family in which both B and U are permanently quadrupolar. Neither that
family nor mixed dipolar/quadrupolar states are considered here.
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The adjectives geostrophic and ageostrophic often appear in papers 1 & 2. There,
as in almost all theoretical work in this area including this paper, the system
is homogeneous and v is axisymmetric with respect to the rotation axis. (The
axisymmetry of B, assumed in paper 2 and assumed in most mean-field models
results in further simplification.) Axisymmetry of v simplifies the definition of
geostrophy; see Greenspan (1968). The geostrophic cylinder C(s) of radius s is
defined by 0 6 φ < 2π and by −z1(s) 6 z 6 z1(s) where z1(s) =

√
(1 − s2). Its

area is A(s)= 4πsz1(s). The cylinder C(s) is part of the boundary of a volume V(s)
consisting of the interior of v together with northern and southern extensions bounded
by spherical caps N (s) and S(s) which are segments of S that complete the boundary
of V(s). The geostrophic average of a scalar function Q(x) is

QG(s)=
1

2z1(s)

∫ z1(s)

−z1(s)
Q(s, z) dz. (2.4a)

As s→ 1, Q(s, z)→ Q(1, 0) so that QG(s)→ Q(1, 0). If Q(s, z)∝ z2 as s→ 1, then
QG(s)∝ z2

1, etc.
The ageostrophic (or non-geostrophic) part of Q(x) is what remains after the

geostrophic part QG(s) has been removed:

QA(x)=Q(x)−QG(s). (2.4b)

The geostrophic and ageostrophic parts of a vector such as U(x, t) singles out its φ-
component:

QA(x)=Q(x)−QG(s)=Q(s, z)−QG
φ (s)1φ, (2.4c)

so that, for example,

UA
s,z(x, t)=Us,z(s, z, t), UA

φ (x, t)=Uφ(s, z, t)−UG
φ (s, t), [UA

φ (x, t)]G(s, t)= 0.
(2.4d−f )

3. Basic equations and boundary conditions
Finding the magnetic field B created by the fluid velocity U is a standard kinematic

dynamo problem that has been so often solved that we shall not dwell on it here. We
shall merely, for reference purposes, state that when the α-effect is included, B and
E satisfy the pre-Maxwell equations. In v

J=∇×B, ∇×E=−∂tB, ∇ ·B= 0, J=E+U×B+ αB. (3.1a−d)

The induction equation that follows from (3.1a–d) is

∂B
∂t
=∇× (U×B+ αB)+∇2B. (3.1e)

In the electrically insulating exterior v∗ of v, (3.1a–c) hold but (3.1d) is replaced by
J∗ ≡ 0.

The solution to (3.1e) has to obey the continuity condition,

B=B∗ on r= 1, and r2B∗→ 0 as r→∞, (3.1f ,g)
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the latter excluding sources of B at infinity. Equations (3.1f,g) lead to the so-called
‘dynamo conditions’, which for axisymmetric B, are

Bφ(1, θ, t)= 0,
[
∂Br,n

∂r
+ (n+ 2)Br,n

]
(1,t)

= 0 ∀n > 0, (3.1h,i)

where Br,n(r, t) is the nth spherical harmonic components of Br(x, t).
In § 4, the geostrophic and ageostrophic parts of the induction (3.1e) will be needed.

These are defined by

∂tB(x, t)=CG(x, t)+CA(x, t), where (3.2a)

CG(x, t)=∇× (UG
×B), CA(x, t)=∇× (UA

×B+ αB)+∇2B. (3.2b,c)

In the axisymmetric case, it was shown in (2: equation (18d)) that

CG(x, t)= sZG(s, t)Bs(x, t)1φ, where ZG(s, t)=
∂ζ (s, t)
∂s

and ζ (s, t)=
UG
φ (s, t)

s
(3.2d−f )

is the geostrophic shear.
In MS theory, the Boussinesq equations governing U(x, t) in mean-field models

satisfies

EηDtU+ 1z ×U=−∇Π +F, ∇ ·U= 0, where F= J×B (3.3a−c)

is the Lorentz force, which provides the power that maintains U(x, t) and, when there
is dynamo action, maintains B(x, t) too; in (3.3a), Dt (= ∂t + U·) is the material
derivative. For simplicity, the possibility that F contains a radial buoyancy force has
been excluded in paper 2 and in this paper (§ 2). The α-effect alone powers our
mean-field α2 dynamos, but our αω models are powered too by the rate of working
of the imposed shearing velocity against the Lorentz force; see below.

Mass conservation (3.3b) and the boundary conditions (2.1a,b) imply (Taylor
1963)

UG
s (s, t)= 0 for all 0 6 s 6 1. (3.3d)

Apart from the pressure gradient, only the Lorentz and Coriolis forces affect the
motion of fluid in the volume V(s) defined in § 2. Its equation of motion is, by
(3.3a),

Eη[∂tmz(s, t)+ fs(s, t)] = Γz(s, t), (3.4a)

where mz(s, t) is the z-component of the angular momentum of V(s),

mz(s, t)≡ 1z ·

∫
V(s)

x×U d3x=
∫ s

0
s
[∫

C(s)
Uφ(x, t) d2x

]
ds=

∫ s

0
sA(s)UG

φ (s, t) ds,

(3.4b)
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fs(s, t) is the flux of angular momentum from V(s) across C(s),

fs(s, t)=
∫
C(s)

sUs(x, t)Uφ(x, t) d2x= sA(s)(UsUφ)
G(s, t), (3.4c)

and Γz(s, t) is the z-component of the torque on V(s),

Γz(s, t)≡ 1z ·

∫
V(s)

x×F d3x=
∫ s

0
s
[∫

C(s)
Fφ(x, t) d2x

]
ds=

∫ s

0
sA(s)FG

φ (s, t) ds.

(3.4d)

By writing the Lorentz force (3.3c) as the divergence of the magnetic stress tensor,
and applying the dynamo condition (3.1h), Γz(s, t) can be expressed as a surface
integral:

Γz(s, t)= E−1
η

∫
C(s)

sBsBφ d2x. (3.5a)

Differentiating (3.5a) by t, applying (3.2a,d) and adding a star to Taylor’s α to avoid
confusion with the α-effect, we find

Eη
∂Γz(s, t)
∂t

= s[sα∗Z(s, t)− S(s, t)], where α∗(s, t)=
∫
C(s)

B2
s d2x and (3.5b,c)

S(s, t)=−
∫
C(s)
(BsCA

φ + BφCA
s ) d2x. (3.5d)

Equation (3.5b) determines Z(s, t) from Γz(s, t), S(s, t) and α∗(s, t). For dipolar B,
these are each O(s4) as s→ 0; for quadrupolar B, they are each O(s2) as s→ 0. In
both these cases, Z(s, t)=O(s−1), ζ (s, t)=O(log s) and UG

φ (s, t)=O(s log s) for s→ 0.
This weak singularity of UG

φ (s, t) may be an endemic shortcoming of axisymmetric
MS models and of the axisymmetric part of more general, three-dimensional MS
models.

By (3.1h), (3.4d), (3.5a), and Bφ(1, t)= 0, by

Γz(1, t)(= Γ total
z )= 0, ∂sΓz(1, t)= 0, FG

φ (1, t)= 0. (3.5e−g)

Finally, to show that α is the energy source driving the α2 system, we develop the
energy equation. The total kinetic and magnetic energies are

K=
1
2

∫
v

U2 d3x, M=
1
2

E−1
η

∫
v∞

B2 d3x, (3.6a,b)

where v∞ = v + v∗ is all space. By taking the scalar product of (3.3a) with U and
the scalar product of (3.1e) with B, integrating over v and applying the associated
boundary conditions, it is found that

Eη
∂K
∂t
=L,

∂M
∂t
=P −L−Q, (3.6c,d)
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where L is the rate of working of the Lorentz force, P is the power input and Q(t)
is the dissipation, which is entirely ohmic in the MS approximation:

L=
∫

v
U · (J×B) d3x, P =

∫
v
αJ ·B d3x, Q=

∫
v

J2 d3x. (3.6e−g)

Clearly ∂t(EηK+M)=P −Q. As stated above, the power input, P , is created by α.
Because the integrand of (3.6f ) is the product of two helicities, the kinetic helicity α
and ‘the current helicity’ J ·B, which is a pseudoscalar too, P is correctly independent
of the right- or left-handedness of the coordinate frame.

In a steadily operating α2 dynamo, (3.6c,d) show that 〈L〉= 0 and 〈P〉= 〈Q〉, where
〈Q〉 is the average of Q(t) over a sufficiently long time, e.g. the magnetic diffusion
time, which is O(1) in our non-dimensionalization. The positivity of P implies that,
in a steadily working α2 dynamo, the kinetic helicity on average creates a current
helicity of the same sign.

The kinetic energy K in (3.6a) may be written as K= (1/2)
∫

v[U
2
M+ s2ζ 2

] d3x where
UM=Us1s+Uz1z is the meridional part of U. For an α2ω dynamo, defined in § 1, this
is replaced by K= (1/2)

∫
v[U

2
M+ s2(ζ +ω)2] d3x which, in the extreme case of an αω

dynamo (|α| � ro|ω|), is K= (1/2)
∫

v[U
2
M + s2ω2

] d3x.

3.1. Original Taylor theory (OTT); Taylor’s constraint
This subsection summarizes what is needed later in this paper about OTT, our
abbreviation for ‘original Taylor theory’ (Taylor 1963).

The study of magnetostrophy was initiated by the plasma physicist Bryan Taylor,
whose paper had a major impact on the dynamo community. As well as neglecting
viscosity, Taylor (1963) discarded the inertial force in the rotating frame. Inertia is
generally quantified by the Rossby number Ro≡U/2Ωro. For an estimated flow speed
U = 2× 10−4 m s−1, Ro≈ 4× 10−7. Our choice of non-dimensional variables makes it
more convenient to use instead the magnetic Ekman number (1.5). For η≈ 0.7 m2 s−1

(Pozzo et al. 2012), Eη ≈ 4 × 10−10. The ratio of these 2 inertial measures is the
magnetic Reynolds number: Rm ≡ Uro/η = Ro/Eη, which is approximately 1000.
The omission of the inertial force may therefore be stated either as Ro = 0 or as
Eη = 0. In writing Eη = 0, there is no implication that η is as negligible as ν; Eη is
the ratio of the dynamo time scale, τη = r2

o/η, and the other time scales governing
geodynamo (identified in § 4.1 below) and is much greater than any of them; Eη = 0
is an expression of that fact.

The smallness of Ro encouraged Taylor (1963) to ignore inertia entirely in the
rotating frame. For Eη = 0, the Boussinesq MS equations (3.3a,b) governing U
become

1z ×U=−∇Π +F, ∇ ·U= 0. (3.7a,b)

The derivation of energy conservation given in § 3 remains valid for K = 0. The
equation of motion (3.4a) of V(s) and its s-differential are also simplified, becoming

Γz(s, t)≡ 0, FG
φ (s, t)= 0, for all 0 6 s 6 1 and all t. (3.7c,d)

Equivalent to (3.7d) is∫
C(s)
(J×B)φ d2x= 0, for all 0 6 s 6 1 and all t. (3.7e)
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Either of (3.7d,e), but usually (3.7e), is termed ‘Taylor’s constraint’ (aka ‘Taylor’s
condition’). Provided it is satisfied, the solution of (3.7a,b) can almost be reduced
to quadratures, as Taylor (1963) demonstrated.

To maintain his constraint, Taylor (1963, equation (4.5)) derived a second-order
equation for UG

φ (s, t). The first integral of that equation is

Z(s, t)=
q(s, t)

s
, where q(s, t)=

S(s, t)
α∗(s, t)

. (3.8a,b)

The function q(s, t) defined by (3.8b) is regular for 0 6 s 6 1 and non-zero at s =
0, as shown below (3.5d). This means that ζ (s, t) cannot be obtained by integrating
Z(s, t) directly because of the logarithmic divergence found at s= 0 in § 3. Instead we
introduce ε (> 0) and define ζ ε(s, t) by excluding s= 0 from the range of integration,
using (3.8a) to obtain

ζ ε(s, t)=
∫ s

ε

S(s, t)
sα∗(s, t)

ds+D0(t), so that ζ ε(s, t)∼ q(0, t) ln
( s
ε

)
+D0(t) for s→ 0,

(3.8c,d)

where D0(t) is the integration ‘constant’. Clearly ζ ε(s, t) is finite, but diverges as s→0
or ε→ 0. We approximated ζ (s, t) numerically by

ζ (s, t)≈ ζ ε(s, t), where ε = s1 (3.8e,f )

is the smallest positive grid point (at s= 0, we arbitrarily take ζ ε(0, t)= 0). Equation
(2.2) shows that

D0(t)=−
15
4π

∫ 1

0
s2z1ζ (s, t) d2x. (3.8g)

(Even though this result was derived from (3.8c), it features ζ and not ζ ε . This is
because limε→0 mε,total

z =mtotal
z .)

Most modellers, including Taylor (1963) and ourselves in this paper, assume the
core is fluid throughout, ignoring the inner core entirely. Livermore, Ierley & Jackson
(2009) provide general examples of full-sphere Taylor states. Recognition of the inner
core introduces complications touched on in § 2 above. Nevertheless, the behaviour of
solutions as s→ 0 is not much affected; the logarithmic divergence of ζ persists as
does the endemic shortcoming of UG

φ (s, t) identified in § 3.
In the present axisymmetric case, the cylindrical components of (3.7a) are

Us(x, t)= Fφ(x, t), Uφ(x, t)=−Fs(x, t)+ ∂sΠ(x, t), Uz(x, t)=−s−1∂s(sz1F̃φ),
(3.9a−c)

where

Π(x, t)= z1F̃z(x, t)+w(s, t),
∂w(s, t)
∂s

= FG
s (s, t)+

1
z1

∂

∂s
(s[zFz]

G(s, t)), (3.9d,e)

Q̃(x, t)=
1

2z1

(∫ z

z1

Q(s, z, t)+
∫ z

−z1

Q(s, z, t)
)
. (3.9f )
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Solutions of these equations were given in (1: § 4), where we recognized that the
initial B(x, 0), given for example by (2.1a), determines the initial UG

φ (s, 0).
Finding OTT solutions promises to be much easier than solving (3.1e) and the

unapproximated partial differential equations governing U that include viscous and
inertial forces. This explains why Taylor’s paper made a major impact on the dynamo
community with its publication in 1963. Nevertheless, the task proved to be more
onerous than it appeared to be at first sight, and it took 52 years for Taylor’s idea to
be successfully implemented. See (2: §§ 5,6), which presents solutions for mean-field
α2 and αω-dynamos.

4. Modified Taylor theory (MTT); torsional waves
In this section, a generalization of OTT will be described which, as in paper 1, is

termed ‘modified Taylor theory’ (abbreviated as ‘MTT’). Numerical consequences are
presented in § 5.3 below. MTT recognizes the existence of torsional waves which OTT
does not. Much has been written about torsional waves since their importance was first
recognized by Braginsky (1970). See, for example, Wicht & Christensen (2010), Teed,
Jones & Tobias (2013, 2015), Schaeffer et al. (2017). Interpretations of observations
that appear to confirm that torsional waves are travelling across the core are due to
Abarca del Rio, Gambis & Salstein (2000), Gillet et al. (2010) and Holme & De Viron
(2013), who link torsional oscillations to observed changes in the length of day. But
we should emphasize here, however, that the incorporation of torsional waves into
our MS dynamo model is not our main objective. We have studied MTT primarily
because it not only generalizes OTT but also because it is, as we see it, the best MS
approximation possible, without re-introducing the shortcomings inherent in today’s
viscously dominated models. We defend that assertion in § 4.1 below.

MTT ignores the nonlinearity of the inertial force; the fs defined by (3.4c) is now
zero, so that (3.4a,b,d) and (3.3d) imply

Eη
∂UG

φ (s, t)

∂t
=

Eη
sA(s)

∂2mz(s, t)
∂s∂t

=
1

sA(s)
∂Γz(s, t)
∂s

= FG
φ (s, t). (4.1)

The left-hand side of (4.1) is the only part of the inertial force Eη(∂tU +U · ∇U)
retained in MTT; the momentum equations (3.3a–c) and (3.7a–c) are replaced by

Eη∂tUG
φ 1φ + 1z ×U=−∇Π +F, ∇ ·U= 0, F= J×B. (4.2a−c)

The derivation of energy conservation given in § 3 continues to be valid provided the
kinetic energy K in (3.6a) is redefined with UG

φ (s, t) replacing U(x, t).
Although (3.3d) remains true (UG

s (s, t) = 0), (4.2a–c) no longer imply Taylor’s
constraint (3.7d,e). Because the predictive (4.1) replaces the diagnostic (3.7a), it does
not constrain F. Instead

Eη
∂UG

φ (s, t)

∂t
=

1
A(s)

∫
C(s)
(J×B)φ d2x, for all 0 6 s 6 1. (4.2d)

When integrating (4.2d) from an initial state such as (2.3a,b), the resulting UG
φ (s, t)

evidently depends on Eη, and (4.1) shows that

∂t(EηsA(s)UG
φ (s, t))= ∂sΓz. (4.3a)
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FIGURE 1. The function ζ (s, t) at t = 54.8 as a function of s for the modified Taylor
theory α2 model with α0 = 14.5, Eη = 0.01 and UG

φ (s, 0)= 0 is shown with blue curves
marked by circles: (a) in the range 0< s6 1, and (b) in 0< s6 0.2. (The function UG

φ (s, t)
at the same time is shown in figure 3 below.) Also shown in red in (b) is the curve
ζ (s, t)=−20.5 ln(s)− 50.

By writing (4.2d) in this conservative form, the condition (2.2) on the total angular
momentum (mtotal

z (t) = 0), is automatically satisfied as U(x, t) evolves (provided that
UG
φ (1, 0)= 0 so that mtotal

z is initially zero). Equations (3.5e) and (4.2d) imply

∂tUG
φ (1, t)= 0, so that UG

φ (1, t)=UG
φ (1, 0)= const.=K, say. (4.3b,c)

In MTT, as for OTT, ζ (s, t) is O(ln s) for s→ 0. See figure 1, which was derived
by integrating (4.3a). Except for the first half-grid point, the computed values of ζ fit
well onto the curve ζ (s, t0)=−20.5 ln s− 50 shown, where t0 = 54.8 is the time at
which the data were taken.

In OTT, (3.4a) is the tautology 0 = 0; its left-hand side vanishes because Eη =
0 and its right-hand side because of Taylor’s constraint (3.7d,e). An important part
of Taylor’s paper (1963, § 4) is devoted to finding his uφ(s, t), i.e. our UG

φ (s, t). We
used his method in deriving OTT results in paper 2 but cannot apply it here because
FG
φ (s, t) is generally non-zero in MTT.
In MTT, Γz(s, t) and mz(s, t) are generally non-zero and are related by (3.4a)

with fs(s, t) = 0. They are responsible for coupling geostrophic cylinders together
and for time variation of the angular momentum, both of which are associated
with torsional waves and both of which are lacking in OTT. An equation governing
ζ (s, t)(= UG

φ (s, t)/s) alone can by found by differentiating (3.5b) by s and then
applying (4.2d), to give

Eηs2A(s)
∂2ζ

∂t2
=
∂

∂s

[
s
(

sα∗(s, t)
∂ζ (s, t)
∂s

− S(s, t)
)]

. (4.4a)

Equation (4.4a) governs a one-dimensional type of Alfvén wave that travels in the ±s-
direction. This torsional wave equation may be re-written as (see (1: equation (22a)))

∂2ζ

∂t2
=

1
s2A

∂

∂s

(
s2AV2

tort
∂ζ

∂s

)
−

1
s2AEη

∂(sS)
∂s

, (4.4b)
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FIGURE 2. Internal magnetic energy, M(t), as a function of time for the α2 model for
α0= 14.5. The solid curve is for MTT with UG

φ (1, 0)= 0 and Eη= 0.01; the dashed curve
is for Eη= 0.001. The dotted curve is from an OTT calculation with the same α0. During
the linear phase of the growth, M(t) ∝ exp(2λt), where λ = 2.55 for OTT; λ = 5.50 for
both MTT calculations.

where Vtort(s, t) is the torsional wave speed (Braginsky 1970):

Vtort(s, t)=
(

1
EηA(s)

∫
C(s)

B2
s (x, t) d2x

)1/2

or Vtort(s, t)= E−1/2
η

(
α∗(s, t)
A(s)

)1/2

.

(4.4c,d)

It is generally true that α∗(s, t)∝ z3
1 as s→ 1 and, since A(s)∝ z1, Vtort(s, t)∝ (1− s)1/2

for s→ 1 by (4.4d). For dipole parity, Vtort(s, t)∝ s as s→ 0. A good approximation
to the torsional wave speed is Vtort(s, t)= V0(t)s(1− s)1/2, where V0(0)= (3/Eη)1/2B0
in the special case (2.3a). For magnetic fields of quadrupolar parity, α∗(s, t) ∝ s for
s→ 0 so that Vtort(0, t)=O(1).

As Eη is so small (of order 4× 10−10, according to § 3.1) and Vtort(s, t)=O(E−1/2
η B),

torsional waves introduce a new short time scale, τtort = V−1
tort, into core dynamics. In

dimensional units for Earth’s core, Vtort(s, t) ≈ 2 × 10−2 m s−1 and is about 100U ;
for B = 25 gauss, τtort ≈ 5 yr so that τη/τtort ≈ 105, assuming the dynamo time scale
τη = r2

o/η≈ 5× 105 yr. So there are many torsional oscillations of period τtort during
the transition to the steady state of our α2 model, but the duration of that transition
is O(τη), this being the time scale over which ohmic resistance damps out the waves.
All our numerical integrations were carried out on a workstation; this made values
of Eη smaller than 10−4 inaccessible to us. Figure 2 below therefore shows only one
oscillation convincingly because τη/τtort ≈ E−1/2

η B, is not large enough to show many.
For the αω models of paper 2, the final OTT solutions were periodic, with periods
that were unrelated to τtort, but the MTT evolution to these solutions is accompanied
by torsional waves.

The significance of the short time scale of torsional waves was not lost on Taylor
(1963, § 5), and it seems to us worth quoting a short extract from his paper where
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he recognizes the limitations of OTT that are now removed in MTT. We make minor
changes to his text so that it conforms with our notation:

If this constraint is not satisfied then rapid motions occur (in which the
acceleration term DtU cannot be neglected) until such time as the torques
producing this motion satisfy

∫
C(s)(J×B)φ d2x= 0.

There is, however, a perplexing paradox. It appears, from the numerical results of
§ 5.3 for the α2 model, that there is only one value of the constant K defined in (4.3c)
for which UG

φ (s,∞) for MTT coincides for all s with [UG
φ (s,∞)]OTT for OTT. The

single exception is K = [UG
φ (1,∞)]OTT for which the MTT and OTT solutions are

the same at infinite t. The point is simple: except for that special value of K, one
cannot require the MTT flow to satisfy UG

φ (1,∞)=K and UG
φ (1,∞)=[U

G
φ (1,∞)]OTT

simultaneously! Section 5.3 below points the way MTT solutions solve the paradox.
At long last, we return from finding UG(x, t) (=UG

φ (s, t)1φ) to determining UA(x, t).
It is helpful to cast the defining (4.2a) of MTT in the same form as (3.7a) for OTT
by replacing F(x, t) in (3.7a) by

H=F− Eη∂tUG
φ (s, t)1φ. (4.5)

Note particularly that HG
φ (s, t) = 0, which is analogous to FG

φ (s, t) = 0 for OTT; see
(3.7d). This means that the process of solving (4.2a,b) is identical to that of solving
(3.7a,b), which was achieved by (3.9a–e). Both processes determine the flow UA(x, t)
at the same time t as they advance B(x, t) (in the case of OTT) or UG

φ (s, t) (in the
case of MTT). This point is elaborated in the next subsection.

4.1. Discussion; the relevance of MTT
One may ask, ‘How can one defend MTT, when it retains only part of the inertial
force?’ We attempt to answer that question in this subsection in which we return to
dimensioned variables.

When the MS equations are integrated, with a time-independent α(x) (such as (5.3)
below) from an initial state (such as (2.3a,b)), ohmic diffusion will ultimately cause
B and U to disappear if α0 is not large enough. Otherwise B and U will evolve to
a steady state, or to a statistically steady oscillatory state. The evolution to this final
state is controlled by the three time scales relevant to our project: τη, τtort and τΩ . The
longest, τη = O(r2

o/η) ∼ 5 × 105 years, is the principal time scale of dynamo action;
τtort = O(ro/Vtort) ∼ 5 years is characteristic of the time taken by torsional waves to
cross the core; and τΩ =O(Ω−1)∼1 day is a typical time scale of inertial waves when
B= 0. See Greenspan (1968) and Zhang & Liao (2017). Neglecting B in describing
inertial waves is an oversimplification that tends to underestimate the torsional wave
time scale τΩ ; see e.g. Lan, Kuang & Roberts (1993). It is made here to simplify
the presentation. Two other time scales relevant to core dynamics are (i) the spin-up
time, O(E−1/2Ω−1) ∼ 105 yr, but this does not arise in MS because E = 0. And (ii)
the overturning time ro/U , which according to § 4 is approximately 100 times greater
than τtort but is still tiny compared with τη. (In MTT, the overturning time is O(τtort).)

In OTT, evolution is dictated by ∂tB which is the only time derivative in the
governing equations (the dimensioned (3.1c,e) and (3.7a,b)), and this imposes the
time scale τη of B through the induction (3.1e). The equation governing U is
diagnostic. The evolution of both the geostrophic and ageostrophic parts of U is
determined by B, and at the same moment in time as B, through Taylor’s constraint
(3.7e).
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In MTT, the governing equations (3.1e) and (4.2a) have 2 time derivatives, ∂tB and
∂tUG

φ (s, t), associated with the τη and τtort time scales. Only the ageostrophic part of
U, associated with the even shorter time scale, τΩ , evolves synchronously with UG

φ .
The many studies of rotating fluids, reviewed by Zhang & Liao (2017) and

Greenspan (1968) for B≡ 0, indicate what happens when the inertial force is retained
in full. Zhang & Liao (2017, chap. 5) go to considerable lengths, deriving all
possible inertial modes for spherical v for B = 0. There are an infinite number of
inertial eigenstates, each with its own frequency, which is bounded above by 2Ω .
The longer the z-wavelength of a mode, the lower its frequency, which becomes
O(τ−1

tort) only in the geostrophic limit of z-independence. To describe waves dependent
on z, the inertial force ρDtU has to be retained in full, while the z-independent
geostrophic inertial modes can be found by retaining only ρ∂tUG

φ 1φ . Likewise, the
MTT developments of § 4 succeed because they retain only the ρ∂tUG

φ 1φ part of the
inertial force. If more were included, the entire t-derivative of U would have to be
retained to follow the evolution of U on the very short τΩ time scale, presenting
insuperable computational obstacles.

In summary: The OTT of Taylor (1963) filters out all inertial modes so that only
the τη time scale survives. By keeping the geostrophic part (and only the geostrophic
part) of the inertial force, MTT retains the τη and τtort time scales. To retain the
inertial force ρDtU in full, and not merely its geostrophic part, ρ∂tUG

φ 1φ , would be
tantamount to attempting to reinstate today’s numerical dynamos at the inaccessible
Ekman number of zero.

5. Numerical results
5.1. Task for MTT

As already mentioned in § 2, we seek only MTT mean-field dynamos in this paper.
Although this rescues the torsional waves abandoned by OTT, the inclusion of these
waves by MTT is only incidental to our main objective. As we stressed in the last
subsection, MTT is the best way of approximating the inertial force while avoiding the
large Ekman numbers that are so devastating to the geophysical relevance of today’s
computer models; see § 2. We now present numerical results for MTT dynamos; these
may be compared with the OTT dynamos of paper 2.

We start by summarizing §§ 3 and 4. In one respect MTT solutions are simpler to
obtain than OTT solution. There are no constraints and U is obtained by time stepping
predictive equations. But one disadvantage of MTT is that one has to take more time
steps in integrating the governing equations because the torsional wave time scale
τtort = 1/Vtort ∝ E1/2

η has to be resolved, and when Eη is small this is much less than
the dynamo time scale τη = r2

o/η.
MTT requires the numerical solution of 4 predictive equations, namely the 3 scalar

equations (3.1e) and the modified Taylor condition (4.2a):

∂B
∂t
=∇× (U×B+ αB)+∇2B, ∇ ·B= 0, (5.1a,b)

∂UG
φ (s, t)

∂t
=

1
EηA(s)

∫
C(s)
(J×B)φ d2x. (5.1c)

Equations (5.1a,b) and the dynamo conditions (3.1h,i) decide the evolution of B;
equation (5.1c) and condition (2.2) determine how UG

φ evolves. At each time step,
U(x, t) must be found from F(x, t) and UG

φ (s, t) by the process described in § 4.
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We integrated (5.1a,c), starting from

B(x, 0)= B0[3sz1s + (5− 6s2
− 3z2)1z], UG

φ (s, 0)= 0, (5.2a,b)

for which K (=UG
φ (1, 0)) is zero; see (4.3c). Other K are considered in § 5.3.

As in paper 2, we made Braginsky’s (Braginsky (1964)) choice of

α(s, z)=
729
16
α0r7z(1− r2)2, (5.3)

where α0 is the maximum of α. For α0 > αT ≈ 13.80, the solutions equilibrate to non-
trivial steady states; for α0 < αT , B eventually decays to zero. For the αω dynamos
of paper 2, supercritical solutions equilibrate to steadily oscillating dynamos. In § 5.3,
we shall compare MTT solutions with the OTT dynamos of paper 2 for α2 mean-field
models driven by (5.3), and shall also display results for MTT αω dynamos.

5.2. Numerical methods
We used a semi-discrete method to solve the MTT model. We first discretized the
equations in space and obtained a system of ordinary differential equations in time.
These were solved using a Runge–Kutta scheme of Shu (1988).

The spatial discretization was carried out on three overlapping grids, which were
described in detail in appendix B of Wu & Roberts (2014). They involved

(i) a ‘square’ grid covering the region, −1s6 s6 0.65, −0.656 z6 0.65, where 1s
is the grid spacing in s;

(ii) a polar grid covering 0.5 6 r 6 1 and −1θ 6 θ 6π+1θ , where 1θ is the grid
spacing in θ ; and

(iii) a cylindrical grid, as specified by Nakajima & Roberts (1995a,b), covering the
entire computational domain.

There are 4 primary variables in the MTT calculations: UG
φ and three components of

B. Other quantities involving U are auxiliary variables that can be obtained from the
4 primary variables; the cylindrical grid was used mainly for that task. The polar grid
and the square grid were used to solve the induction equation while enforcing the
dynamo conditions (3.1h,i). (If the polar grid alone had been used, a grid singularity
would have occurred at r = 0. By supplementing the polar grid by the square grid,
this difficulty is avoided.)

To preserve the integrity (2.2) of our reference frame, we used the discrete
expression of (4.3a) which, for our cylindrical grid, is

Eηsi+1/2A(si+1/2)
∂UG

φ (si+1/2, t)

∂t
=
Γz(si+1, t)− Γz(si, t)

1s
, (5.4a)

where si and si+1/2 refer to the integer and half-integer grid values, respectively. Thus
the change in the total angular momentum in time becomes

d
dt

(∑
i

si+1/2A(si+1/2)UG
φ (si+1/2, t)1s

)
=
Γz(1, t)− Γz(0, t)

Eη
= 0. (5.4b)

The results presented below used the same grid system and the same number of
grid points as Wu & Roberts (2014). The calculations are second-order accurate in
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both space and time. Numerical stability limits the magnitude of the attainable Eη
which, for the grid just specified, is Eη > 10−4 for the α2 model and Eη > 10−5

for the αω model. To reach smaller values of Eη, the number of grid points would
have to be increased. We did not analyse the system to determine how the time step
is constrained. The time step was found by trial and error guided by the Courant
condition and by the constraint imposed by magnetic field diffusion.

5.3. MTT results for dipolar models
Most of the figures shown below are for t large enough for the solutions to be close
to their final steady or statistically steady states; we term these ‘saturated states’. We
consider first dipolar α2 models and compare them with the OTT dynamos of (2: § 5).

Because this paper uses MTT instead of the OTT of paper 2, the evolution of B
from (2.1b,c) differs from that of paper 2: evolution in MTT depends on Eη but that
in OTT does not. This is apparent in figure 2 which shows the internal magnetic
energy, M(t), for α0 = 14.5 for 2 values of Eη. Also shown by the dotted curve is
the corresponding M(t) from paper 2 for OTT. The 3 curves approach one another
as t increases, and each approaches the same steady-state value M(∞)≈ 0.128. The
existence of the torsional wave in MTT is evident; M(t) for both MTT solutions
overshoots M(∞) before recovering. In comparison, the M(t) of the OTT solution
increases monotonically to M(∞) (apart from an initial decrease whose origin was
explained in paper 2). The OTT solution shown was extracted from paper 2.

Paper 1 pinpointed the way ohmic resistance damps out torsional waves; if there is
no source to maintain a torsional wave, resistivity will remove it on the τη time scale
(r2

o/η). Our initial non-zero UG
φ launches a torsional wave but does not maintain it, so

its ‘half-life’ is only approximately τη. Over this period, there will be approximately
τη/τtort maxima and minima of M(t), where τtort ∝ ro/Vtort, the period of the torsional
wave, is proportional to E1/2

η (see § 4). In the geophysical case, τη/τtort∼ 105 according
to § 4.1, and the waves traverse the core so many times before being attenuated that
the mechanism of their excitation becomes the primary target of theory. Such small
Eη and large τη/τtort are not practical for dynamo simulations, and therefore far fewer
extrema of M can be anticipated. Numerical difficulties increase as Eη diminishes, and
our limited computer resources made it impossible for us to obtain reliable results for
Eη smaller than 10−4. Figure 2 shows only one maximum of M convincingly. Future
MTT models at smaller Eη should see more.

While B is small, it grows exponentially: B ∝ eλt and the M(t) ∝ e2λt as shown
in figure 2. This may be seen in the ‘straight line’ segments of the three M(t) of
figure 2. During this ‘linear phase’, λ = 2.55 for the OTT calculation and λ = 5.50
for both MTT cases. The different slopes of the straight line segments of MTT and
OTT are apparent in figure 2. They arises because OTT solutions must satisfy Taylor’s
constraint as B and M(t) grow, but MTT solutions do not. Therefore the λ of the MTT
solutions coincides with the λ of the kinematic dynamo for the assigned α0=14.5, but
the λ of the OTT solution is smaller and vanishes for the marginal αT ≈ 13.8.

The remaining three figures for the α2 dynamos show only the geostrophic part,
UG
φ (s, t), of the MTT flows.
Figure 3 is for α0 = 14.5, Eη = 0.01 and K (=UG

φ (1, 0))= 0; see (4.3c). It displays
UG
φ (s, t) for t= 34.2, 41.1, 47.9 and 54.8. There are 2 minima of UG

φ . The one nearer
to s = 1 is denoted by (UG

φ )min and its location by smin. For t = 34.2, 41.1, 47.9
and 54.8, (smin, (UG

φ )min) = (0.830, −1.635), (0.835, −1.777), (0.842, −1.898) and
(0.845, −2.000), respectively. In the interval smin 6 s 6 1, UG

φ increases dramatically
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FIGURE 3. The geostrophic flow, UG
φ (s, t), as a function of s for the MTT α2 model at

different times; α0= 14.5, Eη = 0.01 and UG
φ (1, t)= 0. The red dashed-dotted curve is for

t= 34.2, the magenta dotted curve is for t= 41.1, the green dashed curve is for t= 47.9,
and the blue solid curve is for t= 54.8.

to 0. As t increases, so does the depth −(UG
φ )min of the minimum and its location

smin. This trend suggests that, as t→∞, smin will tend to 1 and −(UG
φ )min will tend

to −(UG
φ )OTT(1,∞)≈ 4.8.

This figure and the next indicate how the paradox of § 4 may be resolved: Because
the rate at which UG

φ (1,∞) approaches K is proportional to Vtort(s, t) and vanishes
with it as s→ 1, the differences U(x, t)−[U(x, t)]OTT and B(x, t)−[B(x, t)]OTT remain
non-zero, becoming simple discontinuities on the equator, (s, z) = (1, 0), at t = ∞.
There they have no dynamic or inductive effect, and do not affect mtotal

z .
Figure 4 re-enforces this interpretation. This figure displays UG

φ (s, t) as Eη is
reduced for fixed t = 41.1; here again α0 = 14.5 and K = 0. Displayed are plots
for Eη = 10−2, 10−3 and 10−4. Also shown is the OTT solution for the same α0.
Employing the same terminology used when describing figure 3, UG

φ (s, t) attains
(UG

φ )min, which becomes deeper and moves to larger s as Eη is reduced, while
hugging the OTT solution until it leaves it near s = smin to climb rapidly to the
assigned UG

φ (1, t)= K = 0. The similarity of the progression of solutions for fixed t
and decreasing E is related to the progression of solutions for fixed E and increasing
t (figure 3) through the E1/2 time scale of torsional waves identified in § 4. (The
slight irregularity of UG

φ (s, t) for Eη = 10−4 is due to the same numerical difficulty as
mentioned above in connection with figure 2.)

Figure 5 shows how UG
φ (s,41.1) for MTT solutions changes when t and Eη are fixed

and only K defined in (4.3c) is varied; as before α0= 14.5 and Eη= 0.001). Displayed
are plots for K = 0, −2.0, −4.5 and −6.0. That there are substantial differences
near s= 1 where the boundary condition (4.3c) is enforced is no surprise. The OTT
solution, for which [UG

φ (1)]OTT ≈−4.8 is also shown. The MTT plots for K =−4.5
and −6.0 straddle the OTT solution. This demonstrates consistency between the OTT
and MTT solutions.
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FIGURE 4. The geostrophic flow, UG
φ (s, 41.1), as a function of s at different Eη for the

MTT α2 model; α0 = 14.5 and UG
φ (1, t) = 0. The blue dotted curve is for Eη = 0.01,

the green dashed curve is for Eη = 0.001 and the red solid curve is for Eη = 0.0001. In
addition, the black solid curve is for the OTT model for the same α0.

FIGURE 5. The geostrophic flow, UG
φ (s, 41.1), as a function of s at different Eη for the

MTT α2 model; α0 = 14.5 and Eη = 0.001. The magenta solid curve is for UG
φ (1, 0)= 0,

the curve of solid green squares is for UG
φ (1, 0)=−2.0, the red dashed-dotted curve is for

UG
φ (1, 0)=−4.5 and the black dotted curve is for UG

φ (1, 0)=−6.0. In addition, the blue
dashed curve is for the OTT model for the same α0; for this OTT model, UG

φ ≈−4.8 at
s= 1.
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FIGURE 6. The averaged internal magnetic energy, 〈M〉, plotted in circles as a function
of Eη, for saturated MTT αω states; α0(=−ω

′

0)= 425. The 〈M〉 value based on the OTT
calculation with the same α and ω′ is indicated by the asterisk.

FIGURE 7. Time dependence of the internal magnetic energy, M(t), for the MTT αω
model with α0(= −ω

′) = 425: (a) at an early phase, and (b) in the final saturated state.
The blue curves are for Eη = 10−4 and the red curves for Eη = 10−5.

Our final 3 figures are for MTT αω models but we also compare them with OTT
αω dynamos of (2: § 6). In all 3 cases, α0 (=−ω

′

0)= 425.
Figure 6 shows the mean 〈M(t)〉 of the evolved internal magnetic energy, M(t), as

a function of Eη. The inferred value of 〈M(t)〉 ≈ 0.004 for Eη = 0 may be compared
with the OTT value of 〈M(t)〉 ≈ 0.0043: see (2: § 6). Interestingly, the amplitude of
〈M(t)〉 increases with Eη, as the torsional wave speed (4.4d) deceases.

Figure 7 shows M(t) for Eη= 10−4 and Eη= 10−5 at an early stage in the evolution
of the solution from its starting point (5.2a,b) and in its final evolved state. The
increase in the amplitude of M(t) with time is evident. As it is impossible to
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FIGURE 8. The power spectral density (PSD) of the internal magnetic energy, M(t), as a
function of frequency for saturated states of the αω model with α0(=−ω

′)= 425: (a) in
red, for MTT and Eη = 10−4; (b) in green, for MTT and Eη = 105; (c) in blue for OTT.
In case (a) the PSD has been divided by 40.

extract quantitative information from this figure, or from (2: figure 14a) for OTT, we
performed some spectral analyses:

Figure 8 shows the power spectral density (PSD) of the three M(t) of figure 7 in
their saturated states. The spectral peaks for Eη = 10−5 are sharper than for OTT and
are significantly displaced from them.

6. Conclusion

Readers will be well aware of how much this article owes to the solid foundation to
magnetostrophy laid by Taylor (1963). Nevertheless, by restoring part of the inertial
force, we generalized his concept in paper 1 (Roberts & Wu 2014). We called the
resulting modification of his theory ‘modified Taylor theory’ (or ‘MTT’), and have
shown that it admits torsional waves, which are excluded by ‘OTT’, i.e. the ‘original
Taylor theory’ (Taylor 1963). We have argued in § 4.1 that MTT is the only practical
way of improving on OTT. In § 5, we have presented numerical results for MTT α2

and αω mean-field dynamos. Very recently, Li, Jackson & Livermore (2018) have
presented numerous numerical examples of MTT dynamos. Their paper and this one
show that MTT is a practical tool for studying magnetostrophy (‘MS’). In turn, and as
argued in § 2, we see MS as currently the only numerical route to geophysical realism.
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